JPS63297437A - Vibration-insulation rubber composition - Google Patents

Vibration-insulation rubber composition

Info

Publication number
JPS63297437A
JPS63297437A JP13389987A JP13389987A JPS63297437A JP S63297437 A JPS63297437 A JP S63297437A JP 13389987 A JP13389987 A JP 13389987A JP 13389987 A JP13389987 A JP 13389987A JP S63297437 A JPS63297437 A JP S63297437A
Authority
JP
Japan
Prior art keywords
isoprene
rubber
vibration
rare earth
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13389987A
Other languages
Japanese (ja)
Other versions
JPH0774291B2 (en
Inventor
Iwakazu Hattori
岩和 服部
▲榊▼原 満彦
Mitsuhiko Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP62133899A priority Critical patent/JPH0774291B2/en
Publication of JPS63297437A publication Critical patent/JPS63297437A/en
Publication of JPH0774291B2 publication Critical patent/JPH0774291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the titled composition having excellent vibration-absorption characteristics and fatigue resistance, by compounding an isoprene-butadiene copolymer with natural rubber and polyisoprene rubber at specific ratios. CONSTITUTION:The objective composition contains (A) 20-90pts.wt., preferably 30-80pts.wt. of an isoprene-butadiene copolymer containing >=90% of cis-1,4- bond and obtained by polymerizing monomer in the presence of a lanthanide rare earth metal catalyst (preferably a catalyst composed of a lanthanide rare earth metal compound and an organoaluminum compound) and (B) 80-10pts.wt., preferably 70-20pts.wt. of natural rubber and/or polyisoprene rubber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ランタン系列希土類金属触媒の存在下に重合
して得られるイソプレン−ブタジエン共重合体と天然ゴ
ムおよび/またはポリイソプレンゴムとからなる振動吸
収特性および耐疲労特性に優れた防振ゴム組成物に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method comprising an isoprene-butadiene copolymer obtained by polymerization in the presence of a lanthanum series rare earth metal catalyst, and natural rubber and/or polyisoprene rubber. This invention relates to a vibration-proof rubber composition with excellent vibration absorption properties and fatigue resistance properties.

〔従来の技術〕[Conventional technology]

従来、一般用防振ゴムは、天然ゴム、ジエン系合成ゴム
の単体あるいはブレンドにより製造されている。
Conventionally, general-purpose anti-vibration rubbers have been manufactured using natural rubber, diene-based synthetic rubber alone or as a blend.

ところで、近年に至り、自動車工業の発展にともない、
防振ゴムの性能はより大きな振動吸収特性を要求される
ようになっており、特に低振動数の振動をも防振する要
求が高まっている。
By the way, in recent years, with the development of the automobile industry,
The performance of anti-vibration rubber has come to require greater vibration-absorbing properties, and in particular there has been an increasing demand for anti-vibration properties even against low-frequency vibrations.

この一つの解決策として、ガラス転移温度(Tg)の低
いゴム成分を配合することが知られている。
As one solution to this problem, it is known to blend a rubber component with a low glass transition temperature (Tg).

例えば、シリコンゴムまたはポリブタジェンゴムと、天
然ゴムとをブレンドすることにより、防振特性を改良す
る試みがなされている。
For example, attempts have been made to improve vibration damping properties by blending silicone rubber or polybutadiene rubber with natural rubber.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらのゴムあるいはゴム組成物により
、低振動数の防振特性は改良されるが、従来のシリコン
ゴムまたはポリブタジェンゴムを配合したものでは、疲
労特性に劣り実用に供しえない。
However, although these rubbers or rubber compositions improve the vibration damping properties at low frequencies, those containing conventional silicone rubber or polybutadiene rubber have inferior fatigue properties and cannot be put to practical use.

本発明は、前記従来の技術的課題を背景になされたもの
で、防振特性および疲労特性の両者を満足する防振ゴム
組成物を提供することを目的とする。
The present invention was made against the background of the above-mentioned conventional technical problems, and an object of the present invention is to provide a vibration-proof rubber composition that satisfies both vibration-proof properties and fatigue properties.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、(イ)ランタン系列希土類金属触
媒の存在下で重合して得られるシス−1゜4結合を90
%以上含有するイソプレン−ブタジエン系共重合体20
〜90f!量部と、(ロ)天然ゴムおよび/またはポリ
イソプレンゴム80〜10重量部とを含むことを特徴と
する防振ゴム組成物を提供するものである。
That is, in the present invention, (a) the cis-1°4 bond obtained by polymerization in the presence of a lanthanum series rare earth metal catalyst is
Isoprene-butadiene copolymer containing 20% or more
~90f! and (b) 80 to 10 parts by weight of natural rubber and/or polyisoprene rubber.

本発明の(イ)イソプレン−ブタジエン系共重合体の製
造に使用されるランタン系列希土類金属触媒は、例えば
(a)一般式LnY=  (式中、Lnは周期律表の原
子番号57〜71の金属であり、Yは−R,−OR,S
R,NRt 、リン酸塩、亜リン酸塩、XまたはRCO
O−であり、ここでRは炭素数1〜20の炭化水素基、
Xはハロゲン原子を示す)で表されるランタン系列希土
類金属化合物(以下「(a)成分」という)と、(b)
一般式AfR’ R” R”  (式中、R1,R1お
よびR3は同一または異なり、水素原子または炭素数1
〜8の炭化水素基であり、全てが水素原子ではない)で
表される有機アルミニウム化合物(以下「(b)成分」
という)よりなる触媒系である。
The lanthanum series rare earth metal catalyst used in the production of (a) isoprene-butadiene copolymer of the present invention has, for example, (a) the general formula LnY= (wherein, Ln has an atomic number of 57 to 71 in the periodic table). metal, Y is -R, -OR,S
R, NRt, phosphate, phosphite, X or RCO
O-, where R is a hydrocarbon group having 1 to 20 carbon atoms,
(X represents a halogen atom) (hereinafter referred to as "component (a)"), and (b)
General formula AfR'R"
-8 hydrocarbon groups, not all of which are hydrogen atoms) (hereinafter referred to as "component (b)")
It is a catalyst system consisting of

これは、必要に応じて(C)ルイス酸(以下「(C)成
分」という)および/または(d)ルイス塩基(以下「
(d)成分」という)を含有することができる。
(C) Lewis acid (hereinafter referred to as "component (C)") and/or (d) Lewis base (hereinafter referred to as "component (C)") as necessary.
(d) component").

まず、(a)成分において、Lnは、周期律表の原子番
号が57〜71のランタン系列希土類元素であり、なか
でもセリウム、ランタン、プラセオジウム、ネオジムお
よびガドリウムが好ましく、特にネオジムが工業的に入
手し易いので好ましい。
First, in component (a), Ln is a lanthanum series rare earth element with an atomic number of 57 to 71 in the periodic table, and among them, cerium, lanthanum, praseodymium, neodymium, and gadolinium are preferable, and especially neodymium is industrially available. This is preferred because it is easy to do.

これらの希土類元素は、2種以上の混合物であってもよ
い。
These rare earth elements may be a mixture of two or more.

また、Yとしては、アルキル、アルコキサイド、チオア
ルコキサイド、アミド、リン酸塩、亜リン酸塩、ハロゲ
ンおよびカルボン酸塩の形であり、特にアルコキサイド
、ハロゲン化物、カルボン酸塩が好ましい。
Furthermore, Y is in the form of alkyl, alkoxide, thioalkoxide, amide, phosphate, phosphite, halogen, and carboxylate, with alkoxide, halide, and carboxylate being particularly preferred.

このうち、ランタン系列希土類元素のアルキル型化合物
としては、LnRzで表され、Rとしてはベンジル基、
フェニル基、ブチル基、シクロペンタジェニル基などの
炭素数1〜20の炭化水素基を挙げることができる。
Among these, alkyl type compounds of lanthanum series rare earth elements are represented by LnRz, where R is a benzyl group,
Examples include hydrocarbon groups having 1 to 20 carbon atoms such as phenyl group, butyl group, and cyclopentagenyl group.

アルコール型化合物(アルコキサイド)としては、一般
式Ln (OR)x  (式中、LnおよびRは前記に
同じ)で表され、好ましいアルコールとしては2−エチ
ル−ヘキシルアルコール、オレイルアルコール、ステア
リルアルコール、フェノール、ベンジルアルコールなど
が挙げられる。
The alcohol type compound (alkoxide) is represented by the general formula Ln (OR) x (wherein Ln and R are the same as above), and preferable alcohols include 2-ethyl-hexyl alcohol, oleyl alcohol, stearyl alcohol, and phenol. , benzyl alcohol and the like.

チオアルコール型化合物(チオアルコキサイド)として
は、一般式Ln (SR)s  C式中、LnおよびR
は前記に同じ)で表され、好ましいチオアルコールとし
てはチオフェノールが挙げられる。
As a thioalcohol type compound (thioalkoxide), the general formula Ln (SR)s C, in which Ln and R
is the same as above), and preferred thioalcohols include thiophenol.

アミド型化合物(アミド)としては、一般式Ln (N
Rz ) s  (式中、LnおよびRは前記に同じ)
で表され、好ましいアミンとしてはジオクチルアミン、
ジオクチルアミンが挙げられる。
As an amide type compound (amide), the general formula Ln (N
Rz ) s (wherein, Ln and R are the same as above)
Preferred amines include dioctylamine,
Dioctylamine is mentioned.

前記希土類元素のリン酸塩としては、 一般式       0R Ln(OP)3 R′ (式中、Lnは前記に同じであり、またR、R’は同一
または異なり、前記Rに同じ)で表され、好ましくはト
リス(リン酸ジヘキシル)ネオジム、トリス(リン酸ジ
フェニル)ネオジムが挙げられる。
The rare earth element phosphate is represented by the general formula 0R Ln(OP)3 R' (wherein, Ln is the same as above, and R and R' are the same or different, and are the same as R above). Preferred examples include tris(dihexyl phosphate) neodymium and tris(diphenyl phosphate) neodymium.

前記希土類元素の亜リン酸塩としては、−7″t   
  、R Ln(OP)s R′ (式中、Ln%R%R’は前記に同じ)で表され、好ま
しくはトリス(亜すン酸ジヘキシル)ネオジム、トリス
〔亜すン酸ジ(2−エチルヘキシル)〕ネオジムが挙げ
られる。
As the rare earth element phosphite, −7″t
, R Ln(OP)s R' (in the formula, Ln%R%R' is the same as above), preferably tris(dihexylsulfite) neodymium, tris[di(2-sulfurous acid) ethylhexyl)] neodymium.

ハロゲン型化合物としては、一般式LnX。The halogen type compound has the general formula LnX.

(式中、Lnは前記に同じ、Xはハロゲン原子を示す)
で表され、ハロゲン原子としては好ましくは塩素原子、
臭素原子、ヨウ素原子である。
(In the formula, Ln is the same as above, and X represents a halogen atom)
The halogen atom is preferably a chlorine atom,
They are bromine and iodine atoms.

前記希土類元素のカルボン酸塩としては、一般式(RC
OO)iLnで表され、Rとしては、炭素数1〜20の
炭化水素基であり、好ましくは飽和および不飽和のアル
キル基であり、かつ直鎖状、分岐状あるいは環状であり
、カルボキシル基は1級、2級または3級の炭素原子に
結合しているものである。具体的に好ましいカルボン酸
の例としては、オクタン酸、2−エチル−ヘキサン酸、
オレイン酸、ステアリン酸、安息香酸、ナフテン酸が挙
げられる。
The rare earth element carboxylate has the general formula (RC
OO)iLn, R is a hydrocarbon group having 1 to 20 carbon atoms, preferably a saturated or unsaturated alkyl group, and is linear, branched or cyclic, and the carboxyl group is It is bonded to a primary, secondary or tertiary carbon atom. Specific examples of preferred carboxylic acids include octanoic acid, 2-ethyl-hexanoic acid,
Examples include oleic acid, stearic acid, benzoic acid, and naphthenic acid.

これら(al成分の具体例としては、例えば三塩化ネオ
ジム、三塩化ジジム(ネオジム72重量%、ランタン2
0jiif%、プラセオジム8重量%の希土類金属の三
塩化物の混合物)、2−エチルヘキサン酸・ネオジム、
2−エチルヘキサン酸・ジジム、ナフテン酸・ネオジム
、2,2−ジエチルヘキサン酸・ネオジム、ネオジムト
リメタクレート、ネオジムトリメタクリレートの重合体
などが挙げられる。
Specific examples of these (Al components include neodymium trichloride, didymium trichloride (neodymium 72% by weight, lanthanum 2
0jiif%, praseodymium 8% by weight mixture of rare earth metal trichlorides), 2-ethylhexanoate/neodymium,
Examples include polymers of 2-ethylhexanoic acid/didimium, naphthenic acid/neodymium, 2,2-diethylhexanoic acid/neodymium, neodymium trimethacrylate, neodymium trimethacrylate.

Cb)成分である有機アルミニウム化合物は、前記一般
式AIR’ R” R’  (ここで、R1,R1およ
びR3は同一または異なり、水素原子または炭素数1〜
8の炭化水素基であり、全てが水素原子ではない)で表
される化合物であり、具体的にはトリメチルアルミニウ
ム、トリエチルアルミニウム、トリイソプロピルアルミ
ニウム、トリブチルアルミニウム、トリイソブチルアル
ミニウム、トリヘキシルアルミニウム、トリシクロヘキ
シルアルミニウム、ジイソブチルアルミニウムハイドラ
イド、ジエチルアルミニウムハイドライド、ジプロピル
アルミニウムハイドライド、エチルアルミニウムシバイ
ドライド、プロピルアルミニウムシバイドライド、イソ
ブチルアルミニウムシバイドライドなどが挙げられる。
The organoaluminum compound which is component Cb) has the general formula AIR'R''R' (where R1, R1 and R3 are the same or different, and has a hydrogen atom or a carbon number of 1 to 1).
8 hydrocarbon groups, not all of which are hydrogen atoms), specifically trimethylaluminum, triethylaluminum, triisopropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, tricyclohexyl Examples include aluminum, diisobutylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, ethylaluminum sibide, propylaluminum sibide, isobutylaluminum sibide, and the like.

(C1成分であるルイス酸としては、例えば一般式Aj
!R’ 、X*−−(式中、R4は炭素数1〜8の炭化
水素基、mはO〜3の整数、Xは前記に同じ)で表され
るハロゲン化アルミニウム化合物、ハロゲン元素および
スズ、チタンなどのハロゲン化物が挙げられる。
(As the Lewis acid that is the C1 component, for example, the general formula Aj
! An aluminum halide compound represented by R', X*-- (wherein R4 is a hydrocarbon group having 1 to 8 carbon atoms, m is an integer of O to 3, and X is the same as above), a halogen element, and tin , halides such as titanium.

このうち、特に好ましいのは、ジメチルアルミニウムク
ロライド、ジエチルアルミニウムクロライド、ジプチル
アルミニウムクロライド、メチルアルミニウムセスキク
ロライド、エチルアルミニウムセスキブロマイド、エチ
ルアルミニウムジクロライド、およびこれらのブロマイ
ド、アイオダイド化合物などである。
Among these, particularly preferred are dimethylaluminum chloride, diethylaluminum chloride, diptylaluminum chloride, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum dichloride, and bromide and iodide compounds thereof.

(d)成分であるルイス塩基としては、アセチルアセト
ン、テトラヒドロフラン、ピリジン、N、 N−ジメチ
ルホルムアミド、チオフェン、ジフェニルエーテル、ト
リエチルアミン、有機リン化合物、1価または2価のア
ルコール類が挙げられる。
Examples of the Lewis base as component (d) include acetylacetone, tetrahydrofuran, pyridine, N,N-dimethylformamide, thiophene, diphenyl ether, triethylamine, organic phosphorus compounds, and monohydric or dihydric alcohols.

本発明で使用されるランタン系列希土類金属触媒の組成
は、通常、次の通りである。
The composition of the lanthanum series rare earth metal catalyst used in the present invention is usually as follows.

(b)成分/(a)成分(モル比)は、10〜150゜
好ましくは15〜100であり、10未満では重合活性
が低く、一方150を超えても重合活性への影響は少な
く、経済的に不利である。
The molar ratio of component (b)/component (a) is 10 to 150°, preferably 15 to 100. If it is less than 10, the polymerization activity is low, while if it exceeds 150, there is little effect on the polymerization activity and it is economical. This is disadvantageous.

また、(C1成分/(a)成分(モル比)は、0〜6、
好ましくは0.5〜5.0であり、6を超えると重合活
性が低くなる。
In addition, (C1 component/(a) component (molar ratio) is 0 to 6,
Preferably it is 0.5 to 5.0, and if it exceeds 6, the polymerization activity will decrease.

さらに、fd)成分/(a)成分(モル比)は、0〜2
0、好ましくは1〜15であり、2oを超えると重合活
性が低くなり好ましくない。
Furthermore, fd) component/(a) component (molar ratio) is 0 to 2
0, preferably 1 to 15, and if it exceeds 2o, the polymerization activity decreases, which is not preferable.

触媒成分として、前記(a)、(′b)、(C1、(d
l成分のほかに、必要に応じて共役ジエンを(a)成分
であるランタン系列希土類元素化合物1モル当たり、0
〜50モルの割合で用いてもよい。触媒調製に用いる共
役ジエンは、イソプレン、1,3−ブタジェン、1.3
−ペンタジェンなどが用いられる。
As catalyst components, the above (a), ('b), (C1, (d
In addition to component (a), if necessary, 0 conjugated diene may be added per mole of the lanthanum series rare earth element compound (a).
It may be used in a proportion of ~50 moles. Conjugated dienes used for catalyst preparation are isoprene, 1,3-butadiene, 1.3
- Pentagene etc. are used.

触媒成分としての共役ジエンは必須ではないが、これを
併用することにより触媒成分の触媒活性が一段と向上す
る。
Although the conjugated diene is not essential as a catalyst component, the catalytic activity of the catalyst component is further improved by using it in combination.

触媒を調製するには、例えば溶媒に溶解した(a)〜(
d)成分、さらに必要に応じて共役ジエンを反応させる
ことよりなる。その際、各成分の添加順序は、任意でよ
い。これらの各成分は、あらかじめ混合、反応させ、熟
成させることが重合活性の向上、重合開始誘導期間の短
縮の意味から好ましいが、重合に際し溶媒およびモノマ
ー中に直接触媒各成分を順次添加してもよい。
To prepare the catalyst, for example, (a) to (
It consists of reacting component d) and, if necessary, a conjugated diene. At that time, the order of addition of each component may be arbitrary. It is preferable to mix, react, and age each of these components in advance in order to improve polymerization activity and shorten the polymerization initiation induction period. good.

重合溶媒としては、不活性の有機溶媒であり、例えばベ
ンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒
、n−ペンタン、n−ヘキサン、n−ブタ7、シクロヘ
キサンなどの脂肪族炭化水素溶媒、メチルシクロベンク
ン、シクロヘキサンなどの脂環族炭化水素溶媒、二塩化
エチレン、クロルベンゼンなどのハロゲン化炭化水素溶
媒およびこれらの混合物が使用できる。
Examples of the polymerization solvent include inert organic solvents, such as aromatic hydrocarbon solvents such as benzene, toluene, and xylene, aliphatic hydrocarbon solvents such as n-pentane, n-hexane, n-buta7, and cyclohexane, and methyl. Alicyclic hydrocarbon solvents such as cyclobencune and cyclohexane, halogenated hydrocarbon solvents such as ethylene dichloride and chlorobenzene, and mixtures thereof can be used.

重合温度は、通常、−20℃〜150℃で、好ましくは
30〜120℃である。重合反応は、回分式でも、連続
式でもよい。
The polymerization temperature is usually -20°C to 150°C, preferably 30 to 120°C. The polymerization reaction may be carried out batchwise or continuously.

なお、溶媒中の単量体濃度は、通常、5〜50重量%、
好ましくは10〜35重景%である。
Note that the monomer concentration in the solvent is usually 5 to 50% by weight,
Preferably it is 10-35%.

このようにして得られるイソプレン−ブタジエン系共重
合体のミクロ構造は、イソプレン構造単位およびブタジ
ェン構造単位のシス−1,4結合がそれぞれ90%以上
であることが必要であり、90%未満では(ロ)天然ゴ
ムとの相溶性が悪く、破壊特性が低下しやす(、ガラス
転移温度が上昇し、さらに充分な防振特性が得られない
場合がある。
The microstructure of the isoprene-butadiene copolymer obtained in this way requires that the cis-1,4 bonds of the isoprene structural unit and the butadiene structural unit are each 90% or more; less than 90% ( (b) Compatibility with natural rubber is poor, and fracture properties tend to deteriorate (the glass transition temperature may rise, and sufficient vibration damping properties may not be obtained).

なお、本発明の(イ)成分であるイソプレン−ブタジエ
ン系共重合体中のイソプレンとブタジェンとの共重合割
合は、通常、イソプレン/ブタジェン(モル比)=20
/80〜9515、好ましくは30/70〜90/10
程度である。
Note that the copolymerization ratio of isoprene and butadiene in the isoprene-butadiene copolymer that is component (a) of the present invention is usually isoprene/butadiene (molar ratio) = 20.
/80-9515, preferably 30/70-90/10
That's about it.

また、本発明で使用されるイソプレン−ブタジエン系共
重合体の分子量は、広い範囲にわたって変化させること
ができるが防振ゴム製品として用いる場合、そのムーニ
ー粘度(ML1+4.100℃)は、通常、10〜12
0、好ましくは15〜100の範囲であるが、特に限定
されるものではない。
Further, the molecular weight of the isoprene-butadiene copolymer used in the present invention can be varied over a wide range, but when used as a vibration-proof rubber product, its Mooney viscosity (ML1 + 4.100°C) is usually 10 ~12
0, preferably in the range of 15 to 100, but is not particularly limited.

本発明で使用される(イ)イソプレン−ブタジエン系共
重合体は、必要に応じてクロロプレン、2.3−ジメチ
ル−1,3−ブタジェン、1.3−ペンタジェン、ミル
センなどのその他の共役ジエンを10重量%以下程度共
重合したゴムであってもよい。
(a) Isoprene-butadiene copolymer used in the present invention may optionally contain other conjugated dienes such as chloroprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene. It may be a copolymerized rubber of about 10% by weight or less.

以上のような(イ)イソプレン−ブタジエン系共重合体
と、(ロ)天然ゴムおよび/または合成ポリイソプレン
ゴム(IR)との重量割合は、(イ)20〜90重量部
、好ましくは30〜80重量部、(ロ)80〜10重量
部、好ましくは70〜20重量部であり、(イ)成分が
20重量部未満では防振特性の充分な改良効果がみられ
ず、一方(イ)成分が90重量部を超えると防振特性の
改良効果は飽和しており、逆に耐疲労特性が悪くなる。
The weight ratio of the above (a) isoprene-butadiene copolymer to (b) natural rubber and/or synthetic polyisoprene rubber (IR) is (a) 20 to 90 parts by weight, preferably 30 to 90 parts by weight. 80 parts by weight, (b) 80 to 10 parts by weight, preferably 70 to 20 parts by weight, and if component (a) is less than 20 parts by weight, sufficient improvement effect on vibration damping properties will not be seen; If the amount of the component exceeds 90 parts by weight, the effect of improving vibration damping properties is saturated, and on the contrary, fatigue resistance becomes worse.

かくて、本発明では、(イ)イソプレン−ブタジエン系
共重合体、ならびに(ロ)天然ゴムおよび/またはIR
に、さらに乳化重合スチレン−ブタジェン共重合体、溶
液重合スチレン−ブタジェン共重合体、低シス−1,4
−ポリブタジェン、高シス−1,4−ポリブタジェン、
エチレン−プロピレン−ジエン共重合体、クロロブレン
、ハロゲン化ブチルゴム、NBRなどとブレンドして使
用され、必要ならば芳香族系、ナフテン系、パラフィン
系などのオイルで油展し、次いでカーボンブラック、シ
リカ、炭酸マグネシウム、炭酸カルシウム、ガラス繊維
などの充填剤、ステアリン酸、亜鉛華、老化防止剤、加
硫促進剤ならびに加硫剤などの通常の加硫ゴム配合剤を
加え、防振ゴム組成物となすことができる。
Thus, in the present invention, (a) an isoprene-butadiene copolymer, and (b) natural rubber and/or IR
Furthermore, emulsion polymerized styrene-butadiene copolymer, solution polymerized styrene-butadiene copolymer, low cis-1,4
- polybutadiene, high cis-1,4-polybutadiene,
It is used by blending with ethylene-propylene-diene copolymer, chlorobrene, halogenated butyl rubber, NBR, etc. If necessary, it is extended with aromatic, naphthenic, or paraffinic oil, and then carbon black, silica, Add ordinary vulcanized rubber compounding agents such as fillers such as magnesium carbonate, calcium carbonate, and glass fiber, stearic acid, zinc white, anti-aging agents, vulcanization accelerators, and vulcanizing agents to form a vibration-proof rubber composition. be able to.

得られるゴム組成物は、成形加工後、加硫を行い、自動
車のエンジン廻り、船舶用の防舷材、組み立てラインの
精密位置決め用ストッパーなどの防振用などの広い範囲
の防振用途に好適に使用することができる。
After molding, the resulting rubber composition is vulcanized and is suitable for a wide range of vibration-isolating applications, including vibration-isolating applications such as around automobile engines, fenders for ships, and stoppers for precision positioning on assembly lines. It can be used for.

〔実施例〕〔Example〕

以下、本発明を実施例を挙げてさらに具体的に説明する
が、本発明はその要旨を超えない限り、以下の実施例に
何ら制約されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

なお、実施例中、部および%は、特に断らない限り、重
量部および重量%を意味する。
In the examples, parts and % mean parts by weight and % by weight unless otherwise specified.

また、実施例中の各種の測定は、下記の方法に拠った・ ムーニー粘度は、予熱1分、測定4分、温度100℃で
測定した(JIS  K6300に準じた)。
In addition, various measurements in the examples were performed according to the following methods. Mooney viscosity was measured at a temperature of 100° C. with 1 minute of preheating and 4 minutes of measurement (according to JIS K6300).

重合体のミクロ構造は、赤外吸収スペクトル法(モレロ
法)によって求めた。
The microstructure of the polymer was determined by infrared absorption spectroscopy (Morello method).

引張特性および硬さは、下記配合処方によりゴム組成物
を加硫し、JTS  K6301に準じて測定した。
The tensile properties and hardness were measured according to JTS K6301 after vulcanizing a rubber composition according to the following formulation.

伸長疲労試験は、デマッチャ屈曲試験機を用い、0.7
龍の切り込みを入れ、50%または100%伸長で繰り
返し伸長屈曲させ、切断までの回数、ならびに切り込み
なしで100%伸長で繰り返し伸長屈曲させ、切断まで
の回数で評価した。
The extension fatigue test was carried out using a Dematcher bending tester with a
A dragon cut was made and the material was repeatedly stretched and bent at 50% or 100% elongation, and evaluation was made based on the number of times it took to break, as well as the number of times it was made to repeatedly extend and bend at 100% elongation without making a cut until it was cut.

回数の大きいほど良好である。The larger the number of times, the better.

防振特性の評価は、加硫物をJIS  K6301によ
り静的剪断弾性率Gsを求め、また■岩本制作所製の粘
弾性スペクトロメーターを用い、振動数5Hzで測定し
た複素動的ヤング率の実数部(E’  (5Hz))と
振動数100Hzで測定した複素動的ヤング率の実数部
(E’  (100Hz))との比(静動比)(E’ 
 (100Hz)/E’(5H2))で表し、Gsが大
きいほど、また静動比= (E’  (100Hz)/
E’  (5Hz))が小さいほど良好である。
The vibration damping properties were evaluated by determining the static shear modulus Gs of the vulcanizate according to JIS K6301, and by determining the real number of complex dynamic Young's modulus measured at a frequency of 5 Hz using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho. (Static dynamic ratio) (E'
(100Hz)/E'(5H2)), and the larger Gs is, the static dynamic ratio = (E'(100Hz)/
E' (5Hz)) is smaller, the better.

y企処方              (部)ポリマー
              100FEFカーボンブ
ラツク        3゜亜鉛華         
        5ステアリン酸          
     l加硫促進剤CZ            
  2(シクロヘキシル−ベンゾチアゾール−スルフェ
ンアミド) イオウ                  2参考例
1 内容積51の攪拌機付きオートクレーブにチン素雰囲気
下でシクロヘキサン2.500g、イソプレン350g
および1.3−ブタジェン150gを仕込み、60℃に
調節した。
y Planned recipe (part) Polymer 100FEF carbon black 3゜zinc white
5 stearic acid
l Vulcanization accelerator CZ
2 (Cyclohexyl-Benzothiazole-Sulfenamide) Sulfur 2 Reference Example 1 2.500 g of cyclohexane and 350 g of isoprene were placed in an autoclave with an internal volume of 51 mm and equipped with a stirrer under a tin atmosphere.
and 150 g of 1,3-butadiene were charged and the temperature was adjusted to 60°C.

別容器に、(a)2−エチルヘキサン酸ネオジム/(ト
))トリイソブチルアルミニウム/(C)ジエチルアル
ミニウムクロライド/(d)アセチルアセトン(モル比
)=1/40/4/2の割合で添加混合し、少量のイソ
プレンの存在下、50’Cで30分間熟成して触媒を調
製した。
In a separate container, add and mix (a) neodymium 2-ethylhexanoate/(t)) triisobutylaluminum/(C) diethylaluminum chloride/(d) acetylacetone (molar ratio) = 1/40/4/2. The catalyst was prepared by aging at 50'C for 30 minutes in the presence of a small amount of isoprene.

この熟成触媒を、イソプレン、1,3−ブタジェンのモ
ノマー1.2X10’モルに対してネオジム原子1モル
となるように前記オートクレーブ中に仕込み、60℃で
7時間重合反応を行った。
This aged catalyst was charged into the autoclave in an amount of 1 mole of neodymium atoms per 1.2×10' moles of monomers of isoprene and 1,3-butadiene, and a polymerization reaction was carried out at 60° C. for 7 hours.

重合転化率が100%であることを確認したのち、2,
6−ジーt−ブチルカテコール4gをメタノール5 m
 j2に溶かした溶液を添加して反応を終了させた。
After confirming that the polymerization conversion rate is 100%, 2.
4 g of 6-di-t-butylcatechol to 5 m of methanol
The reaction was terminated by adding a solution dissolved in j2.

次いで、得られたポリマー溶液をメタノール中に注ぎ、
ポリマーを回収し、次いで60℃の真空乾燥機でポリマ
ーを乾燥し、ポリマー480gを得た。このポリマーの
ムーニー粘度(M L +や4.100℃)は、50で
あった。
The resulting polymer solution was then poured into methanol,
The polymer was collected and then dried in a vacuum dryer at 60° C. to obtain 480 g of polymer. The Mooney viscosity (M L + or 4.100° C.) of this polymer was 50.

得られたポリマー(以下「ポリマーA」という)の組成
およびミクロ構造を第1表に示す。
Table 1 shows the composition and microstructure of the obtained polymer (hereinafter referred to as "Polymer A").

参考例2〜5 1.3−ブタジェンとイソプレンとの量を変える以外は
、参考例1と同様にして重合反応を実施し、ポリマーB
−Eを得た。得られた各ポリマーのムーニー粘度、ミク
ロ構造を、あわせて第1表に示す。
Reference Examples 2 to 5 A polymerization reaction was carried out in the same manner as in Reference Example 1 except that the amounts of 1,3-butadiene and isoprene were changed, and polymer B
-E was obtained. The Mooney viscosity and microstructure of each of the obtained polymers are also shown in Table 1.

参考例6 参考例1と同様の方法により、イソプレン単独重合体(
ポリマーF)を得た。このポリマーのムーニー粘度、ミ
クロ構造を、第1表に示す。
Reference Example 6 Isoprene homopolymer (
Polymer F) was obtained. The Mooney viscosity and microstructure of this polymer are shown in Table 1.

実施例1〜4 参考例1〜4で得られたポリマーA−Dと、天然ゴム(
NR)とを、前記配合処方に従って加硫し、その加硫物
の加硫物性を第2表に示す。
Examples 1 to 4 Polymers A-D obtained in Reference Examples 1 to 4 and natural rubber (
NR) was vulcanized according to the above-mentioned formulation, and the vulcanized physical properties of the vulcanized product are shown in Table 2.

比較例1〜3 参考例5で得られたポリマーE、参考例6で得られたポ
リマーF、市販のポリブタジェン(日本合成ゴム側製、
BROI)を、前記配合処方に従って加硫し、その加硫
物の加硫物性を第2表に示す。
Comparative Examples 1 to 3 Polymer E obtained in Reference Example 5, Polymer F obtained in Reference Example 6, commercially available polybutadiene (manufactured by Japan Synthetic Rubber Co., Ltd.,
BROI) was vulcanized according to the above-mentioned formulation, and the vulcanized physical properties of the vulcanized product are shown in Table 2.

実施例1〜4と比較例1〜3とから、本発明のイソプレ
ン−ブタジエン系共重合体を配合したゴム組成物は、従
来のポリブタジェン、ポリイソプレンに比較して伸長疲
労が同等以上であり、制動比が優れていることが分かる
From Examples 1 to 4 and Comparative Examples 1 to 3, the rubber composition blended with the isoprene-butadiene copolymer of the present invention has the same or higher elongation fatigue compared to conventional polybutadiene and polyisoprene. It can be seen that the braking ratio is excellent.

比較例4 参考例1で得られたポリマーAを10重量部と・天然ゴ
ム90重量部とをゴム成分として用い、第2表の配合処
方に従って加硫し・その加硫物0加硫物性を第2表に示
す。
Comparative Example 4 Using 10 parts by weight of Polymer A obtained in Reference Example 1 and 90 parts by weight of natural rubber as rubber components, the vulcanized product was vulcanized according to the formulation shown in Table 2. Shown in Table 2.

(以下余白) 〔発明の効果〕 本発明は、ランタン系列希土類金属触媒を用いて得られ
るイソプレン−ブタジエン系共重合体と天然ゴムおよび
/またはポリイソプレンゴムとを特定の割合で含有する
ゴム組成物であり、公知の共役ジエン系重合体に比較し
て振動吸収特性および耐疲労特性に優れた加硫物が得ら
れる。
(The following is a blank space) [Effects of the Invention] The present invention provides a rubber composition containing an isoprene-butadiene copolymer obtained using a lanthanum series rare earth metal catalyst and natural rubber and/or polyisoprene rubber in a specific ratio. Therefore, a vulcanizate having superior vibration absorption properties and fatigue resistance properties compared to known conjugated diene polymers can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)ランタン系列希土類金属触媒の存在下で重
合して得られるシス−1,4結合を90%以上含有する
イソプレン−ブタジエン系共重合体20〜90重量部と
、(ロ)天然ゴムおよび/またはポリイソプレンゴム8
0〜10重量部とを含むことを特徴とする防振ゴム組成
物。
(1) (a) 20 to 90 parts by weight of an isoprene-butadiene copolymer containing 90% or more of cis-1,4 bonds obtained by polymerization in the presence of a lanthanum-based rare earth metal catalyst; and (b) a natural Rubber and/or polyisoprene rubber8
A vibration-proof rubber composition comprising 0 to 10 parts by weight.
JP62133899A 1987-05-29 1987-05-29 Anti-vibration rubber composition Expired - Lifetime JPH0774291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133899A JPH0774291B2 (en) 1987-05-29 1987-05-29 Anti-vibration rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133899A JPH0774291B2 (en) 1987-05-29 1987-05-29 Anti-vibration rubber composition

Publications (2)

Publication Number Publication Date
JPS63297437A true JPS63297437A (en) 1988-12-05
JPH0774291B2 JPH0774291B2 (en) 1995-08-09

Family

ID=15115706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133899A Expired - Lifetime JPH0774291B2 (en) 1987-05-29 1987-05-29 Anti-vibration rubber composition

Country Status (1)

Country Link
JP (1) JPH0774291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294663A (en) * 1992-08-28 1994-03-15 General Tire, Inc. Tire tread compositions of isoprene-styrene/butadiene emulsion polymers with 1,4 cis-polyisoprene rubber
WO2005003226A1 (en) * 2003-07-01 2005-01-13 Bridgestone Corporation Rubber composition and tire using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821434A (en) * 1981-07-31 1983-02-08 Japan Synthetic Rubber Co Ltd Polybutadiene rubber composition
JPS59122531A (en) * 1982-12-28 1984-07-16 Japan Synthetic Rubber Co Ltd Rubber composition having improved strength

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821434A (en) * 1981-07-31 1983-02-08 Japan Synthetic Rubber Co Ltd Polybutadiene rubber composition
JPS59122531A (en) * 1982-12-28 1984-07-16 Japan Synthetic Rubber Co Ltd Rubber composition having improved strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294663A (en) * 1992-08-28 1994-03-15 General Tire, Inc. Tire tread compositions of isoprene-styrene/butadiene emulsion polymers with 1,4 cis-polyisoprene rubber
WO2005003226A1 (en) * 2003-07-01 2005-01-13 Bridgestone Corporation Rubber composition and tire using the same
US9033014B2 (en) 2003-07-01 2015-05-19 Bridgestone Corporation Rubber composition and tire using the same

Also Published As

Publication number Publication date
JPH0774291B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
RU2579577C2 (en) Anti-vibration rubber composition, cross-linked anti-vibration composition and anti-vibration rubber
US8153723B2 (en) Process for producing conjugated diene polymer, conjugated diene polymer, and rubber composition
JP4467258B2 (en) Butadiene polymer, process for producing the same, and rubber composition and tire using the same
CA2695838C (en) Low molecular weight high-cis polybutadienes and their use in high molecular weight/low molecular weight high-cis polybutadiene blends
US8299184B2 (en) Rubber composition for tire sidewall and tire
RU2671351C2 (en) Method for manufacturing conjugated diene polymer with modified end, conjugated diene polymer with modified end, rubber composition and tyre
JP5401988B2 (en) Process for producing modified conjugated diene polymer
EP3225635A1 (en) Modified butadiene polymer and modifying agent useful in production of same
JP4367589B2 (en) Process for producing conjugated diene polymer and rubber composition
JP5997939B2 (en) Process for producing conjugated diene polymer
EP2673280A2 (en) Metal complex catalysts and polymerization methods employing same
CN108884270B (en) Modified conjugated diene polymer and preparation method thereof
JP2008542479A (en) Enhanced interaction between amine functionalized polymer and particulate filler
RU2579103C1 (en) Vibration-absorbing rubber mixture, cross-linked vibration-absorbing rubber mixture and vibration-absorbing rubber
JP2595539B2 (en) Method for producing novel conjugated diene polymer
JPH01153739A (en) Vibration-proof rubber composition
JPS63297437A (en) Vibration-insulation rubber composition
JP2007217518A (en) Rubber composition for tire tread and pneumatic tire using the same
KR20140138987A (en) Method for producing polymerization catalyst composition, polymerization catalyst composition, method for producing polymer composition, and polymer composition
JP5513338B2 (en) Butadiene polymer, process for producing the same, rubber composition and tire
CN111344315B (en) Process for preparing conjugated diene polymer by continuous polymerization
US20170291977A1 (en) Polymerization Catalyst Composition And Method Of Employing Same
CN114502563B (en) Novel imino-containing compound, modified conjugated diene polymer, process for producing polymer, and rubber composition
US6469106B2 (en) Process for producing modified diene polymer rubber
JP2536293B2 (en) Method for producing conjugated diene polymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term