JP2015177607A - Countermeasure construction determination device and method for distribution system - Google Patents

Countermeasure construction determination device and method for distribution system Download PDF

Info

Publication number
JP2015177607A
JP2015177607A JP2014050975A JP2014050975A JP2015177607A JP 2015177607 A JP2015177607 A JP 2015177607A JP 2014050975 A JP2014050975 A JP 2014050975A JP 2014050975 A JP2014050975 A JP 2014050975A JP 2015177607 A JP2015177607 A JP 2015177607A
Authority
JP
Japan
Prior art keywords
voltage
countermeasure
distribution system
power distribution
pole transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014050975A
Other languages
Japanese (ja)
Inventor
諒 江頭
Ryo EGASHIRA
諒 江頭
大西 司
Tsukasa Onishi
司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014050975A priority Critical patent/JP2015177607A/en
Publication of JP2015177607A publication Critical patent/JP2015177607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine an optimal countermeasure construction that minimizes cost of the countermeasure construction for a distribution system while settling a load-side voltage within predetermined upper and lower limit values.SOLUTION: In a countermeasure construction determination device 10 for a distribution system, load-flow calculation or/and status estimation of the distribution system are performed on the basis of measurement data 22 of the distribution system and load-flow calculation data 21 of the distribution system to calculate voltages of nodes. A low conversion voltage converted into a load-side voltage is calculated from the voltages of the nodes and a pole transformer tap value 23 of the distribution system, and a voltage margin is calculated from a differential between the low conversion voltage and a predetermined voltage upper/lower limit value. When the voltage margin is equal to or less than a predetermined threshold, a plurality of countermeasure cost items are calculated which relate to a change of the pole transformer tap value and relate to installation of a voltage regulator for performing a voltage regulation. A plurality of evaluation functions are compared which are evaluated on the basis of the voltage margin and the plurality of countermeasure cost items.

Description

本発明は、対策費用と電圧上下限値に対する電圧余裕を評価指標として配電系統の電圧対策工事を決定する対策工事決定装置及び方法に関するものである。   The present invention relates to a countermeasure work determination apparatus and method for determining a voltage countermeasure work of a distribution system using a countermeasure cost and a voltage margin with respect to a voltage upper and lower limit value as an evaluation index.

配電系統の電圧は、既存の設備構成において、配電用変電所の変圧器(LRT:Load Ratio Tap-changer)のタップ切り替えによって電圧を適正範囲内に収められない場合、柱上変圧器タップ値の変更や電圧自動調整器(SVR:Step Voltage Regulator)を設置することによって適正範囲内に収める。SVRの最適設置について、次のような手法が示されている。   If the voltage of the distribution system cannot be kept within the proper range by switching the transformer (LRT: Load Ratio Tap-changer) of the distribution substation in the existing equipment configuration, the pole transformer tap value Change or install an automatic voltage regulator (SVR: Step Voltage Regulator) within the proper range. The following method is shown for optimal installation of SVR.

例えば、特許文献1では、潮流計算によって系統状態を設定し、対象系統に新設する電圧調整装置の設置台数を最小とする手法が開示されている。また、特許文献2には、配電系統内の線路電圧の分布状態を求め、SVRの最適な設置位置を求める手法が開示されている。   For example, Patent Document 1 discloses a method of setting the system state by power flow calculation and minimizing the number of voltage regulators newly installed in the target system. Patent Document 2 discloses a method for obtaining the distribution state of the line voltage in the distribution system and obtaining the optimum installation position of the SVR.

特開2006−296030号公報JP 2006-296030 A 特開2008−312323号公報JP 2008-31323 A

上記特許文献1及び2に記載の方法では、コスト最小化はSVRの設置台数を最小とすることによる対策のみである。このため、例えば系統内で電圧が常時高めとなっている柱上変圧器のタップ値を変更したほうが安価である場合も、SVRを1台設置するという解を算出する可能性がある。   In the methods described in Patent Documents 1 and 2, cost minimization is only a countermeasure by minimizing the number of installed SVRs. For this reason, for example, even when it is cheaper to change the tap value of the pole transformer whose voltage is constantly high in the system, there is a possibility of calculating a solution of installing one SVR.

このように,複数の電圧対策工事がある配電系統において,柱上変圧器タップ値変更による対策費用と、電圧調整装置の新設による対策費用を比較して電圧対策工事を決定する実用的な方法は確立されておらず、負荷側電圧を所定の上下限値内に収めつつ、配電系統の対策工事の費用コストを最小化する最適な対策工事を決定できていない。   In this way, in a distribution system with multiple voltage countermeasures, there is a practical method for determining voltage countermeasures by comparing the cost of countermeasures by changing the pole transformer tap value and the cost of countermeasures by newly installing a voltage regulator. It has not been established, and the optimum countermeasure construction that minimizes the cost of the countermeasure construction of the distribution system while keeping the load side voltage within the predetermined upper and lower limit values has not been determined.

上記課題を解決する為に本発明は、配電系統の対策工事を決定する配電系統の対策工事決定装置であって、配電系統の計測データを格納する計測データベースと、配電系統の柱上変圧器タップ値を格納する柱上変圧器タップ値データベースと、配電系統の潮流計算データを格納する潮流計算データベースと、前記計測データ及び前記潮流計算データから前記配電系統の潮流計算又は/及び状態推定を行って各ノードの電圧を求め、前記各ノードの電圧及び前記柱上変圧器タップ値から負荷側電圧に換算した低圧換算電圧を求め、前記低圧換算電圧と所定の電圧上下限値の差分から電圧の余裕度を表す電圧余裕を求め、前記電圧余裕が所定の閾値以下の時に、前記柱上変圧器のタップ値の変更に係る対策費用及び電圧調整を行う電圧調整装置の設置に係る対策費用を複数求め、前記電圧余裕と前記複数の対策費用に基づいて評価した複数の評価関数を比較することで前記対策工事を決定する計算部と、を備えることを特徴とする。   In order to solve the above problems, the present invention is a distribution system countermeasure work determination device for determining a countermeasure work for a distribution system, a measurement database for storing measurement data of the distribution system, and a pole transformer tap of the distribution system The pole transformer tap value database for storing values, the power flow calculation database for storing power flow calculation data for the power distribution system, and the power flow calculation or / and state estimation of the power distribution system from the measurement data and the power flow calculation data The voltage of each node is obtained, the low voltage converted voltage converted to the load side voltage from the voltage of each node and the pole transformer tap value is obtained, and the voltage margin is obtained from the difference between the low voltage converted voltage and a predetermined voltage upper and lower limit value. A voltage margin representing a degree of voltage is obtained, and when the voltage margin is equal to or less than a predetermined threshold, a countermeasure cost for changing the tap value of the pole transformer and a voltage regulator for performing voltage adjustment are installed. A calculating unit that determines a countermeasure work by obtaining a plurality of countermeasure costs related to the device and comparing a plurality of evaluation functions evaluated based on the voltage margin and the plurality of countermeasure costs.

また本装置発明に対応する方法発明も含まれる。   A method invention corresponding to the present invention is also included.

本発明により、負荷側電圧を所定の上下限値内に収めつつ、配電系統の対策工事の費用コストを最小化する最適な対策工事を決定する。   According to the present invention, the optimum countermeasure construction that minimizes the cost of the countermeasure construction of the distribution system is determined while keeping the load side voltage within a predetermined upper and lower limit value.

本発明の一実施例による対策工事決定装置を備えた配電系統概要図である。It is a distribution system schematic diagram provided with the countermeasure work determination apparatus by one Example of this invention. 本発明の一実施例による対策工事決定装置の構成図である。It is a block diagram of the countermeasure construction determination apparatus by one Example of this invention. 本発明の一実施例による対策工事決定アルゴリズムを示すフローチャートである。It is a flowchart which shows the countermeasure construction determination algorithm by one Example of this invention. 本発明の一実施例によるステップS2で求めた対策必要箇所の概略図である。It is the schematic of the countermeasure required location calculated | required by step S2 by one Example of this invention. 本発明の一実施例によるステップS5で求めたSVR最適設置結果の概略図である。It is the schematic of the SVR optimal installation result calculated | required by step S5 by one Example of this invention. 本発明の他の実施例によるステップS2で求めた対策必要箇所の概略図である。It is the schematic of the countermeasure required location calculated | required by step S2 by the other Example of this invention. 本発明の他の実施例によるステップS5で求めたSVR最適設置結果の概略図である。It is the schematic of the SVR optimal installation result calculated | required by step S5 by the other Example of this invention. 本発明の他の実施例によるステップS6で求めたタップ値変更とSVRの最適設置の組合せ結果の概略図である。It is the schematic of the combination result of the tap value change calculated | required by step S6 by the other Example of this invention, and the optimal installation of SVR.

以下に、図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例による電圧対策工事決定装置を備えた配電系統概要図であり、配電系統100と、電圧対策工事決定装置10とそれらを結ぶ通信ネットワーク190の構成を示している。配電系統100は、配電変電所110とノード(母線)120およびそれらを接続する配電線路140、ノード120に接続される柱上変圧器160、柱上変圧器以下に接続される負荷150や発電機130、配電線路に設置されるセンサ170で構成される。センサ170は、線路の電流,流力率,有効電力P,無効電力Q,ノード電圧Vなどを測定し、通信端局180、通信ネットワーク190を介して電圧対策工事決定装置10に情報を送る。電圧調整装置300が、配電系統100の線路に直列に設置されている。   FIG. 1 is a schematic diagram of a power distribution system provided with a voltage countermeasure work determination device according to an embodiment of the present invention, and shows the configuration of the power distribution system 100, the voltage countermeasure work determination device 10 and a communication network 190 connecting them. . The distribution system 100 includes a distribution substation 110, a node (bus) 120, a distribution line 140 connecting them, a pole transformer 160 connected to the node 120, a load 150 and a generator connected to the pole transformer and below. 130 and a sensor 170 installed in the distribution line. The sensor 170 measures line current, flow power factor, active power P, reactive power Q, node voltage V, and the like, and sends information to the voltage countermeasure work determination apparatus 10 via the communication terminal station 180 and the communication network 190. The voltage regulator 300 is installed in series with the line of the power distribution system 100.

図2は、本発明の一実施例による電圧対策工事決定装置10の構成図である。表示装置11,キーボードやマウス等の入力手段12,コンピュータ(CPU)13,通信手段14,RAM15,および各種データベースがバス線30に接続されている。データベースとして、潮流計算データ21,計測データ22,柱上変圧器タップ値データ23,およびプログラムデータ24がある。コンピュータ(CPU)13は、計算プログラムを実行して表示すべき画像データの指示や、各種データベース内のデータの検索等を行う。RAM15は、表示用の画像データ,潮流計算結果,計測データ一覧,整定パラメータ計算結果,およびSVR理想電圧計算結果等の計算結果データを一旦格納するメモリである。これらのデータに基づき、CPU13によって必要な画像データを生成して、表示装置11(例えば表示ディスプレイ画面)に表示する。   FIG. 2 is a configuration diagram of the voltage countermeasure work determination apparatus 10 according to an embodiment of the present invention. A display device 11, an input unit 12 such as a keyboard and a mouse, a computer (CPU) 13, a communication unit 14, a RAM 15, and various databases are connected to the bus line 30. As the database, there are tidal current calculation data 21, measurement data 22, pole transformer tap value data 23, and program data 24. A computer (CPU) 13 executes a calculation program to instruct image data to be displayed, search for data in various databases, and the like. The RAM 15 is a memory for temporarily storing calculation result data such as display image data, power flow calculation results, measurement data list, settling parameter calculation results, and SVR ideal voltage calculation results. Based on these data, the CPU 13 generates necessary image data and displays it on the display device 11 (for example, a display screen).

電圧対策工事決定装置内のメモリには、大きく分けて4つのデータベースが格納される。潮流計算データ21には、線路140のインピーダンスを示す線路定数Z(=R+jX),負荷・発電量,並びに系統の線路やノードの接続状況を表す系統構成データが記憶されている。計測データ22には、配電系統100内のセンサ170で計測された各時間断面毎の線路の電流,電流力率,有効電力P,無効電力Q,負荷や発電量,およびノード電圧Vなどの情報が格納される。計測データ22には、この他に、潮流計算や状態推定計算によって求められた各時間断面毎の線路の電流,電流力率,有効電力P,無効電力Q,負荷や発電量,およびノード電圧Vなどの情報も格納される。柱上変圧器タップ値データ23には、系統内の柱上変圧器と柱上変圧器タップ値のデータセットが格納される。プログラムデータ24は、計算プログラムである潮流計算プログラム,状態推定計算プログラム,対策必要箇所決定プログラムおよび対策工事決定プログラムを格納する。これらのプログラムは、必要に応じてCPU13に読み出され、計算が実行される。   The memory in the voltage countermeasure construction determination apparatus is roughly divided into four databases. The tidal current calculation data 21 stores system configuration data representing the line constant Z (= R + jX) indicating the impedance of the line 140, the load / power generation amount, and the connection status of the system lines and nodes. The measurement data 22 includes information such as line current, current power factor, active power P, reactive power Q, load and power generation amount, and node voltage V measured by the sensor 170 in the distribution system 100 for each time section. Is stored. In addition to this, the measurement data 22 includes line current, current power factor, active power P, reactive power Q, load and power generation amount, and node voltage V for each time section obtained by power flow calculation and state estimation calculation. Such information is also stored. The pole transformer tap value data 23 stores a data set of pole transformers and pole transformer tap values in the system. The program data 24 stores a tidal current calculation program, a state estimation calculation program, a countermeasure required place determination program, and a countermeasure construction determination program, which are calculation programs. These programs are read by the CPU 13 as necessary, and calculation is executed.

図3は、本発明の一実施例によるLDCパラメータ決定アルゴリズムを示すフローチャートである。この図に示す電圧対策工事決定装置10の計算処理内容について説明する。図には、配電系統内のセンサの電圧計測データとSVR出力電圧Vsvr,SVR通過有効電力Psvr,および無効電力Qsvrに相当する計測データを用いて計算した電圧を基に、対策工事を決定する手順の例を示している。以下、処理の流れを説明する。   FIG. 3 is a flowchart illustrating an LDC parameter determination algorithm according to an embodiment of the present invention. The calculation processing contents of the voltage countermeasure work determination apparatus 10 shown in this figure will be described. The figure shows the procedure for determining the countermeasure work based on the voltage measurement data of the sensors in the distribution system and the voltage calculated using the measurement data corresponding to the SVR output voltage Vsvr, the SVR passing active power Psvr, and the reactive power Qsvr. An example is shown. Hereinafter, the flow of processing will be described.

まず、ステップS1で、処理に必要なデータ読み込みを行う。分析対象とする期間を決め、分析対象期間の各時間毎の計測データを読み込む。   First, in step S1, data necessary for processing is read. A period to be analyzed is determined, and measurement data for each hour of the period to be analyzed is read.

次に、ステップS2で、潮流計算または状態推定によって各ノードの電圧を計算する。電圧計算結果と柱上変圧器タップ値を用いて、数1のように低圧換算電圧を計算する。   Next, in step S2, the voltage of each node is calculated by power flow calculation or state estimation. Using the voltage calculation result and the pole transformer tap value, the low-voltage converted voltage is calculated as shown in Equation 1.

〔数1〕
Vlow=Vhigh/Tap×105
ここで、Vlowはノードの低圧換算電圧、Vhighはノードの高圧電圧、Tapはノードの柱上変圧器タップ値を表す。
[Equation 1]
Vlow = Vhigh / Tap × 105
Here, Vlow represents the low-voltage converted voltage of the node, Vhigh represents the high-voltage of the node, and Tap represents the pole transformer tap value of the node.

計算した低圧換算電圧から、数2のように電圧余裕を計算する。   From the calculated low-voltage converted voltage, the voltage margin is calculated as shown in Equation 2.

〔数2〕
Vm1= VU−Vlow(<0)
又は、Vm1= Vlow−VL(<0)
ここで、VUはノードの電圧上限値(低圧換算)、VLはノードの電圧下限値(低圧換算)設定値である。数2より、低圧換算電圧が電圧上限値より高い、または電圧下限値より低いノードは電圧余裕がマイナスとなる。電圧余裕がマイナスとなったノードは、対策必要箇所とする。
[Equation 2]
Vm1 = VU-Vlow (<0)
Or Vm1 = Vlow−VL (<0)
Here, VU is a node voltage upper limit (low voltage conversion), and VL is a node voltage lower limit (low voltage conversion) set value. From Equation 2, the voltage margin is negative for nodes whose low-voltage converted voltage is higher than the voltage upper limit value or lower than the voltage lower limit value. Nodes with negative voltage margin are considered as places where countermeasures are required.

次に、ステップS3で、対策必要箇所の低圧換算電圧が上限値より高い場合、柱上変圧器タップ値を大きく、下限値より低い場合、柱上変圧器タップ値を小さくして潮流計算や状態推定によって電圧を計算し、このときの電圧余裕をVm1´とする。   Next, in step S3, when the low-voltage converted voltage at the place where countermeasures are required is higher than the upper limit value, the pole transformer tap value is increased. The voltage is calculated by estimation, and the voltage margin at this time is defined as Vm1 ′.

対策必要箇所がなくなった場合は、ステップS4で、数3のように対策費用1を求める。   When there is no countermeasure necessary part, the countermeasure cost 1 is calculated | required like several 3 by step S4.

〔数3〕
COST1=COSTtr×Ntr
ここで、COST1は柱上変圧器タップ値変更のみによる対策費用1、COSTtrは柱上変圧器タップ値変更にかかる工事費用の単価(設定値)、Ntrは対策必要箇所数である。
[Equation 3]
COST1 = COSTtr × Ntr
Here, COST1 is the countermeasure cost 1 only by changing the pole transformer tap value, COSTtr is the unit cost (setting value) of the construction cost for changing the pole transformer tap value, and Ntr is the number of countermeasures required.

対策費用COST1と電圧余裕Vm1´から、数4のように評価関数1を計算する。   From the countermeasure cost COST1 and the voltage margin Vm1 ′, the evaluation function 1 is calculated as shown in Equation 4.

〔数4〕
F1=a×Vm1´−b×COST1
ここで、F1は柱上変圧器タップ値変更のみの対策工事の評価関数1、aは電圧余裕に対する重み係数(設定値)、bは対策費用に対する重み係数(設定値)である。
[Equation 4]
F1 = a × Vm1′−b × COST1
Here, F1 is the evaluation function 1 of the countermeasure work only for changing the pole transformer tap value, a is a weighting coefficient (setting value) for the voltage margin, and b is a weighting coefficient (setting value) for the countermeasure cost.

次に、ステップS5で、電圧調整装置を最適配置した系統を作成し、潮流計算または状態推定によって各ノードの電圧を計算する。数1のように低圧換算電圧を計算し、数2によって求めた電圧余裕をVm2とする。電圧調整装置を設置した場合の電圧の潮流計算や状態推定を行い、このときの電圧余裕Vm2’を求める。上記同様に対応必要個所が無くなったらその対策費用を計算する。   Next, in step S5, a system in which the voltage regulator is optimally arranged is created, and the voltage of each node is calculated by power flow calculation or state estimation. The low-voltage converted voltage is calculated as shown in Equation 1, and the voltage margin obtained by Equation 2 is defined as Vm2. When a voltage regulator is installed, voltage flow calculation and state estimation are performed, and a voltage margin Vm2 'at this time is obtained. Similarly, if there is no part that needs to be handled, calculate the cost of the countermeasure.

数5のように対策費用2を求める。   Measure cost 2 is calculated as shown in Equation 5.

〔数5〕
COST2=COSTreg×Nreg
ここで、COST2は電圧調整装置設置のみによる対策費用2、COSTregは電圧調整装置設置にかかる工事費用の単価(設定値)、Nregは電圧調整装置設置台数である。
[Equation 5]
COST2 = COSTreg × Nreg
Here, COST2 is a countermeasure cost 2 only due to the installation of the voltage regulator, COSTreg is a unit cost (set value) of the construction cost for installing the voltage regulator, and Nreg is the number of voltage regulators installed.

対策費用COST2と電圧余裕Vm2’から、数4と同様に、評価関数2を求める。   The evaluation function 2 is obtained from the countermeasure cost COST2 and the voltage margin Vm2 'in the same manner as in Equation 4.

次に、ステップS6で、柱上変圧器タップ値を変更した後に電圧調整装置を最適配置した系統を作成し、潮流計算または状態推定によって各ノードの電圧を計算する。数1のように低圧換算電圧を計算し、数2によって求めた電圧余裕をVm3とする。柱上変圧器タップ値の変更し、電圧調整装置を設置した場合の電圧の潮流計算や状態推定を行い、このときの電圧余裕Vm3’を求める。上記同様に対応必要個所が無くなったらその対策費用を計算する。   Next, in step S6, after changing the pole transformer tap value, a system in which the voltage regulator is optimally arranged is created, and the voltage of each node is calculated by power flow calculation or state estimation. The low-voltage converted voltage is calculated as shown in Equation 1, and the voltage margin obtained by Equation 2 is defined as Vm3. When the pole transformer tap value is changed and the voltage regulator is installed, voltage flow calculation and state estimation are performed, and the voltage margin Vm3 'at this time is obtained. Similarly, if there is no part that needs to be handled, calculate the cost of the countermeasure.

数6のように対策費用3を求める。   Measure cost 3 is calculated as shown in Equation 6.

〔数6〕
COST3=COSTtr×Ntr´+COSTreg×Nreg
ここで、Ntr´は柱上変圧器タップ値を変更した柱上変圧器台数である。
[Equation 6]
COST3 = COSTtr × Ntr ′ + COSTreg × Nreg
Here, Ntr ′ is the number of pole transformers whose pole transformer tap values are changed.

対策費用COST3と電圧余裕Vm3’から、数4と同様に、評価関数3を求める。   From the countermeasure cost COST3 and the voltage margin Vm3 ', the evaluation function 3 is obtained in the same manner as Equation 4.

次に、ステップS7で、評価関数1、評価関数2、評価関数3を比較し、評価関数が最も大きい対策工事を配電系統の電圧対策工事として決定する。   Next, in step S7, the evaluation function 1, the evaluation function 2, and the evaluation function 3 are compared, and the countermeasure work having the largest evaluation function is determined as the voltage countermeasure work of the distribution system.

図4は、本発明の一実施例によるステップS2で求めた対策必要箇所である。逸脱が発生しているのは1箇所の柱上変圧器のみである。ステップS3でタップ値を変更して再度電圧を計算し、逸脱が解消された場合はステップS4で対策費用1を算出する。対策費用は柱上変圧器1箇所のタップ値を変更する費用となるため、対策費用1はタップ値変更単価と同じ値となる。このときの電圧余裕と、あらかじめ設定された重み係数を用いて、評価関数1を算出する。   FIG. 4 is a countermeasure-necessary part obtained in step S2 according to an embodiment of the present invention. Deviation occurs only in one pole transformer. In step S3, the tap value is changed and the voltage is calculated again. When the deviation is resolved, the countermeasure cost 1 is calculated in step S4. Since the countermeasure cost is a cost for changing the tap value of one pole transformer, the countermeasure cost 1 is the same value as the tap value change unit price. The evaluation function 1 is calculated using the voltage margin at this time and a preset weighting factor.

図5は、本発明の一実施例によるステップS5で求めたSVR最適設置結果である。対策費用は電圧調整装置を1台設置する費用となるため、対策費用2は電圧調整装置設置単価と同じ値となる。このときの電圧余裕と、あらかじめ設定された重み係数を用いて、評価関数2を算出する。次に、ステップS6でタップ値変更とSVRの最適設置の組合せを考えるが、タップ値を1箇所変更した時点で電圧逸脱が解消されるため、評価関数3は評価関数1と同じ値となり、対策は柱上変圧器1箇所のタップ値変更と電圧調整装置1台設置のいずれかとなる。一般的に、タップ値変更単価は電圧調整装置設置単価よりも安価であるため、対策費用1のほうが安価となる。重み係数を適切に設定した場合、評価関数1および評価関数3が最大となり、本手法で算出される電圧対策工事は柱上変圧器1箇所のタップ値変更となる。   FIG. 5 is an SVR optimum installation result obtained in step S5 according to an embodiment of the present invention. Since the countermeasure cost is the cost of installing one voltage regulator, the countermeasure cost 2 is the same value as the voltage regulator installation unit price. The evaluation function 2 is calculated using the voltage margin at this time and a preset weighting factor. Next, the combination of tap value change and SVR optimum installation is considered in step S6. However, since the voltage deviation is resolved when the tap value is changed at one place, the evaluation function 3 becomes the same value as the evaluation function 1, and measures are taken. Is either a tap value change at one pole transformer or one voltage regulator. In general, since the unit price for changing the tap value is lower than the unit price for installing the voltage regulator, the countermeasure cost 1 is cheaper. When the weighting factor is appropriately set, the evaluation function 1 and the evaluation function 3 are maximized, and the voltage countermeasure work calculated by this method is a tap value change at one pole transformer.

図6は、本発明の他の実施例によるステップS2で求めた対策必要箇所である。逸脱が発生しているのは合計でp+q箇所の柱上変圧器である。ステップS3でタップ値を変更して再度電圧を計算し、逸脱が解消された場合はステップS4で対策費用1を算出する。対策費用は柱上変圧器p+q箇所のタップ値を変更する費用となるため、対策費用1はタップ値変更単価×(p+q)となる。このときの電圧余裕と、あらかじめ設定された重み係数を用いて、評価関数1を算出する。   FIG. 6 is a countermeasure-necessary part obtained in step S2 according to another embodiment of the present invention. A total of p + q pole transformers have deviated. In step S3, the tap value is changed and the voltage is calculated again. When the deviation is resolved, the countermeasure cost 1 is calculated in step S4. Since the countermeasure cost is a cost for changing the tap value of the pole transformer p + q, the countermeasure cost 1 is the tap value change unit price × (p + q). The evaluation function 1 is calculated using the voltage margin at this time and a preset weighting factor.

図7は、本発明の他の実施例によるステップS5で求めたSVR最適設置結果である。幹線では下限逸脱、分岐線では上限逸脱が発生している系統では、分岐の手前に電圧調整装置を1台設置しても電圧逸脱が解消されず、2台設置する結果となった。対策費用は電圧調整装置を2台設置する費用となるため、対策費用2は電圧調整装置設置単価×2となる。このときの電圧余裕と、あらかじめ設定された重み係数を用いて、評価関数2を算出する。   FIG. 7 is an SVR optimum installation result obtained in step S5 according to another embodiment of the present invention. In the system where the lower limit deviation occurs in the trunk line and the upper limit deviation occurs in the branch line, even if one voltage adjustment device is installed before the branch, the voltage deviation is not resolved, resulting in the installation of two units. Since the countermeasure cost is the cost of installing two voltage regulators, the countermeasure cost 2 is the voltage regulator unit installation cost × 2. The evaluation function 2 is calculated using the voltage margin at this time and a preset weighting factor.

図8は、ステップS6で求めたタップ値変更とSVRの最適設置の組合せ結果である。分岐線の柱上変圧器q箇所のタップ値を変更することで分岐線の上限逸脱が解消され、幹線には電圧調整装置を1台設置する結果となった。対策費用は、柱上変圧器q箇所のタップ値を変更する費用と電圧調整装置を1台設置する費用となるため、対策費用3はタップ値変更単価×q+電圧調整装置設置単価となる。このときの電圧余裕と、あらかじめ設定された重み係数を用いて、評価関数3を算出する。柱上変圧器タップ値の変更数pが極端に多い場合、対策費用1よりも対策費用3のほうが安価となる。タップ値変更単価×qが電圧調整装置設置単価よりも安価であるとき、対策費用2よりも対策費用3のほうが安価となる。対策費用に対する重み係数を大きく設定すると、評価関数3が最大となり、本手法で算出される電圧対策工事はタップ値変更とSVRの最適設置の組合せとなる。対策費用2と対策費用3の差が小さく、かつ対象系統において予測される将来の負荷量の変化や自然エネルギー導入による発電量の変化等を考慮して電圧余裕の重み係数が設定され、かつSVR2台の最適設置のほうがタップ値変更とSVRの最適設置の組合せよりも電圧余裕が大きい場合、評価関数2が最大となり、本手法で算出される電圧対策工事はSVR2台の最適設置となる。   FIG. 8 shows a combination result of the tap value change obtained in step S6 and the optimum installation of the SVR. Changing the tap value of the q pole transformer on the branch line solved the upper limit deviation of the branch line, resulting in the installation of one voltage regulator on the main line. The countermeasure cost is the cost of changing the tap value of the pole transformer q and the cost of installing one voltage regulator, so the countermeasure cost 3 is tap value change unit price × q + voltage regulator unit installation unit cost. The evaluation function 3 is calculated using the voltage margin at this time and a preset weighting factor. When the number of changes p of the pole transformer tap value is extremely large, the countermeasure cost 3 is cheaper than the countermeasure cost 1. When the tap value change unit price × q is cheaper than the voltage adjustment device installation unit price, the countermeasure cost 3 is cheaper than the countermeasure cost 2. If the weighting factor for the countermeasure cost is set large, the evaluation function 3 is maximized, and the voltage countermeasure work calculated by this method is a combination of the tap value change and the optimal installation of the SVR. The difference between the countermeasure cost 2 and the countermeasure cost 3 is small, and a weighting coefficient for the voltage margin is set in consideration of a future change in the load amount predicted in the target system and a change in the power generation amount due to the introduction of natural energy, and the SVR2 When the voltage margin is larger in the optimum installation of the base than in the combination of the tap value change and the optimum installation of the SVR, the evaluation function 2 becomes the maximum, and the voltage countermeasure work calculated by this method is the optimum installation of the two SVRs.

このように、対策費用と、対策費用の重み係数と、電圧上下限に対する余裕と、電圧上下限に対する余裕の重み係数で評価関数を計算することで、運用者の目的に合わせた対策工事を決定することが可能となる。   In this way, by calculating the evaluation function using the countermeasure cost, the weight coefficient of the countermeasure cost, the margin for the voltage upper and lower limits, and the weight factor for the margin for the voltage upper and lower limits, the countermeasure construction that matches the operator's purpose is determined. It becomes possible to do.

10 対策工事決定装置
11 表示装置
12 入力手段
13 コンピュータ(CPU)
14 通信手段
15 RAM
21 潮流計算データ
22 計測データ
23 柱上変圧器タップ値データ
24 プログラムデータ
30 バス線
100 配電系統
110 配電変電所
120 ノード
130 発電機
140 配電線路
150 負荷
160 柱上変圧器
170 センサ
180 通信端局
190 通信ネットワーク
200 電圧調整装置
10 Countermeasure Work Determination Device 11 Display Device 12 Input Means 13 Computer (CPU)
14 Communication means 15 RAM
21 Power Flow Calculation Data 22 Measurement Data 23 Pillar Transformer Tap Value Data 24 Program Data 30 Bus Line 100 Distribution System 110 Distribution Substation 120 Node 130 Generator 140 Distribution Line 150 Load 160 Pillar Transformer 170 Sensor 180 Communication Terminal 190 Communication network 200 Voltage regulator

Claims (7)

配電系統の対策工事を決定する配電系統の対策工事決定装置であって、
配電系統の計測データを格納する計測データベースと、
配電系統の柱上変圧器タップ値を格納する柱上変圧器タップ値データベースと、
配電系統の潮流計算データを格納する潮流計算データベースと、
前記計測データ及び前記潮流計算データから前記配電系統の潮流計算又は/及び状態推定を行って各ノードの電圧を求め、前記各ノードの電圧及び前記柱上変圧器タップ値から負荷側電圧に換算した低圧換算電圧を求め、前記低圧換算電圧と所定の電圧上下限値の差分から電圧の余裕度を表す電圧余裕を求め、前記電圧余裕が所定の閾値以下の時に、前記柱上変圧器のタップ値の変更に係る対策費用及び電圧調整を行う電圧調整装置の設置に係る対策費用を複数求め、前記電圧余裕と前記複数の対策費用に基づいて評価した複数の評価関数を比較することで前記対策工事を決定する計算部と、
を備えることを特徴とする配電系統の対策工事決定装置。
A power distribution system countermeasure work determination device for determining power distribution system countermeasure work,
A measurement database that stores the measurement data of the power distribution system;
A pole transformer tap value database for storing pole transformer tap values of the distribution system;
A tidal current calculation database for storing tidal current calculation data of the power distribution system;
From the measurement data and the power flow calculation data, the power flow calculation or / and state estimation of the distribution system is performed to determine the voltage of each node, and the voltage of each node and the pole transformer tap value are converted to the load side voltage. A low voltage conversion voltage is obtained, a voltage margin representing a voltage margin is obtained from a difference between the low voltage conversion voltage and a predetermined voltage upper and lower limit value, and when the voltage margin is a predetermined threshold value or less, the tap value of the pole transformer The countermeasure construction cost is determined by comparing a plurality of evaluation functions evaluated based on the voltage margin and the plurality of countermeasure costs by obtaining a plurality of countermeasure costs relating to the change of the voltage and a plurality of countermeasure costs relating to the installation of the voltage regulator for performing voltage adjustment. A calculation unit for determining
A power distribution system countermeasure work determination device characterized by comprising:
請求項1記載の配電系統の対策工事決定装置において、
前記計算部は、
前記電圧余裕が所定の閾値以上となるときの前記柱上変圧器のタップ値の変更に係る対策費用及び電圧調整を行う電圧調整装置の設置に係る対策費用を算出することを特徴とする配電系統の対策工事決定装置。
In the power distribution system countermeasure work determination device according to claim 1,
The calculator is
A distribution system characterized by calculating a countermeasure cost related to a change in tap value of the pole transformer when the voltage margin is equal to or greater than a predetermined threshold and a countermeasure cost related to installation of a voltage regulator that performs voltage adjustment Measures construction decision device.
請求項1又は2記載の配電系統の対策工事決定装置において、
前記計算部は、
前記電圧余裕と前記複数の対策費用を重み付けして前記評価関数を求めることを特徴とする配電系統の対策工事決定装置。
In the power distribution system countermeasure work determination device according to claim 1 or 2,
The calculator is
A countermeasure work determination apparatus for a power distribution system, wherein the evaluation function is obtained by weighting the voltage margin and the plurality of countermeasure costs.
請求項3記載の配電系統の対策工事決定装置において、
前記電圧余裕の重み付けは、前記ノードごとにおける以後の負荷量及び発電量の変化予測に基づいて設定することを特徴とする配電系統の対策工事決定装置。
In the distribution system countermeasure construction determination device according to claim 3,
The weighting of the voltage margin is set based on a subsequent load amount and power generation amount change prediction for each node, and a countermeasure work determination device for a power distribution system.
請求項1乃至4何れかに記載の配電系統の対策工事決定装置において、
前記計算部は、
更に前記前記柱上変圧器のタップ値の変更に係る対策費用のみ求めた場合の前記評価関数及び電圧調整を行う電圧調整装置の設置に係る対策費用のみ求めた場合の前記評価関数を求め、前記柱上変圧器のタップ値の変更に係る対策費用と電圧調整を行う電圧調整装置の設置に係る対策費用の両方を求めた場合の前記評価関数をそれぞれ比較することを特徴とする配電系統の対策工事決定装置。
In the distribution work countermeasure work determination device according to any one of claims 1 to 4,
The calculator is
Further, the evaluation function in the case where only the countermeasure cost related to the installation of the voltage adjustment device for performing the voltage adjustment and the evaluation function in the case where only the countermeasure cost related to the change in the tap value of the pole transformer is obtained, A measure for a distribution system characterized by comparing the evaluation functions when both the measure cost for changing the tap value of the pole transformer and the measure cost for installing the voltage regulator for voltage adjustment are compared. Construction decision device.
請求項1乃至5何れかに記載の配電系統の対策工事決定装置において、
前記計算部は、
前記比較した結果、前記評価関数が最大となるときの前記対策工事を決定することを特徴とする配電系統の対策工事決定装置。
In the distribution system countermeasure work determination device according to any one of claims 1 to 5,
The calculator is
As a result of the comparison, the countermeasure work determining apparatus for the distribution system is characterized in that the countermeasure work when the evaluation function is maximized is determined.
配電系統の対策工事を決定する配電系統の対策工事決定方法であって、
配電系統の計測データ及び潮流計算データから前記配電系統の潮流計算又は/及び状態推定を行って各ノードの電圧を求め、前記各ノードの電圧及び配電系統の柱上変圧器タップ値から負荷側電圧に換算した低圧換算電圧を求め、前記低圧換算電圧と所定の電圧上下限値の差分から電圧の余裕度を表す電圧余裕を求め、前記電圧余裕が所定の閾値以下の時に、前記柱上変圧器のタップ値の変更に係る対策費用及び電圧調整を行う電圧調整装置の設置に係る対策費用を複数求め、前記電圧余裕と前記複数の対策費用に基づいて評価した複数の評価関数を比較することで前記対策工事を決定することを特徴とする配電系統の対策工事決定方法。
A power distribution system countermeasure work determination method for determining power distribution system countermeasure work,
Obtain the voltage of each node by calculating the power flow of the power distribution system and / or estimating the state from the power distribution system measurement data and power flow calculation data, and calculate the load side voltage from the voltage of each node and the pole transformer tap value of the power distribution system. A low voltage converted voltage converted to a voltage, a voltage margin representing a voltage margin is obtained from a difference between the low voltage converted voltage and a predetermined voltage upper and lower limit value, and when the voltage margin is a predetermined threshold value or less, the pole transformer By calculating a plurality of countermeasure costs related to the change of the tap value and a plurality of countermeasure costs related to the installation of the voltage regulator for voltage adjustment, and comparing a plurality of evaluation functions evaluated based on the voltage margin and the plurality of countermeasure costs A countermeasure construction determination method for a power distribution system, wherein the countermeasure construction is determined.
JP2014050975A 2014-03-14 2014-03-14 Countermeasure construction determination device and method for distribution system Pending JP2015177607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050975A JP2015177607A (en) 2014-03-14 2014-03-14 Countermeasure construction determination device and method for distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050975A JP2015177607A (en) 2014-03-14 2014-03-14 Countermeasure construction determination device and method for distribution system

Publications (1)

Publication Number Publication Date
JP2015177607A true JP2015177607A (en) 2015-10-05

Family

ID=54256294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050975A Pending JP2015177607A (en) 2014-03-14 2014-03-14 Countermeasure construction determination device and method for distribution system

Country Status (1)

Country Link
JP (1) JP2015177607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224753A (en) * 2021-05-07 2021-08-06 国网信通亿力科技有限责任公司 Modular energy control management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224753A (en) * 2021-05-07 2021-08-06 国网信通亿力科技有限责任公司 Modular energy control management system
CN113224753B (en) * 2021-05-07 2023-07-18 国网信通亿力科技有限责任公司 Modularized energy control management system

Similar Documents

Publication Publication Date Title
JP6244255B2 (en) Voltage stability monitoring apparatus and method
EP3392995B1 (en) Voltage stability monitoring device and method
CN110326182B (en) Hierarchical robust model predictive voltage and VAR control with coordination and optimization of autonomous DER voltage control
US10389133B2 (en) Device and method for controlling power system
US20190148977A1 (en) Voltage and reactive power monitoring/control device and method
Lee et al. Novel supervisory control method for islanded droop-based AC/DC microgrids
JP5914231B2 (en) Method and apparatus for calculating settling value of line voltage drop compensator
JP4982474B2 (en) DC power supply
CN105932895B (en) System and method for operating a power converter
Daratha et al. Robust voltage regulation in unbalanced radial distribution system under uncertainty of distributed generation and loads
WO2016063660A1 (en) Power system monitoring device and power system monitoring method
JP2017046506A (en) Voltage reactive power control system
Mc Namara et al. Efficient implementation of MPC-based AGC for real-world systems with low inertia
JP6752071B2 (en) Distribution system system optimization calculation device and system optimization calculation method
JP6478856B2 (en) Centralized voltage control device and voltage control system
JP7001537B2 (en) Distribution system voltage regulator Arrangement planning support equipment and methods
JP6519783B2 (en) Autonomous distributed voltage control system
JP2015177607A (en) Countermeasure construction determination device and method for distribution system
RU161387U1 (en) VOLTAGE REGULATING DEVICE IN THE CONTROLLED AREA OF THE DISTRIBUTION NETWORK
Wang et al. Voltage instability performance of risk-based security constrained optimal power flow
Pohl et al. Dc-sensitivities for impedance controllers in an agent-based power flow control system
JP6049557B2 (en) Voltage control method for distribution system
JP6173193B2 (en) Arrangement planning support apparatus and arrangement planning support method for sensor built-in switch
JPWO2017033881A1 (en) Distribution system monitoring system and control method of distribution system monitoring system
JP6462545B2 (en) Apparatus and method for calculating settling value of voltage regulator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112