JPS63297622A - Ground improving work - Google Patents

Ground improving work

Info

Publication number
JPS63297622A
JPS63297622A JP13318887A JP13318887A JPS63297622A JP S63297622 A JPS63297622 A JP S63297622A JP 13318887 A JP13318887 A JP 13318887A JP 13318887 A JP13318887 A JP 13318887A JP S63297622 A JPS63297622 A JP S63297622A
Authority
JP
Japan
Prior art keywords
air pressure
value
improvement
depth
pressure value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13318887A
Other languages
Japanese (ja)
Inventor
Makoto Motoyoshi
誠 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13318887A priority Critical patent/JPS63297622A/en
Publication of JPS63297622A publication Critical patent/JPS63297622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise the efficiency of operation as well as sure operating power by using a controller capable of automatically setting operation elements for a ground improving work in which a powdery improving agent is jetted by compressive air to the ground to form an improved column. CONSTITUTION:A powdery improving agent is jetted by compressed air into the ground to form an improved column by an apparatus having a controller with an arithmetic means 9. A given initial value is set up in an initial value setter 10 and put in the arithmetic means 9. An improving depth Z detected by an improving depth sensor 6 and an air pressure P detected by an air pressure sensor 7 are put through a comparator 8 in the means 9. An air flow rate Q1, improving agent transport amount W1, and penetration speed V1 which are calculated in the means 9 are set up in setters 11, 12, and 13 and automatically controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧縮空気により粉粒状の改良材を対象地盤内
に吐出して改良柱体を形成する地盤改良工法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a ground improvement method in which a powdery improvement material is discharged into the target ground using compressed air to form an improved column.

(従来技術) 従来、地盤改良工法として、空気圧を利用してセメント
などの粉粒状の改良材を地盤内に吐出し、これにより改
良柱体を造成する工法が知られている。この場合の必要
空気圧力Pは、一般にP= a −l + b−Qo 
2 、、、、、、、、、 (イ)により表わされる。こ
こで、aは第5図に示すにうに地盤の性状などにより決
まる圧力勾配、Zは改良深度、Qoは空気流量、[b−
Q021は配管内の圧力損失をそれぞれ示している。
(Prior Art) Conventionally, as a ground improvement method, a method is known in which a powdery improving material such as cement is discharged into the ground using air pressure, thereby creating improved columns. The required air pressure P in this case is generally P= a −l + b−Qo
2 , , , , , , It is represented by (a). Here, a is the pressure gradient determined by the properties of the ground as shown in Figure 5, Z is the improvement depth, Qo is the air flow rate, [b-
Q021 indicates the pressure loss inside the piping.

例えば改良深度30TrLまでの地盤改良には一般に最
大空気圧カフKgf/adのコンプレツリ゛が用いられ
る。この地盤改良では、その改良材の吐出効率を上げる
ために上記(イ)式における空気流ff1QOをできる
だけ大きく設定している。ところが、対象地盤の性状に
よっては上記コンプレッサの空気圧力が改良深度30m
近傍で不足する場合がある。この場合には、通常、オペ
レータの判断によりJ記]ンブレッ号能力の範囲内で改
良深度30mまでの地盤改良ができるように上記空気流
ff1QOを調整する方法が採られている。
For example, for soil improvement up to a depth of 30 TrL, a compression tree with a maximum air pressure cuff of Kgf/ad is generally used. In this ground improvement, the air flow ff1QO in the above equation (A) is set as large as possible in order to increase the discharge efficiency of the improvement material. However, depending on the characteristics of the target ground, the air pressure of the above compressor may exceed the improvement depth of 30 m.
There may be a shortage nearby. In this case, a method is usually adopted in which the air flow ff1QO is adjusted according to the operator's judgment so that ground improvement can be carried out to a depth of up to 30 m within the range of the capacity of the J-NBR.

すなわち第5図に示すように、まずオペレータは初期空
気流ff1Qoを設定して初期空気圧力値Paがら空気
圧力値の変化を監視しながら改良材の吐出を行う。そし
てオペレータは上記空気バカ値の変化を見ながら、最終
改良深度30mでの必要空気圧力値を予測する。すなわ
ち、第5図に破線で示す予測線と改良深度30mの位置
との交点の空気圧力値pdがコンプレツリ能力の7Kg
f/cdを超過するか否かを判断する。この結果、コン
プレツリ能力を超過すると判断した場合には、上記コン
プレッサ能力の最大11fi1gf/cdに近い空気圧
力filI P bを示すようになった改良深度χの地
点で、空気流量値をQoから01に減少させる。これに
よって圧力損失値[b−Q02]はΔPだけ減少し、し
たがって必要空気;を力値bpbからΔPだけ少ないp
cとなり、この結果、改良深度30mでも]ンブレッ1
ノ能力の7Kyf/dの範囲内の空気圧力値peで改良
材の吐出が行えるようになる。
That is, as shown in FIG. 5, the operator first sets the initial air flow ff1Qo and discharges the improved material while monitoring changes in the air pressure value from the initial air pressure value Pa. Then, the operator predicts the required air pressure value at the final improvement depth of 30 m while observing the change in the air pressure value. In other words, the air pressure value pd at the intersection of the predicted line shown by the broken line in Fig. 5 and the position of the improvement depth of 30 m is 7 kg, which is the compressor removal capacity.
Determine whether f/cd is exceeded. As a result, if it is determined that the compressor capacity is exceeded, the air flow rate value is changed from Qo to 01 at the improvement depth χ where the air pressure filI P b is close to the maximum compressor capacity of 11fi1gf/cd. reduce As a result, the pressure loss value [b-Q02] decreases by ΔP, and therefore the required air; is reduced by ΔP from the force value bpb.
c, and as a result, even with an improved depth of 30 m]
The improved material can be discharged at an air pressure value pe within the range of 7 Kyf/d.

しかしながら、この従来の修正方法では、空気圧力が不
足するかどうかの判断や空気流出の減少量はオペレータ
の経験に基いて行っているので、その判断が定量的でな
く、このため上記空気流H3を減少させるタイミングや
減少1’flを11つて圧力不足により改良材が吐出口
で閉塞するおそれも生じる。
However, in this conventional correction method, the judgment of whether the air pressure is insufficient and the amount of reduction in air outflow are made based on the operator's experience, so the judgment is not quantitative. There is also a risk that the improving material may become clogged at the discharge port due to insufficient pressure due to the timing of decreasing 1'fl or the decrease in 1'fl.

また上記修正方法においては、空気流出のみを減少して
改良材輸送量を同一の初期設定量のまま供給しているの
で配管内の改良材混合比(改良々4輸送績/空気流場)
が増加し、このため改良材の輸送が十分に行えなくなる
おそれもある。
In addition, in the above correction method, only the air outflow is reduced and the amount of improvement material transported remains the same as the initial setting amount, so the mixing ratio of improvement material in the pipe (improvement material 4 transportation results/air flow field)
increases, and there is a risk that the improved material may not be transported sufficiently.

さらに、オペレータは常に空気圧力値の監視を行う必要
があるので省力化の妨げとなっており、またオペレータ
として熟練者であることを必要としている。
Furthermore, the operator is required to constantly monitor the air pressure value, which impedes labor savings and requires the operator to be a skilled operator.

(発明の目的) この発明は、このような従来の欠点を解消するためにな
されたちのであり、空気圧力が不足するかどうかを対象
地盤に応じて定量的に判断して空気iaを的確に減少さ
せることにより、空気圧力不足による改良材の不測の閉
塞を防止できるとともに、オペレータの作業を省力化で
きる地盤改良工法を提供するものである。
(Purpose of the Invention) This invention was made to eliminate such conventional drawbacks, and it is possible to accurately reduce air ia by quantitatively determining whether or not air pressure is insufficient depending on the target ground. By doing so, it is possible to prevent unexpected blockage of the improvement material due to insufficient air pressure, and to provide a ground improvement method that can save the labor of the operator.

(発明の構成) この発明は、圧縮空気により粉粒状の改良材を対象地盤
内に吐出して改良柱体を形成する地盤改良工法において
、初期空気流量値Qoを設定する工程と、改良深度零点
における初期空気ロ力値POを検出する工程と、基準空
気圧力fiP1に到達する改良深度Z1を検出する工程
と、空気圧力の増分は深さに比例するものとして、上記
改良深度Z1と基準空気圧力(fl P 1 と初期空
気ロー力値P。
(Structure of the Invention) This invention provides a process for setting an initial air flow rate value Qo and a zero point of improvement depth in a ground improvement method in which an improvement column is formed by discharging a powdery improvement material into the target ground using compressed air. A step of detecting the initial aerodynamic force value PO at , a step of detecting the improved depth Z1 at which the reference air pressure fiP1 is reached, and a step of detecting the improved depth Z1 and the reference air pressure, assuming that the increase in air pressure is proportional to the depth. (fl P 1 and initial air low force value P.

とに基いて、最大計画改良深度Z ff1aXにおける
空気圧力の予測値P2を求め、この予測(!P2がら最
大51画空気圧力値Pmaxを減じることにより不足空
気圧力値ΔPを求める工程と、この不足空気圧力値ΔP
が正である時にこの不足空気圧力値ΔPと初期空気圧力
値P oとに基いて に−(Po−ΔP)/Pa により低減率Kを求める工程と、上記初期゛慴気流間値
Q0にこの低減率Kを乗じて修正空気流1■値Q1を求
める工程とを有し、上記改良深度71がら最大計画改良
深度Z maxまでは上記1i1−空気流量値Q1にす
いて改良材を吐出するようにしたものである。
Based on this, the predicted value P2 of the air pressure at the maximum planned improvement depth Zff1aX is calculated, and the step of calculating the insufficient air pressure value ΔP by subtracting the maximum 51-pair air pressure value Pmax from this prediction (!P2). Air pressure value ΔP
is positive, the reduction rate K is determined by -(Po-ΔP)/Pa based on the insufficient air pressure value ΔP and the initial air pressure value Po, and this is added to the initial air flow value Q0. The modified airflow 1 value Q1 is obtained by multiplying by the reduction rate K, and from the improvement depth 71 to the maximum planned improvement depth Z max, the improved material is discharged at the 1i1 - air flow rate value Q1. This is what I did.

上記構成によれば、改良深度の増加に伴う対象地盤に応
じた空気圧力の上背のデータをもとに、最大改良深度に
達する以前に定量的に空気圧力不足が生じるか否か、お
よびその不足品を判断でき、これに基いて的確なタイミ
ングで空気圧力を調整できる。
According to the above configuration, based on data on the upper back of air pressure according to the target ground as the improvement depth increases, it is possible to quantitatively determine whether or not air pressure shortage occurs before reaching the maximum improvement depth, and its occurrence. It is possible to determine which items are missing, and based on this, the air pressure can be adjusted at the appropriate timing.

(実施例) 第3図に示す基本的な地盤改良装置において、攪拌vA
11を有する攪拌軸1は対象地盤に対して0人・用法き
することができるようにリーダ12により保持され、こ
の攪拌軸1と改良材供給タンク2とが改良材供給管3に
より接続され、改良材供給タンク2内の粉粒状の改良材
21がコンプレツリ′(圧力空気源)4からの圧縮空気
により撹1マ軸1まで圧送されて地盤内に吐出されよう
に構成されている。
(Example) In the basic soil improvement device shown in Fig. 3, stirring vA
A stirring shaft 1 having a diameter of 11 is held by a leader 12 so that no person can handle the target ground, and this stirring shaft 1 and an improvement material supply tank 2 are connected by an improvement material supply pipe 3. The improvement material 21 in the form of powder in the improvement material supply tank 2 is compressed by compressed air from a compressor 4 (pressurized air source) 4 to be forced to the stirring shaft 1 and discharged into the ground.

この地盤改良装置による地盤改良を行う場合、上記撹拌
軸1の員入に伴い、第4図に示すように必要空気圧力P
は、 P=a −Z+b−Qo 2・・・・・・・・・・・・
(ロ)で表わされるようにaなる圧力勾配で改良深度Z
に比例して増加する。ここで、[b−Qo21は改良材
供給管3などの管路における圧力損失項に相当し、改良
深度零点においては初期空気圧力値Paとして表わされ
る。
When performing soil improvement using this soil improvement device, as the stirring shaft 1 is inserted, the required air pressure P as shown in FIG.
is, P=a −Z+b−Qo 2・・・・・・・・・・・・
As shown in (b), the improved depth Z with a pressure gradient of a
increases in proportion to Here, [b-Qo21 corresponds to a pressure loss term in a pipe such as the improvement material supply pipe 3, and is expressed as an initial air pressure value Pa at the zero improvement depth point.

第1図にはこの発明の実施例の要部である制御方法の7
0−f−I)−トが示されている。これは、まずステッ
プS1で初期値の設定を行う。覆なわら]ンブレツサ4
の最大空気圧力値pmax 、 81大改良深度ZIl
ax、初期空気流□□□植Qo、初用改良祠輸送品Wo
および初期L1人速度vOなどを設定し、これらの設定
値により地盤改良を開始する。
FIG. 1 shows 7 of the control method which is the main part of the embodiment of this invention.
0-f-I)-t is shown. First, initial values are set in step S1. Cover] Nbretusa 4
Maximum air pressure value pmax, 81 major improvement depth ZIl
ax, initial air flow □□□plant Qo, first use improved shrine transportation product Wo
, initial L1 person speed vO, etc. are set, and ground improvement is started using these set values.

併せて、制御を17tl始さヒる基準となる基準空気圧
力値P1をステップS2で設定する。この基準空気圧力
値P11よ、コンプレツリ゛4の最大空気圧力値の70
〜90%の値を選択して用いればよく、例えばコンブレ
ラ+j4の最大空気圧力が7Kgrladの時には6結
flcIiを上記基準空気圧力値P1として用いればよ
い。
At the same time, a reference air pressure value P1, which serves as a reference for starting the control from 17tl, is set in step S2. This reference air pressure value P11 is 70% of the maximum air pressure value of the compressor tree 4.
It is sufficient to select and use a value between 90% and 90%. For example, when the maximum air pressure of the combiner +j4 is 7Kgrlad, the 6-knot flcIi may be used as the reference air pressure value P1.

そして、ステップS3で改良深度零点における初期空気
圧力値POを検出し、地盤改良工事の進行にしたがって
ステップS4で枯草空気圧力fiiP1に到達する改良
深度Z1を検出する。これによって第4図に示すA点の
空気圧力値と8点の改良深度とが検出される。
Then, in step S3, the initial air pressure value PO at the zero point of the improvement depth is detected, and as the ground improvement work progresses, in step S4, the improvement depth Z1 at which the hay air pressure fiiP1 is reached is detected. As a result, the air pressure value at point A and the improved depths at eight points shown in FIG. 4 are detected.

これらの設定値Pmax 、 zmax 、 pl と
検出値Po 、Pl、Zlとに基いて、第4図に示すよ
うに15準空気圧力値1)1 にf11達した段階(8
点に5二す達した段階)において、最大改良深度Z r
aaxにおける必要空気圧力の予測1fj (D点にお
ける空気圧力値P2 )とコンプレッサの最大空気圧力
値PmaXとの差(ΔP)をステップS5で51点する
。すなりち、上記初期空気圧力値Poと、13準空気圧
力kfI P 1 と、その時の改良深度Z1とに堪い
てa= (Pl−Pa )/Zt により圧力勾配aを求め、この圧力勾配aに基いて P2  = Pa  + a  −Z+a;txにより
最大改良深度ZmaXにおける空気圧力の予測値P2を
求め、このP2にLlいて、ΔP=P2−Pmax により不足空気圧力値ΔPを求める。
Based on these set values Pmax, zmax, pl and detected values Po, Pl, Zl, as shown in FIG.
5), the maximum improvement depth Z r
The difference (ΔP) between the predicted required air pressure 1fj at aax (air pressure value P2 at point D) and the maximum air pressure value PmaX of the compressor is determined by 51 points in step S5. Therefore, based on the above initial air pressure value Po, 13 quasi-air pressure kfI P 1 and the improved depth Z1 at that time, the pressure gradient a is determined by a = (Pl-Pa)/Zt, and this pressure gradient a Based on P2 = Pa + a - Z + a; tx, the predicted value P2 of the air pressure at the maximum improved depth ZmaX is obtained, and by adding Ll to this P2, the insufficient air pressure value ΔP is obtained from ΔP=P2-Pmax.

つぎに、ステラ7Saでこの不足空気圧力値ΔPに基い
て空気流量の初期設定値Qoなどを修正する必殻がある
か否かを判断する。ずなわら、上記不足空気圧力値ΔP
が負である時には上記初期設定値のままで地盤改良を続
行しても]ンブレツサ4の能力範囲内(第4図において
p max以下)であるので、初期設定値を調整する必
要はなく制御を停止させる。逆に上記不足空気圧力値Δ
Pが正である時にはステップS7で上記初期設定値QO
などを調整するための低減率を求める。
Next, the Stellar 7Sa determines whether or not it is necessary to correct the initial set value Qo of the air flow rate, etc., based on this insufficient air pressure value ΔP. However, the above insufficient air pressure value ΔP
If is negative, even if ground improvement is continued with the above initial setting value] Since it is within the capability range of NMBRESSA 4 (below p max in Fig. 4), there is no need to adjust the initial setting value and control is performed. make it stop. Conversely, the above insufficient air pressure value Δ
When P is positive, the above initial setting value QO is set in step S7.
Find the reduction rate for adjusting etc.

りなわら、不足空気圧力値ΔPと初期空気圧力1直F’
oとに基いて に−(Po−ΔP)/P。
However, the insufficient air pressure value ΔP and the initial air pressure 1st shift F'
Based on o, -(Po-ΔP)/P.

により低減率Kを求める。Find the reduction rate K.

そしてステップS8でこの低減率Kを空気流量と改良材
輸送量と具入速度との初期設定値Qo。
Then, in step S8, this reduction rate K is set to the initial setting value Qo of the air flow rate, the amount of improved material transported, and the charging speed.

Wo 、Voに乗じることによりそれぞれの¥i iI
−、Iff(h 、Wl、Vlを求める。これらの修正
値Q1、Wl、■1をステップS9で設定し、これらの
修正値Q1、Wl、vlに基いて最大改良深度7−ma
×まで地盤改良を行う。
By multiplying Wo and Vo, each ¥i iI
-, If(h), Wl, Vl are determined. These modified values Q1, Wl, ■1 are set in step S9, and the maximum improvement depth of 7-ma is determined based on these modified values Q1, Wl, vl.
Perform ground improvement up to ×.

したがって、上記く口)式の圧力損失項である[b−Q
o2コが第4図に示すようにΔPだ(°〕小さい[b−
012]となって必要空気圧力値PはB点から0点に変
化し、この結果、E点で示す最大改良深度Z waxに
おける必要空気L1−力Pはコンプレッサ4の最大能力
p maxと同じとなり、コンプレッサ4の能力の鞘囲
内で最大改良深度ZIllaXまでの地盤改良が確実か
つ有効に行えることになる。したがって、コンプレッサ
4による空気rE力が不足するか否かの判断とその不足
槽とが定量的に把握され、的確なタイミングで修正を行
うことが交き、空気圧力不足による改良材の閉塞のおそ
れを防止することかできる。
Therefore, the pressure loss term in the above equation [b-Q
As shown in Figure 4, o2 is ΔP (°) small [b-
012], the required air pressure value P changes from point B to point 0, and as a result, the required air L1 - force P at the maximum improvement depth Z wax shown at point E becomes the same as the maximum capacity p max of the compressor 4. , ground improvement up to the maximum improvement depth ZIllaX can be performed reliably and effectively within the capabilities of the compressor 4. Therefore, it is possible to quantitatively determine whether or not the air rE force generated by the compressor 4 is insufficient, and to make corrections at the appropriate timing, thereby reducing the risk of blockage of the improved material due to insufficient air pressure. Is it possible to prevent this?

そして上記のように空気流ff1Qoの低減に対応して
改良材輸送fil W oを低減さゼることにより、改
良材供給管3内の改良材混合比(改良材輸送量/空気流
か)も一定に保たれるので改良材21の供給も十分に行
える。また、改良材21の供給MWoの減少に対応して
貴人速度VOを同様に低減させることにより、改良柱体
5の中位体積あたりの改良材混合mも一定に保たれ、こ
の結果、品質の良い改良柱体5の形成が行える。
As described above, by reducing the improvement material transport filWo in response to the reduction of the airflow ff1Qo, the improvement material mixing ratio (improvement material transportation amount/air flow) in the improvement material supply pipe 3 is also reduced. Since it is kept constant, the improvement material 21 can also be sufficiently supplied. In addition, by similarly reducing the noble speed VO in response to the decrease in the supply MWo of the improving material 21, the improving material mixture m per medium volume of the improved column 5 is also kept constant, and as a result, the quality is improved. A good improved columnar body 5 can be formed.

なおステップS8おJ:びステップS9では、空気流E
6と改良材輸送化と貴人速度との3つの初I’ll設定
11iQo 、Wo 、 Vo ヲ’li正シ、ソ(7
)3ツノt’f正値により地盤改良を(jうようにして
いるが、少なくとら空気流量の初期設定値QOを修正す
れば、コンプレッサ4の最大空気rE力の範囲内でII
λ人改良深度までの地盤改良が行えるようにするという
目的は達成できる。
Note that in steps S8 and S9, the air flow E
6 and the three first I'll settings of improved material transportation and noble speed 11iQo, Wo, Vo wo'li correct, so (7
) 3) We are trying to improve the ground using the positive value of t'f, but if we at least modify the initial setting value QO of the air flow rate, it will be possible to improve the soil within the range of the maximum air rE force of the compressor 4.
The purpose of making it possible to perform ground improvement to a depth of λ can be achieved.

第2図には第1図に示した方法を実施するための制御装
置が示されている。第2図にa3いて、改良深度検出各
6は攪拌軸1の貴人Vを改良深度7として検出し、また
空気圧力検出器7はコンプレッサ4からの配管内の空気
It力が検出されるように構成されている。比較器8に
は改良深度Zの零点fliと基準空気圧力値P1とがあ
らかじめ設定され、この改良深度の設定値(Z=O)に
おける空気It力検出器7での検出値(初期空気圧力値
Po )と、空気圧力の設定値P1における改良深度検
出!6での検出値Z1と、上記設定値P1とが演O手段
9に入力される。これによって第1図のステップS2、
ステップ83(+5よびステップS4に相当する作業が
行われるようにしている。
FIG. 2 shows a control device for carrying out the method shown in FIG. In Fig. 2, a3, the improved depth detection units 6 detect the noble V of the stirring shaft 1 as the improved depth 7, and the air pressure detector 7 detects the force of the air in the pipe from the compressor 4. It is configured. The zero point fli of the improved depth Z and the reference air pressure value P1 are set in advance in the comparator 8, and the detected value (initial air pressure value) at the air It force detector 7 at the set value of this improved depth (Z=O) Po ) and improved depth detection at the air pressure set value P1! The detected value Z1 at step 6 and the set value P1 are input to the performance means 9. As a result, step S2 in FIG.
The work corresponding to step 83 (+5 and step S4) is performed.

一方、初期値設定器10によりコンプレッサの最大空気
圧力値plaX、最大改良深磨Zlax、初期空気流は
値QO1初期改良材輸送fitWoおよび初II貫入速
度Voなどが演粋丁段9に入力され、これによって第1
図におけるステップS1に相当する作業が行われるよう
にしている。
On the other hand, the maximum air pressure value plaX of the compressor, the maximum improved deep polishing Zlax, the initial air flow value QO1, the initial improved material transport fitWo, the first II penetration speed Vo, etc. are input to the operation stage 9 by the initial value setting device 10. This allows the first
The work corresponding to step S1 in the figure is performed.

F記演i手段9は、上記初期値設定器10や比較器8か
ら入力された初■1値と設定値とに基いて、第1図にお
けるステップS5からステップS8までに相当する作業
が行われるように構成されている。この結果、求められ
た空気流量、改良材輸送量および具入速度についての修
]−,1IGh 、 Wl。
The F recording i means 9 performs operations corresponding to steps S5 to S8 in FIG. It is configured to be As a result, the air flow rate, improvement material transportation amount, and charging speed were determined.

Vlが各設定1a11,12.13に信号として出力さ
れる。
Vl is output as a signal to each setting 1a11, 12.13.

この空気流Mの修正値Q1に基いて第3図に示すコンプ
レッサ4の制御と、改良材輸送化の修正値W1に星いて
改良材供給タンク2からの改良材21の供給量のa、I
I tltlと、型入速度の修正値V1に基いて攪拌軸
1の具入速度の制御とがそれぞれ自動的に行われて運転
される。
Based on the correction value Q1 of the air flow M, the compressor 4 shown in FIG.
I tltl and control of the charging speed of the stirring shaft 1 based on the correction value V1 of the mold filling speed are each automatically performed and operated.

なお、上記実施例のように修正値Q1、Wl、Vlにす
いて自動的に運転制御されるように構成してもよいが、
例えば上記修正値Q+ 、W+ 、VlをAペレータキ
ャビンに表示してオペレータがそれを児で手動送作によ
り調整づるような構成にしてもよい。
Note that, as in the above embodiment, it may be configured such that the operation is automatically controlled based on the correction values Q1, Wl, and Vl;
For example, the correction values Q+, W+, and Vl may be displayed in the A operator cabin so that the operator can adjust them by manual movement.

(発明の効果) この発明の地盤改良工法によれば、使用している圧力空
気源の最大空気圧力と比較して必要空気圧力が不足する
かどうかの判断とその不足Eitとを対象地盤に応じて
最大改良深度に達する前に定!liy的に知ることがで
き、これによって空気流量の調整を的確に行うことがで
きるので、空気圧力不足による改良材の不測の閉塞を防
止できるとともに、オペレータの負担を減少させてその
釣果を省力化することができる。
(Effect of the invention) According to the ground improvement method of the present invention, it is determined whether or not the required air pressure is insufficient by comparing it with the maximum air pressure of the pressurized air source being used, and the shortage Eit is determined according to the target ground. before reaching the maximum improvement depth! This makes it possible to accurately adjust the air flow rate, which prevents accidental clogging of the improved material due to insufficient air pressure, and reduces the burden on the operator, resulting in labor-saving fishing results. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の要部のフローチ%・−1・
、第2図は第1図のノロ−チャートの工程を実施する制
御装置を示ずブロック構成図、第3図は第2図の制御2
11装置を適用するり水均な地盤改良装冒の説明図、第
4図は第1図のフローチャートにしたがって地盤改良す
る際の改良深度と空気圧力との関係図、第5図は従来の
方法にしたがって地盤改良する際の改良深度と空気圧力
との関係図である。 4・・・コンプレッサ(圧力空気源)、5・・・改良柱
体、21・・・改良材。 特許出願人      株式会社神戸製鋼所代 理 人
       弁理士 小谷悦司同         
弁理士 長1)正面         弁理士 板谷康
夫第  1  図 0    も砿蒋、−N百
FIG. 1 shows the flow rate of the main part of the embodiment of this invention.
, FIG. 2 is a block configuration diagram without showing the control device that implements the process of the norochart in FIG. 1, and FIG.
Fig. 4 is a diagram showing the relationship between improvement depth and air pressure when soil is improved according to the flowchart in Fig. 1, and Fig. 5 is a diagram of the conventional method. FIG. 3 is a diagram showing the relationship between improvement depth and air pressure when improving the ground according to the above. 4... Compressor (pressure air source), 5... Improved column, 21... Improved material. Patent applicant: Representative of Kobe Steel, Ltd. Patent attorney: Etsushi Kotani
Patent Attorney Long 1) Front Patent Attorney Yasuo Itaya No. 1 Figure 0 Mosui Chiang, -N100

Claims (1)

【特許請求の範囲】 1、圧縮空気により粉粒状の改良材を対象地盤内に吐出
して改良柱体を形成する地盤改良工法において、初期空
気流量値Q_0を設定する工程と、改良深度零点におけ
る初期空気圧力値P_0を検出する工程と、基準空気圧
力値P_1に到達する改良深度Z_1を検出する工程と
、空気圧力の増分は深さに比例するものとして、上記改
良深度Z_1と基準空気圧力値P_1と初期空気圧力値
P_0とに基いて、最大計画改良深度Zmaxにおける
空気圧力の予測値P_2を求め、この予測値P_2から
最大計画空気圧力値Pmaxを減じることにより不足空
気圧力値ΔPを求める工程と、この不足空気圧力値ΔP
が正である時にこの不足空気圧力値ΔPと初期空気圧力
値P_0とに基いて K=√[(P_0−ΔP)/P_0] により低減率Kを求める工程と、上記初期空気流量値Q
_0にこの低減率Kを乗じて修正空気流量値Q_1を求
める工程とを有し、上記改良深度Z_1から最大計画改
良深度Zmaxまでは上記修正空気流量値Q_1に基い
て改良材を吐出するようにしたことを特徴とする地盤改
良工法。
[Claims] 1. In a ground improvement method in which a granular improvement material is discharged into the target ground using compressed air to form an improved column, a step of setting an initial air flow rate value Q_0 and a step at the zero point of the improvement depth. A step of detecting an initial air pressure value P_0, a step of detecting an improved depth Z_1 that reaches the reference air pressure value P_1, and a step of detecting the improved depth Z_1 and the reference air pressure value, assuming that the increase in air pressure is proportional to the depth. A step of determining a predicted value P_2 of air pressure at the maximum planned improvement depth Zmax based on P_1 and the initial air pressure value P_0, and calculating a deficit air pressure value ΔP by subtracting the maximum planned air pressure value Pmax from this predicted value P_2. and this insufficient air pressure value ΔP
is positive, the reduction rate K is calculated based on the insufficient air pressure value ΔP and the initial air pressure value P_0 by K=√[(P_0-ΔP)/P_0], and the above-mentioned initial air flow rate value Q
_0 is multiplied by this reduction rate K to obtain a corrected air flow rate value Q_1, and the improved material is discharged based on the corrected air flow rate value Q_1 from the improvement depth Z_1 to the maximum planned improvement depth Zmax. A ground improvement method that is characterized by:
JP13318887A 1987-05-28 1987-05-28 Ground improving work Pending JPS63297622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13318887A JPS63297622A (en) 1987-05-28 1987-05-28 Ground improving work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13318887A JPS63297622A (en) 1987-05-28 1987-05-28 Ground improving work

Publications (1)

Publication Number Publication Date
JPS63297622A true JPS63297622A (en) 1988-12-05

Family

ID=15098753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13318887A Pending JPS63297622A (en) 1987-05-28 1987-05-28 Ground improving work

Country Status (1)

Country Link
JP (1) JPS63297622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074049A (en) * 2001-09-06 2003-03-12 Fudo Constr Co Ltd Device and method for constructing solidified piles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074049A (en) * 2001-09-06 2003-03-12 Fudo Constr Co Ltd Device and method for constructing solidified piles
JP4702821B2 (en) * 2001-09-06 2011-06-15 株式会社不動テトラ Solidification pile construction device and construction method

Similar Documents

Publication Publication Date Title
EP3176332B1 (en) Wheel loader
KR102410416B1 (en) working machine
JP3772306B2 (en) Soil improvement device
JPS62230527A (en) Quantitative feed controlling method
JPS645942B2 (en)
JPS63297622A (en) Ground improving work
JPH11253832A (en) Controller for pulverizer
EP0610268B1 (en) Method for controlling the material feed to a roller press for grinding particulate material
JPH02122848A (en) Method and apparatus for controlling vertical mill
JP3976615B2 (en) Control device for soil quality improvement equipment
JPH0691186A (en) Method for controlling roller mill
JPS60118530A (en) Pneumatic unloader for unloading granular powder
CN109421383A (en) Discharging liquid material device and discharging liquid material method
JPS60357Y2 (en) Powder injection stirring type ground improvement device
JPH0158085B2 (en)
JP2006272591A (en) Device and method for calculating amount of fluidizing agent to be added and concrete mixer truck
JPH01314134A (en) Stock-feeding control method in vent extruder
SU850217A1 (en) Apparatus for controlling product feed condition in dry grinding mill
JPS5915199A (en) Controller for earth pressure of tunnel excavator
JPH09269834A (en) Powder fluidized transferring flow rate controller
JPS5954929A (en) Automatic measuring and feeding apparatus
JPS5910418B2 (en) How to charge raw materials into sintering machine pallets
JPS6290514A (en) Quantitative supply apparatus
JPS6339727B2 (en)
JPH0612288B2 (en) Automatic metering and feeding device for powdery and granular materials such as rice by micro-computer