JPS63299329A - Aligner - Google Patents

Aligner

Info

Publication number
JPS63299329A
JPS63299329A JP62135082A JP13508287A JPS63299329A JP S63299329 A JPS63299329 A JP S63299329A JP 62135082 A JP62135082 A JP 62135082A JP 13508287 A JP13508287 A JP 13508287A JP S63299329 A JPS63299329 A JP S63299329A
Authority
JP
Japan
Prior art keywords
light
grating
diffracted
substrate
reticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62135082A
Other languages
Japanese (ja)
Inventor
Noboru Nomura
登 野村
Kazuhiro Yamashita
一博 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135082A priority Critical patent/JPS63299329A/en
Publication of JPS63299329A publication Critical patent/JPS63299329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Abstract

PURPOSE:To realize the exact alignment, by providing light to detect only noise component in a position detection signal, in the close vicinity of different light which is detecting a position, and detecting the noise component in the position detection signal. CONSTITUTION:A signal output (a) contains Moire light intensity variation (b) of + or - first order diffraction light corresponding with relative positions between interference fringes and a grating, and noise component (c). Therefore, a reflection region 9 is arranged in the vicinity of the grating-forming region 8 of a substrate 7. A reflected light 16 from the reflection region and a diffraction light 17 from a reference grating 3 are overlapped and made to interfere with each other. The light intensity is detected by a photodetector 13. This output can detect a noise component only. By taking the difference signal between the output (a) and the output (c), an excellent position detection signal (d) free from the noise component can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細パターンを持つ半導体装置、特に1ミクロ
ンもしくはそれ以下のサブミクロンのルールを持つ半導
体装置の製造に用いる高精度位置合わせを備えた露光装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an exposure apparatus equipped with high-precision alignment used for manufacturing semiconductor devices having fine patterns, particularly semiconductor devices having submicron rules of 1 micron or less. It is related to.

従来の技術 従来の投影露光装置の位置合わせに用いる位置検出はT
hrough The Leus 方式が主流であるが
、位置検出感度が投影レンズの解像度によっているので
、現状の方式では、位置検出感度が0.05μm程度で
あり、位置合わせ精度を0.1μmとする高い精度は困
難である。また、ウエノ・上で干渉計を構成する二重格
子法が研究されてきた[:W、R。
Conventional technology The position detection used for alignment of conventional projection exposure equipment is T.
The through-the-leus method is the mainstream, but the position detection sensitivity depends on the resolution of the projection lens, so in the current method, the position detection sensitivity is about 0.05 μm, and the high accuracy of the alignment accuracy of 0.1 μm is insufficient. Have difficulty. In addition, the double grating method for constructing an interferometer on Ueno has been studied [: W, R.

Trutna、 Jr et xxピーアイイー(!3
PIE)、470(1984)82.  S;Witt
ekoek エスピーアイイー(SPIE)221 (
1980)2]が、この方法では位置検出感度は10n
m以下と高いが、空気の振動やステージの振動等によっ
てその検出精度が大きく影響を受けていた0 発明が解決しようとする問題点。
Trutna, Jr et xx PII (!3
PIE), 470 (1984) 82. S;Witt
ekoek SPIE 221 (
1980)2], but in this method the position detection sensitivity is 10n
0 m or less, but the detection accuracy was greatly affected by air vibrations, stage vibrations, etc.0 Problems that the invention seeks to solve.

本発明は、このような従来からの問題点に鑑み、LSI
の製造プロセスにおけるレチクルとウェハの正確な位置
合わせ光学系を持つ特に可干渉な光を用いて計測するた
めに、空気振動やステージの振動が直接ノイズとして信
号に乗るため、ノイズを消去する機能を有した光学系を
持つ露光装置を提供することを目的としている。
In view of such conventional problems, the present invention has been made to
During the manufacturing process, the reticle and wafer are accurately aligned.In order to measure using particularly coherent light with an optical system, air vibrations and stage vibrations are directly added to the signal as noise. The object of the present invention is to provide an exposure apparatus having an optical system having the following characteristics.

問題点を解決するだめの手段 本発明は、X線等のグロキシミティー露光におけるマス
クとウニへ間にある空気振動やステージの振動によるノ
イズ成分を消去して高精度な位置合わせを露光装置にお
いて実現するために、基板上に設けた格子に対して可干
渉で共役な三光束を入射させ、格子から重って回折され
る光相互の干渉光強度の第1の出力と、前記格子を形成
していない基板上の部分に他の光を入射し、基板から反
射した光と可干渉な光を干渉させて得られた第2の出力
との差信号を用いて前記干渉縞と前記格子との間の位置
合わせを行なうものである。
Means to Solve the Problems The present invention eliminates noise components caused by air vibrations and stage vibrations between the mask and the sea urchin in gloximity exposure using X-rays, etc., and achieves highly accurate positioning in an exposure apparatus. In order to realize this, three coherent and conjugate beams are made incident on a grating provided on a substrate, and the first output of the interference light intensity of the light beams that are overlapped and diffracted from the grating and the grating are formed. The interference fringes and the grating are determined using the difference signal between the second output obtained by injecting other light into the part of the substrate that is not covered, and making the light reflected from the substrate interfere with the coherent light. This is to perform positioning between the two.

さらに、本方法の縮小投影露光機への応用として、レチ
クル面上に形成した格子によって回折した光束のうち、
第1のレンズ系のスペクトル面で2つの回折光の対のみ
を空間フィルターによって通過させ、この2つの光束を
第2のレンズ系に導びき、第2のレンズ系の結像面に生
成した干渉縞をウェハ上に投影し、レチクルとウェハと
の相対位置を、ウェハ上の格子から回折される回折光強
度を光検出器で測定し、さらに、格子を形成していない
基板面上の領域にレチクルからの回折光の一部分を入射
し、基板から反射した光を第1のレンズ系のスペクトル
面でレチクルから回折された光と干渉させ、この干渉光
強度と前記回折光強度との差を位置合わせ信号として、
レチクル上の格子とウェハ上の格子との間に発生するノ
イズを消去し、SN比の高い位置合わせ信号を得るもの
である。
Furthermore, as an application of this method to a reduction projection exposure machine, among the light beams diffracted by the grating formed on the reticle surface,
Only the two pairs of diffracted lights are passed through a spatial filter in the spectral plane of the first lens system, and these two light beams are guided to the second lens system, and the interference generated in the imaging plane of the second lens system is A stripe is projected onto the wafer, the relative position between the reticle and the wafer is determined by measuring the intensity of the diffracted light diffracted from the grating on the wafer, and then the intensity of the diffracted light diffracted from the grating on the wafer is measured. A portion of the diffracted light from the reticle is incident, and the light reflected from the substrate is caused to interfere with the light diffracted from the reticle on the spectral plane of the first lens system, and the difference between the intensity of this interference light and the intensity of the diffracted light is determined at the position. As a matching signal,
This eliminates noise generated between the grating on the reticle and the grating on the wafer, and obtains an alignment signal with a high signal-to-noise ratio.

作  用 本発明による位置合わせ信号によってSN比の高い位置
合わせ信号を得ることができ、より高い精度の位置検出
及び位置合わせを実現するものである。
Function: By using the positioning signal according to the present invention, it is possible to obtain a positioning signal with a high signal-to-noise ratio, thereby realizing position detection and positioning with higher accuracy.

実施例 本発明による光学系の一実施例を第1図に示した。以下
に、位置合わせに用いる光線の順に説明を加える。また
、以下の説明では本発明の原理を簡潔に述べるために、
レチクル又はマスクは、平行光1で照明したとする。本
発明の位置合わせ光学系の主要構成要素は、(1)位置
合わせ基準格子3を設けたレチクル又はマスク2 、 
(2)  基準格子から回折された2光束を交叉し干渉
させて基準の干渉縞を生成するための一組の鏡4.9 
、 (3)  第1の位置合わせ格子6を設けたマスク
S 、 (4)第2の位置合わせ格子8及び反射面9を
設けた基板7 、 (5)  位置合わせ格子6,8か
らの回折光強度を検出する光検出器11.12.及び前
記反射面9からの反射光と基準格子3からの回折光とを
干渉させる光学系1oによって2つの光の干渉光強度を
検出する光検出器13から成っている。
Embodiment An embodiment of the optical system according to the present invention is shown in FIG. Below, explanations will be added in the order of the light beams used for alignment. In addition, in the following explanation, in order to briefly describe the principle of the present invention,
It is assumed that the reticle or mask is illuminated with parallel light 1. The main components of the alignment optical system of the present invention are (1) a reticle or mask 2 provided with an alignment reference grating 3;
(2) A set of mirrors 4.9 for generating reference interference fringes by intersecting and interfering with the two beams diffracted from the reference grating.
, (3) Mask S provided with first alignment grating 6 , (4) Substrate 7 provided with second alignment grating 8 and reflective surface 9 , (5) Diffracted light from alignment gratings 6 and 8 Photodetector for detecting intensity 11.12. and a photodetector 13 that detects the interference light intensity of the two lights using an optical system 1o that causes the reflected light from the reflective surface 9 and the diffracted light from the reference grating 3 to interfere with each other.

マスク20基準格子3としては振幅格子を形成し、この
基準格子3に波長λの入射光線1を入射させる。ピッチ
P1 のマスク2上の格子3からはP1sinψ、=n
λ n=0.±1.±2.±3・・・(1)とn次の回
折光が回折される。ただし、ψユはn次の回折角。
An amplitude grating is formed as the reference grating 3 of the mask 20, and the incident light beam 1 of wavelength λ is made incident on this reference grating 3. From the grating 3 on the mask 2 with pitch P1, P1 sin ψ, = n
λ n=0. ±1. ±2. ±3...(1) n-th order diffracted light is diffracted. However, ψ is the n-th order diffraction angle.

第1図ではn次の回折光のうちの±1次の回折光のみを
位置合わせ格子6,8上で再収束させて2光束を交叉さ
せ、P2=λ/2sinψ1なるピッチP2をもつ干渉
縞を生成する。干渉縞はマスク5の格子6と基板7の格
子8の表面上で生成する。干渉縞のピッチP2に対して
整数倍のピッチを持つ格子をマスク6及び基板T上に設
けると、格子からは強い回折光が得られる。この回折光
には、基準マスクからの±1次回折光に対応した二つの
再回折光が重なっており、二つの回折光の干渉によるモ
アレ縞の光強度を測定することによって、空間中に生成
された干渉縞とマスク6上の第1の格子6との位置合わ
せを行なうことができる。また、同様に、基板T上の第
2の格子8との位置合わせを行なうことができる。第2
図に第1及び第2の位置合わせ格子から得られる回折光
14.15のモアレ縞光強度を示した。第2図に示すよ
うに、信号出力aは干渉縞と格子との間の相対位置に対
応した±1次回折光のモアレ光強度変化すとノイズ成分
Cとがある。ノイズ成分は基準格子3と位置合わせ格子
6,8との間の空気のゆらぎや、マスク6や基板7の振
動等に影響されて生じる。このノイズ成分を除去するた
めに本実施例では、第1図に示すように、基板7の格子
形成領域8の近傍に反射領域9を設け、該反射領域から
反射された反射光16と基準格子3からの回折光17と
を重ね合わせ両者を干渉させて光強度を光検出器13で
検出する。ノイズは、レーザが伝搬する空気のゆらぎ、
特に局部的な温度変化による空気の密度変化や、低周波
の振動、また、ステージの移動等に起因した振動、レー
ザ光強度の変動等があシ、光検出器13で検出できる。
In Fig. 1, only the ±1st-order diffracted light of the n-order diffracted light is refocused on the alignment gratings 6 and 8, and the two beams intersect, forming an interference pattern with a pitch P2 of P2 = λ/2 sin ψ1. generate. Interference fringes are generated on the surfaces of the grating 6 of the mask 5 and the grating 8 of the substrate 7. When a grating having a pitch that is an integral multiple of the pitch P2 of the interference fringes is provided on the mask 6 and the substrate T, strong diffracted light can be obtained from the grating. This diffracted light has two re-diffracted lights corresponding to the ±1st-order diffracted light from the reference mask overlapping, and by measuring the light intensity of moiré fringes caused by the interference of the two diffracted lights, the light intensity is generated in space. The interference fringes obtained can be aligned with the first grating 6 on the mask 6. Similarly, alignment with the second grating 8 on the substrate T can be performed. Second
The figure shows the moire fringe light intensity of the diffracted light 14.15 obtained from the first and second alignment gratings. As shown in FIG. 2, the signal output a has a noise component C when the moiré light intensity of ±1st order diffracted light changes corresponding to the relative position between the interference fringes and the grating. The noise component is generated due to the influence of fluctuations in the air between the reference grating 3 and the alignment gratings 6 and 8, vibrations of the mask 6 and the substrate 7, and the like. In order to remove this noise component, in this embodiment, as shown in FIG. The diffracted light 17 from 3 is superimposed to interfere with each other, and the light intensity is detected by the photodetector 13. Noise is caused by fluctuations in the air in which the laser propagates,
In particular, changes in air density due to local temperature changes, low-frequency vibrations, vibrations due to stage movement, fluctuations in laser light intensity, etc. can be detected by the photodetector 13.

この出力は第2図Cに示したように、ノイズ成分のみを
検出することができ、出力aと出力Cとの差信号を取る
とノイズ成分のない良好な位置検出信号dが得られる。
As shown in FIG. 2C, only the noise component can be detected from this output, and when the difference signal between output a and output C is taken, a good position detection signal d free of noise components can be obtained.

第3ガは本発明による第2の実施例である。本実施例の
位置合わせ光学系の主要構成要素は、(1)レチクル2
o上の位置合わせ格子2o、(2)  フーリエスペク
トル面で結合した第1及び第2のレンズ系23 、 (
3)  7− リエスペクトル面に配置した空間フィル
ター24となる反射ミラー、(4)  レチクル2o上
の格子21と第2のレンズ系の作るレチクル上の格子像
に対応した共役の位置関係とするために光軸を変換する
だめの反射ミラー26゜27からなる変換光学系、(6
)縮小投影レンズ28、(6)  ウェハ28(半導体
基板)上の位置合わせ格子30及び格子を設けていない
ウェハ上の反射面s 9 、(7)  ウェハ上29上
の格子30からの回折光34をフーリエスペクトル面で
取り出し、モアレ光強度を測定する光検出器s 7 、
(8)  ウェハ上の反射面39から反射される反射光
36とレチクル上の位置合わせ格子21から回折された
光を干渉させる光学系40及びその光強度を測定する光
検出器38から成っている。
The third example is a second embodiment according to the present invention. The main components of the alignment optical system of this embodiment are: (1) reticle 2;
alignment grating 2o on o, (2) first and second lens systems 23, (2) coupled in the Fourier spectral plane;
3) A reflecting mirror serving as a spatial filter 24 placed on the 7-reticle spectral plane; (4) A conjugate positional relationship corresponding to the grating 21 on the reticle 2o and the grating image on the reticle formed by the second lens system. A conversion optical system (6
) reduction projection lens 28, (6) alignment grating 30 on wafer 28 (semiconductor substrate) and reflective surface s 9 on wafer without grating, (7) diffracted light 34 from grating 30 on wafer 29 a photodetector s 7 that extracts the light on the Fourier spectrum plane and measures the moiré light intensity;
(8) Consists of an optical system 40 that causes the reflected light 36 reflected from the reflective surface 39 on the wafer to interfere with the light diffracted from the alignment grating 21 on the reticle, and a photodetector 38 that measures the intensity of the light. .

第1の実施例と第2の実施例は、その構成から明らかな
ように、ウェハ上の格子と位置検出光及びノイズ検出光
の位置関係は同一と考えてよいが、第2の実施例ではス
テッパ用縮小投影光学系28を通してノイズ検出光36
を導びき、反射光36をフーリエ変換レンズ23.25
のフーリエスペクトル面に導びき、レチクル上の回折格
子21から回折された光と反射光36を干渉させて光検
出器37に導びき干渉した光の光強度変動を検出するこ
とにより、第2図Cに示したノイズ成分のみを取シ出し
、信号aとCを差引くことによシノイズ成分のない理想
的な位置合わせ信号dを得る。
As is clear from their configurations, the first and second embodiments can be considered to have the same positional relationship between the grating on the wafer, the position detection light, and the noise detection light, but in the second embodiment, Noise detection light 36 passes through the stepper reduction projection optical system 28
The reflected light 36 is passed through a Fourier transform lens 23.25
The light diffracted from the diffraction grating 21 on the reticle and the reflected light 36 are caused to interfere with each other, and the light is guided to the photodetector 37 and the optical intensity variation of the interfered light is detected. By extracting only the noise component shown in C and subtracting the signals a and C, an ideal positioning signal d free of noise components is obtained.

発明の効果 以上のように本発明によれば、位置検出を行なっている
光線のごく近傍において、位置検出信号中のノイズ成分
のみを検出する他の一光線を設け、位置検出信号中のノ
イズ成分を差引くことにより。
Effects of the Invention As described above, according to the present invention, another light beam that detects only the noise component in the position detection signal is provided in the close vicinity of the light beam that is performing position detection, and the noise component in the position detection signal is detected. By subtracting.

理想的な位置検出を行ない、よシ精度の高い位置合わせ
を実現することができる。このノイズ成分の低減によシ
信号対ノイズ比は4o dB以上とすることができ、き
わめて安定な信号を得ることができる。さらに、この位
置合わせ信号を用いて位置合わせを行なうと、S/N 
比が40 dB以上得られるため、ピークにおける位置
合わせ検出精度が40nm以下(第2図中に示したよう
に)中間点における位置合わせ検出精度が10nm以下
と高い精度の位置合わせを行なうことができる。
It is possible to perform ideal position detection and achieve highly accurate alignment. By reducing this noise component, the signal-to-noise ratio can be increased to 4 odB or more, and an extremely stable signal can be obtained. Furthermore, when positioning is performed using this positioning signal, the S/N
Since a ratio of 40 dB or more can be obtained, highly accurate alignment can be performed with alignment detection accuracy at the peak of 40 nm or less (as shown in Figure 2) and alignment detection accuracy at the midpoint of 10 nm or less. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における露光装置の概略
構成図、第2図は本発明による検出信号のノイズ成分除
去を示す信号波形図、第3図は本発明の第2の実施例の
露光装置の概略構成図である。 1・・・・・・平行光、2,5・・・・・・マスク、3
・・・・・・基準格子、4,9・・・・・・鏡、6,8
・・・・・・位置合せ格子、7・・・・・・基板、9・
・・・・・反射面、10・・・・・・光学系、11゜1
2.13・・・・・・光検出器、a・・・・・・検出信
号、b・・・・・・理想的な信号、C・・・・・・ノイ
ズ成分、d・・・・・・検出信号−ノイズ成分。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1″
−平行光 2−マスク 3− 基準格子 4.9−・−鏡 5−マスク 6.8−@置合亡搭チ ア−・・& 抜 9−・−反射面 第2図 ttm 第 3 図
FIG. 1 is a schematic configuration diagram of an exposure apparatus according to a first embodiment of the present invention, FIG. 2 is a signal waveform diagram showing noise component removal of a detection signal according to the present invention, and FIG. 3 is a diagram showing a second embodiment of the present invention. FIG. 1 is a schematic configuration diagram of an example exposure apparatus. 1...Parallel light, 2,5...Mask, 3
...Reference grid, 4,9...Mirror, 6,8
....Alignment grid, 7.....Substrate, 9.
...Reflecting surface, 10...Optical system, 11゜1
2.13...Photodetector, a...Detection signal, b...Ideal signal, C...Noise component, d... ...Detection signal - noise component. Name of agent: Patent attorney Toshio Nakao and 1 other person 1″
-Parallel light 2-Mask 3-Reference grating 4.9--Mirror 5-Mask 6.8-@Placement tower chia-...& Extraction 9--Reflecting surface Fig. 2ttm Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)格子を設けた基板上の第1の領域と格子を形成し
ない第2の領域のそれぞれに対し、第1の領域には可干
渉で共役な二光束を入射させ、二光束の交差によって生
成する干渉縞のピッチが該格子の整数倍であり、格子か
ら重なって回折される光相互の干渉光強度の第1の出力
と、前記格子を形成していない基板上の第2の領域に他
の光を入射し、基板から反射した光と可干渉な光を干渉
させて得られた第2の出力との差信号を用いて前記干渉
縞と前記格子との間の位置合わせ手段を具備してなる露
光装置。
(1) Two coherent and conjugate beams are incident on the first area on the substrate with a grating and a second area where no grating is formed, and the intersection of the two beams causes The pitch of interference fringes to be generated is an integral multiple of the grating, and the first output of the interference light intensity of the light beams overlapped and diffracted from the grating and the second region on the substrate where the grating is not formed. means for aligning the interference fringes and the grating using a difference signal between a second output obtained by inputting another light and interfering the light reflected from the substrate with the coherent light; Exposure equipment.
(2)位置合わせ用光源、照明光学系、レチクル、第1
のレンズ系、空間フィルター、第2のレンズ系、露光用
光源、投影レンズ、基板、光検出器を有し、位置合わせ
用光源から出た光束を前記照明光学系を通して前記レチ
クル上に形成した第1の格子に入射して光束を回折させ
、この回折した光束を前記第1のレンズ系に導びき、前
記第1のレンズ系のスペクトル面に設けた前記空間フィ
ルターによって所定のスペクトルを選択的に透過せしめ
て、このスペクトルを前記第2のレンズ系に導びき、前
記第2のレンズ系を通過した光束により干渉縞を前記第
2のレンズ系の結像面に生成し、この干渉縞を前記投影
レンズを通して前記基板上に投影し、前記第2の格子か
ら回折される回折光の光強度を前記光検出器で測定し、
さらに、格子を形成していない基板面上にレチクルから
の回折光の一部を入射し、基板から反射した光を第1の
レンズ系のスペクトル面でレチクルから回折された光と
干渉させ、この干渉光強度と前記回折光強度との差信号
を位置合わせ信号として、レチクル上の格子から回折さ
れた前記干渉縞に対して整数倍のピッチを持つ前記基板
上の格子と前記レチクル上の格子との位置合わせを行な
うようにしてなる露光装置。
(2) Light source for alignment, illumination optical system, reticle, first
a second lens system, a spatial filter, a second lens system, an exposure light source, a projection lens, a substrate, and a photodetector, and a light beam emitted from the alignment light source is formed on the reticle through the illumination optical system. The diffracted light flux is guided into the first lens system, and a predetermined spectrum is selectively detected by the spatial filter provided on the spectral plane of the first lens system. The spectrum is transmitted to the second lens system, and the light beam passing through the second lens system generates interference fringes on the imaging plane of the second lens system. projecting onto the substrate through a projection lens and measuring the light intensity of the diffracted light diffracted from the second grating with the photodetector;
Furthermore, a part of the diffracted light from the reticle is incident on the surface of the substrate on which no grating is formed, and the light reflected from the substrate is caused to interfere with the light diffracted from the reticle on the spectral plane of the first lens system. A difference signal between the interference light intensity and the diffracted light intensity is used as an alignment signal, and the grating on the substrate and the grating on the reticle have a pitch that is an integral multiple of the interference fringes diffracted from the grating on the reticle. An exposure device that performs positioning.
JP62135082A 1987-05-29 1987-05-29 Aligner Pending JPS63299329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135082A JPS63299329A (en) 1987-05-29 1987-05-29 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135082A JPS63299329A (en) 1987-05-29 1987-05-29 Aligner

Publications (1)

Publication Number Publication Date
JPS63299329A true JPS63299329A (en) 1988-12-06

Family

ID=15143414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135082A Pending JPS63299329A (en) 1987-05-29 1987-05-29 Aligner

Country Status (1)

Country Link
JP (1) JPS63299329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094268A (en) * 1989-04-21 2000-07-25 Hitachi, Ltd. Projection exposure apparatus and projection exposure method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094268A (en) * 1989-04-21 2000-07-25 Hitachi, Ltd. Projection exposure apparatus and projection exposure method

Similar Documents

Publication Publication Date Title
KR100363034B1 (en) Grid-Grid Interference Accounting Device
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
CA1093297A (en) Plate aligning
US5184196A (en) Projection exposure apparatus
JPH0685387B2 (en) Alignment method
US4771180A (en) Exposure apparatus including an optical system for aligning a reticle and a wafer
US4626103A (en) Focus tracking system
JPS63299329A (en) Aligner
JPS5938521B2 (en) Micro displacement measurement and alignment equipment
JPS62255805A (en) Exposing device
JPH08186069A (en) Aligner
JP2691298B2 (en) Positioning device and exposure apparatus including the same
JPS6378004A (en) Positioning method and exposing device
JP2554091B2 (en) Exposure equipment
JP2578742B2 (en) Positioning method
JPH0269604A (en) Aligning method
JP2694045B2 (en) Positioning device using diffraction grating
JPH09293663A (en) Position detecting device and aligner provided with this device
JPS61290306A (en) Position detection and exposure using the same
JP2554626B2 (en) Positioning method and positioner using diffraction grating
JPH0582729B2 (en)
JPH02298016A (en) Aligner
JPS62165918A (en) Exposure device
JP2683409B2 (en) Positioning device
JPS63299330A (en) Aligner