JPH01153739A - Vibration-proof rubber composition - Google Patents

Vibration-proof rubber composition

Info

Publication number
JPH01153739A
JPH01153739A JP31236887A JP31236887A JPH01153739A JP H01153739 A JPH01153739 A JP H01153739A JP 31236887 A JP31236887 A JP 31236887A JP 31236887 A JP31236887 A JP 31236887A JP H01153739 A JPH01153739 A JP H01153739A
Authority
JP
Japan
Prior art keywords
vibration
isoprene
rubber
butadiene
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31236887A
Other languages
Japanese (ja)
Inventor
Yutaka Kobayashi
豊 小林
Tsutomu Tanimoto
勉 谷本
Seizo Katayama
片山 誠三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP31236887A priority Critical patent/JPH01153739A/en
Publication of JPH01153739A publication Critical patent/JPH01153739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide a rubber composition having a specific molecular structure attained by the polymerization in the presence of a specific metal catalyst and having excellent durability and vibration-proof property, i.e. vibration absorbing property. CONSTITUTION:The objective composition is composed mainly of an isoprene- butadiene copolymer produced by the polymerization in the presence of a lanthanide rare-earth metal catalyst and containing >=90% of cis-1,4 bond component, 10-95mol.% of isoprene unit and 90-5mol.% of butadiene unit. The metal catalyst is e.g. neodymium trichloride or trimethylaluminum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の分子構造を有するイソプレン−ブタジ
エン共重合体をゴム成分の主成分として含有し、優れた
耐久性、防振特性を備えた防振ゴム組成物に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a rubber component containing an isoprene-butadiene copolymer having a specific molecular structure as the main component, and having excellent durability and vibration damping properties. The present invention relates to a vibration-proof rubber composition.

〔従来の技術〕[Conventional technology]

従来、自動車、オートバイなどの交通手段、さらには産
業機械などの騒音や振動を防止するために、いわゆる防
振ゴムが使用されている。
Conventionally, so-called anti-vibration rubber has been used to prevent noise and vibration from means of transportation such as automobiles and motorcycles, as well as from industrial machinery.

この種の防振ゴムの特性としては、一般に以下のような
性能が要求されている。
This type of anti-vibration rubber is generally required to have the following performance.

■振動伝達係数が小さい、すなわち防振性能に優れてい
ること。
■It has a small vibration transmission coefficient, which means it has excellent anti-vibration performance.

■耐久疲労性能に優れていること。■Excellent durability and fatigue performance.

■圧縮永久歪み、すなわちヘタリが小さいこと。■Less compression set, or set.

■金属との加硫接着性に優れていること。■Excellent vulcanization adhesion to metals.

一般に、防振ゴム素材としては、ゴム弾性に優れた天然
ゴムが各種用途によりカーボンブランクなどの充填剤や
加硫剤の配合量を変えて用いられている。しかしながら
、多量のカーボンブランクは混練り時および成形時の加
工性への影響が大きいといった問題があり、充填剤、加
硫剤の配合のみでは、前記要求性能、特に防振性能、耐
久性などの発現に限界がある。
Generally, natural rubber with excellent rubber elasticity is used as a vibration-proof rubber material, with varying amounts of fillers such as carbon blanks and vulcanizing agents depending on the various uses. However, there is a problem in that a large amount of carbon blank has a large effect on workability during kneading and molding, and the combination of fillers and vulcanizing agents alone does not meet the required performance, especially vibration damping performance and durability. There are limits to expression.

このような状況から、従来、ゴム工業では、これらの防
振ゴム材料にスチレン−ブタジェン共重合ゴム、ポリブ
タジェンゴムなどの合成ゴムや、各種可塑剤を加えるこ
とにより、防振性能を中心とした前記要求性能の改良を
試みてきた。
Under these circumstances, the rubber industry has traditionally focused on improving vibration-isolating performance by adding synthetic rubbers such as styrene-butadiene copolymer rubber and polybutadiene rubber, and various plasticizers to these vibration-isolating rubber materials. Attempts have been made to improve the required performance.

また、最近に至っては、リチウム系触媒下により重合さ
れたイソプレン−ブタジエン共重合ゴムを、天然ゴムな
どにブレンドすることにより防振特性、圧縮永久歪み、
破壊特性を改良する方法(特開昭57−128,726
号公報)、特定の分子構造を持つポリブタジェンを天然
ゴムなどにブレンドすることにより、防振性能や耐久性
能の一つである耐亀裂成長性を改良する方法が提案され
ている(特開昭59−138,244号公報)。
Recently, isoprene-butadiene copolymer rubber polymerized under lithium-based catalysts has been blended with natural rubber to improve vibration damping properties, compression set, etc.
Method for improving fracture characteristics (JP-A-57-128,726
A method has been proposed to improve crack growth resistance, which is a type of vibration damping performance and durability, by blending polybutadiene with a specific molecular structure with natural rubber (Japanese Patent Application Laid-Open No. 1983-1993). -138,244).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、いずれも場合も防振ゴムに対する要求性
能、特に防振性能、耐久性という点では充分満足するに
は至っていない。
However, in all cases, the performance required for vibration-proof rubber, especially vibration-proofing performance and durability, has not been fully satisfied.

特に、最近の自動車工業においては、防振ゴム自体の小
型化につれ、硬度の高い材料が必要とされ、前記防振性
能、耐久性に対する要求値も年々厳しくなっており、優
れた防振ゴム材料の出現が強く望まれているのが現状で
ある。
In particular, in the recent automobile industry, materials with high hardness are required as anti-vibration rubber itself becomes smaller, and requirements for anti-vibration performance and durability are becoming stricter year by year. The current situation is that there is a strong desire for the emergence of

本発明は、前記従来の技術的課題を背景になされたもの
で、特に耐疲労性および防振性能、すなわち振動吸収特
性に優れた防振ゴム組成物を提供することを目的とする
The present invention was made against the background of the above-mentioned conventional technical problems, and an object of the present invention is to provide a vibration-isolating rubber composition particularly excellent in fatigue resistance and vibration-proofing performance, that is, in vibration-absorbing properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ランタン系列希土類金属触媒の存在下で重合
して得られ、シス−1,4結合を90%以上含有し、か
つイソプレン部分を10〜95モル%、ブタジェン部分
を90〜5モル%有するイソプレン−ブタジエン系共重
合体主成分とする防振ゴム組成物を提供するものである
The present invention is obtained by polymerization in the presence of a lanthanum series rare earth metal catalyst, contains 90% or more of cis-1,4 bonds, and has an isoprene moiety of 10 to 95 mol% and a butadiene moiety of 90 to 5 mol%. The present invention provides a vibration-proof rubber composition containing an isoprene-butadiene copolymer as a main component.

本発明のイソプレン−ブタジエン系共重合体の製造に使
用されるランタン系列希土類金属触媒は、例えば(al
一般式LnYs(式中、Lnは周期律表の原子番号57
〜71の金属であり、Yは−R1−OR,−3R,−N
R2、リン酸塩、亜リン酸塩、XまたはRCOO−であ
り、ここでRは炭素数1〜20の炭化水素基、Xはハロ
ゲン原子を示す)で表されるランタン系列希土類金属化
合物(以下「(a)成分」という)と、fb)一般式A
AR’ R” R’  (式中、R1、R2およびR3
は同一または異なり、水素原子または炭素数1〜8の炭
化水素基であり、全てが水素原子ではない)で表される
有機アルミニウム化合物(以下「(b)成分」という)
よりなる触媒系である。
The lanthanum series rare earth metal catalyst used in the production of the isoprene-butadiene copolymer of the present invention is, for example, (al
General formula LnYs (wherein, Ln is atomic number 57 in the periodic table)
-71 metal, Y is -R1-OR, -3R, -N
R2, phosphate, phosphite, X or RCOO-, where R is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom) (referred to as "component (a)"), fb) general formula A
AR'R''R' (wherein R1, R2 and R3
are the same or different and are hydrogen atoms or hydrocarbon groups having 1 to 8 carbon atoms, and are not all hydrogen atoms (hereinafter referred to as "component (b)")
It is a catalyst system consisting of.

これは、必要に応じて(Clルイス酸(以下「(C)成
分」という)および/または(d)ルイス塩基(以下「
(d)成分」という)を含有することができる。
(Cl Lewis acid (hereinafter referred to as "component (C)") and/or (d) Lewis base (hereinafter referred to as "component (C)") as necessary.
(d) component").

まず、ta)成分において、Lnは、周期律表の原子番
号が57〜71のランタン系列希土類元素であり、なか
でもセリウム、ランタン、プラセオジウム、ネオジムお
よびガドリウムが好ましく、特にネオジムが工業的に入
手し易いので好ましい。
First, in the ta) component, Ln is a lanthanum series rare earth element with an atomic number of 57 to 71 in the periodic table, and among them, cerium, lanthanum, praseodymium, neodymium, and gadolinium are preferable, and especially neodymium is industrially available. It is preferable because it is easy.

これらの希土類元素は、2種以上の混合物であってもよ
い。
These rare earth elements may be a mixture of two or more.

また、Yとしては、アルキル、アルコキサイド、チオア
ルコキサイド、アミド、リン酸塩、亜リン酸塩、ハロゲ
ンおよびカルボン酸塩の形であり、特にアルコキサイド
、ハロゲン化物、カルボン酸塩が好ましい。このうち、
ランタン系列希土類元素のアルキル型化合物としては、
LnR3で表され、Rとしてはベンジル基、フェニル基
、ブチル基、シクロペンタジェニル基などの炭素数1〜
20の炭化水素基を挙げることができる。
Furthermore, Y is in the form of alkyl, alkoxide, thioalkoxide, amide, phosphate, phosphite, halogen, and carboxylate, with alkoxide, halide, and carboxylate being particularly preferred. this house,
As alkyl type compounds of lanthanum series rare earth elements,
It is represented by LnR3, and R is a group having 1 to 1 carbon atoms, such as a benzyl group, phenyl group, butyl group, or cyclopentadienyl group.
Twenty hydrocarbon groups may be mentioned.

アルコール型化合物(アルコキサイド)としては、一般
式Ln (OR)3  (式中、LnおよびRは前記に
同じ)で表され、好ましいアルコールとしては2−エチ
ル−ヘキシルアルコール、オレイルアルコール、ステア
リルアルコール、フェノール、ベンジルアルコールなど
が挙げられる。
The alcohol type compound (alkoxide) is represented by the general formula Ln (OR)3 (wherein Ln and R are the same as above), and preferable alcohols include 2-ethyl-hexyl alcohol, oleyl alcohol, stearyl alcohol, and phenol. , benzyl alcohol and the like.

チオアルコール型化合物(チオアルコキサイド)として
は、一般式Ln (SR)3  (式中、LnおよびR
は前記に同じ)で表され、好ましいチオアルコールとし
てはチオフェノールが挙げられる。
The thioalcohol type compound (thioalkoxide) has the general formula Ln (SR)3 (wherein, Ln and R
is the same as above), and preferred thioalcohols include thiophenol.

アミド型化合物(アミド)としては、一般式Ln (N
R2) s  (式中、LnおよびRは前記に同じ)で
表され、好ましいアミンとしてはジオクチルアミン、ジ
オクチルアミンが挙げられる。
As an amide type compound (amide), the general formula Ln (N
R2) s (wherein Ln and R are the same as above), and preferred amines include dioctylamine and dioctylamine.

前記希土類元素のリン酸塩としては、 \ R′ (式中、Lnは前記に同じであり、またR、R’は同一
または異なり、前記Rに同じ)で表され、好ましくはト
リス(リン酸ジヘキシル)ネオジム、トリス(リン酸ジ
フェニル)ネオジムが挙げられる。
The rare earth element phosphate is represented by \R' (in the formula, Ln is the same as above, and R and R' are the same or different, and is the same as R above), and is preferably tris (phosphoric acid). dihexyl) neodymium, and tris(diphenyl) neodymium phosphate.

前記希土類元素の亜リン酸塩としては、一般式    
    R / Ln(OP)s \ R′ (式中、Ln、R,R’は前記に同じ)で表され、好ま
しくはトリス(亜すン酸ジヘキシル)ネオジム、トリス
〔亜すン酸ジ(2−エチルヘキシル)〕ネオジムが挙げ
られる。
The rare earth element phosphite has the general formula
R / Ln(OP)s \ R' (in the formula, Ln, R, R' are the same as above), preferably tris(dihexylsulfite) neodymium, tris[di(2sulfite) -ethylhexyl)] neodymium.

ハロゲン型化合物としては、一般式LnX+(式中、L
nは前記に同じ、Xはハロゲン原子を示す)で表され、
ハロゲン原子としては好ましくは塩素原子、臭素原子、
ヨウ素原子である。
As a halogen type compound, the general formula LnX+ (in the formula, L
n is the same as above, X represents a halogen atom),
The halogen atom is preferably a chlorine atom, a bromine atom,
It is an iodine atom.

前記希土類元素のカルボン酸塩としては、一般式(RC
OO) 3L nで表され、Rとしては、炭素数1〜2
0の炭化水素基であり、好ましくは飽和および不飽和の
アルキル基であり、かっ直鎖状、分岐状あるいは環状で
あり、カルボキシル基は1級、2級または3級の炭素原
子に結合しているものである。具体的に好ましいカルボ
ン酸の例としては、オクタン酸、2−エチル−ヘキサン
酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸
が挙げられる。
The rare earth element carboxylate has the general formula (RC
OO) 3L n, where R has 1 to 2 carbon atoms
0 hydrocarbon group, preferably a saturated or unsaturated alkyl group, linear, branched or cyclic, and the carboxyl group is bonded to a primary, secondary or tertiary carbon atom. It is something that exists. Specific examples of preferred carboxylic acids include octanoic acid, 2-ethyl-hexanoic acid, oleic acid, stearic acid, benzoic acid, and naphthenic acid.

これら(al成分の具体例としては、例えば三塩化ネオ
ジム、三塩化ジジム(ネオジム72重量%、ランタン2
0重量%、プラセオジム8重量%の希土類金属の三塩化
物の混合物)、2−エチルヘキサン酸・ネオジム、2−
エチルヘキサン酸・ジジム、ナフテン酸・ネオジム、2
,2−ジエチルヘキサン酸・ネオジム、ネオジムトリメ
タクレート、ネオジムトリメタクリレートの重合体など
が挙げられる。
Specific examples of these (Al components include neodymium trichloride, didymium trichloride (neodymium 72% by weight, lanthanum 2
mixture of rare earth metal trichlorides containing 0% by weight of praseodymium and 8% by weight of praseodymium), 2-ethylhexanoate/neodymium, 2-
Ethylhexanoic acid/didimium, naphthenic acid/neodymium, 2
, 2-diethylhexanoate/neodymium, neodymium trimethacrylate, neodymium trimethacrylate polymers, and the like.

(b)成分である有機アルミニウム化合物は、前記一般
式/I/!R’ R2R’  (ここで、R11R2お
よびR3は同一または異なり、水素原子または炭素数1
〜8の炭化水素基であり、全てが水素原子ではない)で
表される化合物であり、具体的にはトリメチルアルミニ
ウム、トリエチルアルミニウム、トリイソプロピルアル
ミニウム、トリブチルアルミニウム、トリイソブチルア
ルミニウム、トリヘキシルアルミニウム、トリシクロヘ
キシルアルミニウム、ジイソブチルアルミニウムハイド
ライド、ジエチルアルミニウムハイドライド、ジプロピ
ルアルミニウムハイドライド、エチルアルミニウムシバ
イドライド、プロピルアルミニウムシバイドライド、イ
ソブチルアルミニウムシバイドライドなどが挙げられる
The organic aluminum compound which is the component (b) has the general formula /I/! R'R2R' (Here, R11R2 and R3 are the same or different and have a hydrogen atom or a carbon number of 1
~8 hydrocarbon groups, not all of which are hydrogen atoms), specifically trimethylaluminum, triethylaluminum, triisopropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, trihexylaluminum, Examples include cyclohexylaluminum, diisobutylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, ethylaluminum sibide, propylaluminum sibide, isobutylaluminum sibide, and the like.

(C)成分であるルイス酸としては、例えば一般式A 
I R’ −X5−1I(式中、R4は炭素数1〜8の
炭化水素基、mは0〜3の整数、Xは前記に同じ)で表
されるハロゲン化アルミニウム化合物、ハロゲン元素お
よびスズ、チタンなどのハロゲン化物が挙げられる。
As the Lewis acid which is the component (C), for example, general formula A
Aluminum halide compound represented by I R' -X5-1I (wherein R4 is a hydrocarbon group having 1 to 8 carbon atoms, m is an integer of 0 to 3, and X is the same as above), a halogen element, and tin , halides such as titanium.

このうち、特に好ましいのは、ジメチルアルミニウムク
ロライド、ジエチルアルミニウムクロライド、ジブチル
アルミニウムクロライド、メチルアルミニウムセスキク
ロライド、エチルアルミニウムセスキブロマイド、エチ
ルアルミニウムジクロライド、およびこれらのブロマイ
ド、アイオダイド化合物などである。
Among these, particularly preferred are dimethylaluminum chloride, diethylaluminum chloride, dibutylaluminum chloride, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum dichloride, and bromide and iodide compounds thereof.

(d+酸成分あるルイス塩基としては、アセチルアセト
ン、テトラヒドロフラン、ピリジン、N、N−ジメチル
ホルムアミド、チオフェン、ジフェニルエーテル、トリ
エチルアミン、有機リン化合物、1価または2価のアル
コール類が挙げられる。
(Lewis bases with a d+ acid component include acetylacetone, tetrahydrofuran, pyridine, N,N-dimethylformamide, thiophene, diphenyl ether, triethylamine, organic phosphorus compounds, and monohydric or dihydric alcohols.

本発明で使用されるランタン系列希土類金属触媒の組成
は、通常、次の通りである。
The composition of the lanthanum series rare earth metal catalyst used in the present invention is usually as follows.

(bl成分/(a)成分(モル比)は、10〜150、
好ましくは15〜100であり、10未満では重合活性
が低く、一方150を超えても重合活性への影響は少な
く、経済的に不利である。
(bl component/(a) component (molar ratio) is 10 to 150,
Preferably it is 15 to 100; if it is less than 10, the polymerization activity is low, while if it exceeds 150, there is little effect on the polymerization activity, which is economically disadvantageous.

また、(C)成分/(a)成分(モル比)は、0〜6、
好ましくは0.5〜5.0であり、6を超えると重合活
性が低くなる。
In addition, the (C) component/(a) component (molar ratio) is 0 to 6,
Preferably it is 0.5 to 5.0, and if it exceeds 6, the polymerization activity will decrease.

さらに、(d)成分/(a)成分(モル比)は、0〜2
0、好ましくは1〜15であり、20を超えると重合活
性が低くなり好ましくない。
Furthermore, component (d)/component (a) (molar ratio) is 0 to 2
It is 0, preferably 1 to 15, and if it exceeds 20, the polymerization activity decreases, which is not preferable.

触媒成分として、前記(a)、(b)、(C)、(dl
成分のほかに、必要に応じて共役ジエンを(a)成分で
あるランタン系列希土類元素化合物1モル当たり、0〜
50モルの割合で用いてもよい。触媒調製に用いる共役
ジエンは、イソプレン、1.3−ブタジェン、1.3−
ペンタジェンなどが用いられる。
As catalyst components, the above (a), (b), (C), (dl
In addition to the ingredients, if necessary, conjugated diene may be added in an amount of 0 to 1 mole of the lanthanum series rare earth element compound (a).
It may be used in a proportion of 50 moles. The conjugated dienes used for catalyst preparation are isoprene, 1,3-butadiene, 1,3-
Pentagene and the like are used.

触媒成分としての共役ジエンは必須ではないが、これを
併用することにより触媒成分の触媒活性が一段と向上す
る。
Although the conjugated diene is not essential as a catalyst component, the catalytic activity of the catalyst component is further improved by using it in combination.

触媒を調製するには、例えば溶媒に溶解した(al〜(
dl成分、さらに必要に応じて共役ジエンを反応させる
ことよりなる。その際、各成分の添加順序は、任意でよ
い。これらの各成分は、あらかじめ混合、反応させ、熟
成させることが重合活性の向上、重合開始誘導期間の短
縮の意味から好ましいが、重合に際し溶媒およびモノマ
ー中に直接触媒各成分を順次添加してもよい。
To prepare the catalyst, e.g.
The process consists of reacting the dl component and, if necessary, a conjugated diene. At that time, the order of addition of each component may be arbitrary. It is preferable to mix, react, and age each of these components in advance in order to improve polymerization activity and shorten the polymerization initiation induction period. good.

重合溶媒としては、不活性の有機溶媒であり、例えばベ
ンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒
、n−ペンタン、n−ヘキサン、n−ブタンなどの脂肪
族炭化水素溶媒、メチルシクロペンクン、シクロヘキサ
ンなどの脂環族炭化水素溶媒、二塩化エチレン、クロル
ベンゼンなどのハロゲン化炭化水素溶媒およびこれらの
混合物が使用できる。
Polymerization solvents include inert organic solvents, such as aromatic hydrocarbon solvents such as benzene, toluene, and xylene, aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and n-butane, and methylcyclopenkune. , alicyclic hydrocarbon solvents such as cyclohexane, halogenated hydrocarbon solvents such as ethylene dichloride, chlorobenzene, and mixtures thereof.

重合温度は、通常、−20℃〜150℃で、好ましくは
30〜120℃である。重合反応は、回分式でも、連続
式でもよい。
The polymerization temperature is usually -20°C to 150°C, preferably 30 to 120°C. The polymerization reaction may be carried out batchwise or continuously.

なお、溶媒中の単量体濃度は、通常、5〜50重量%、
好ましくは10〜35重量%である。
Note that the monomer concentration in the solvent is usually 5 to 50% by weight,
Preferably it is 10 to 35% by weight.

このようにして得られるイソプレン−ブタジエン系共重
合体のミクロ構造は、イソプレン構造単位およびブタジ
ェン構造単位のシス−1,4結合がそれぞれ90%以上
であることが必要であり、90%未満では天然ゴムなど
の他のジエン系ゴムとの相溶性が悪く、破壊特性が低下
しやすく、ガラス転移温度が上昇し、さらに充分な防振
特性が得られない場合がある。
The microstructure of the isoprene-butadiene copolymer obtained in this way requires that the cis-1,4 bonds in the isoprene structural unit and butadiene structural unit are each 90% or more; It has poor compatibility with other diene rubbers such as rubber, tends to have poor fracture properties, increases glass transition temperature, and may not be able to provide sufficient vibration damping properties.

また、本発明の主成分であるイソプレン−ブタジエン系
共重合体中のイソプレンとブタジェンとの共重合割合は
、イソプレン/ブタジェン(モル比)−10/95〜9
015、好ましくは30/70〜90/10程度であり
、この範囲を外れると、耐久性の点で充分な効果が得ら
れない。
In addition, the copolymerization ratio of isoprene and butadiene in the isoprene-butadiene copolymer, which is the main component of the present invention, is isoprene/butadiene (molar ratio) -10/95 to 9.
015, preferably about 30/70 to 90/10; outside this range, sufficient effects in terms of durability cannot be obtained.

なお、本発明で使用されるイソプレン−ブタジエン系共
重合体の分子量は、広い範囲にわたって変化させること
ができるが防振ゴム製品として用いる場合、そのムーニ
ー粘度(ML、。4.100℃)は、通常、10〜12
0、好ましくは15〜100の範囲であるが、特に限定
されるものではない。
The molecular weight of the isoprene-butadiene copolymer used in the present invention can be varied over a wide range, but when used as a vibration-proof rubber product, its Mooney viscosity (ML, 4.100°C) is Usually 10-12
0, preferably in the range of 15 to 100, but is not particularly limited.

また、本発明で使用されるイソプレン−ブタジエン系共
重合体は、必要に応じてクロロプレン、2.3−ジメチ
ル−1,3−ブタジェン、1.3−ペンタジェン、ミル
センなどのその他の共役ジエンを10重量%以下程度共
重合したゴムであってもよい。
In addition, the isoprene-butadiene copolymer used in the present invention may contain other conjugated dienes such as chloroprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene as necessary. It may be a rubber copolymerized to a degree of less than % by weight.

本発明の防振ゴム組成物は、以上のようなイソプレン−
ブタジエン系共重合体をゴム成分中の主成分とするもの
であり、その割合は、ゴム成分中90重量%を超え、好
ましくは実質的に100重量%であり、90重量%以下
では耐久性および防振特性の充分な改良効果がみられな
い場合がある。
The anti-vibration rubber composition of the present invention has the above-mentioned isoprene-
The butadiene copolymer is the main component in the rubber component, and its proportion exceeds 90% by weight, preferably substantially 100% by weight, and if it is less than 90% by weight, the durability and In some cases, a sufficient improvement effect on vibration damping properties is not observed.

本発明で使用されるイソプレン−ブタジエン系共重合体
は、他のゴム成分、例えば天然ゴムおよび/またはポリ
イソプレン、さらに乳化重合スチレン−ブタジェン共重
合体、溶液重合スチレン−ブタジェン共重合体、低シス
−1,4−ポリブタジェン、高シス−1,4−ポリブタ
ジェン、エチレン−プロピレン−ジエン共重合体、クロ
ロプレン、ハロゲン化ブチルゴム、NBRなどを、ゴム
成分中、10重量%未満の範囲でブレンドして使用する
ことができる。これらのゴム成分のうち、特に天然ゴム
および/またはポリイソプレンとブレンドして使用する
ことが好ましい。
The isoprene-butadiene copolymer used in the present invention may contain other rubber components such as natural rubber and/or polyisoprene, as well as emulsion-polymerized styrene-butadiene copolymers, solution-polymerized styrene-butadiene copolymers, and low cis -1,4-polybutadiene, high-cis-1,4-polybutadiene, ethylene-propylene-diene copolymer, chloroprene, halogenated butyl rubber, NBR, etc. are used as a blend in an amount of less than 10% by weight in the rubber component. can do. Among these rubber components, it is particularly preferable to use it in a blend with natural rubber and/or polyisoprene.

また、本発明のイソプレン−ブタジエン系共重合体には
、必要ならば芳香族系、ナフテン系、パラフィン系など
のオイルで油展し、次いでカーボンブラック、シリカ、
炭酸マグネシウム、炭酸力ルシうム、ガラス繊維などの
充填剤、ステアリン酸、亜鉛華、老化防止剤、加硫促進
剤ならびに加硫剤などの通常の加硫ゴム配合剤を加え、
防振ゴム組成物となすことができる。
The isoprene-butadiene copolymer of the present invention may be oil-extended with aromatic, naphthenic, or paraffinic oil, if necessary, and then carbon black, silica, etc.
Adding fillers such as magnesium carbonate, lucium carbonate, glass fiber, stearic acid, zinc white, anti-aging agents, vulcanization accelerators and vulcanizing agents,
It can be made into a vibration-proof rubber composition.

得られるゴム組成物は、成形加工後、加硫を行い、自動
車の足廻りやエンジン廻り、船舶用の防舷材、組み立て
ラインの精密位置決め用ストッパーなどの防振用などの
広い範囲の防振用途に好適に使用することができる。
After molding, the resulting rubber composition is vulcanized and used in a wide range of anti-vibration applications such as automobile suspensions and engines, fenders for ships, and stoppers for precision positioning on assembly lines. It can be suitably used for various purposes.

〔実施例〕〔Example〕

以下、本発明を実施例を挙げてさらに具体的に説明する
が、本発明はその要旨を超えない限り、以下の実施例に
何ら制約されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

なお、実施例中、部および%は、特に断らない限り、重
量部および重量%を意味する。
In the examples, parts and % mean parts by weight and % by weight unless otherwise specified.

また、実施例中の各種の測定は、下記の方法に拠った。Moreover, various measurements in the examples were based on the following methods.

ムーニー粘度は、予熱1分、測定4分、温度100℃で
測定した(JIS  K6300に準じた)。
Mooney viscosity was measured at a temperature of 100° C. after 1 minute of preheating and 4 minutes of measurement (according to JIS K6300).

重合体のミクロ構造は、赤外吸収スペクトル法(モレロ
法)によって求めた。
The microstructure of the polymer was determined by infrared absorption spectroscopy (Morello method).

引張特性および硬さは、下記配合処方によりゴム組成物
を加硫し、JIS  K6301に準じて測定した。
The tensile properties and hardness were measured according to JIS K6301 by vulcanizing a rubber composition according to the following formulation.

聞合処方              (部)ポリマー
              100FEFカーボンブ
ラツク        30亜鉛華         
        5ステアリン酸          
     1加硫促進剤cz            
  2(シクロヘキシル−ベンゾチアゾール−スルフェ
ンアミド) イオウ                  2伸長疲
労試験は、デマソチャ屈曲試験機を用い、100%、1
50%または200%伸長で繰り返し伸長屈曲させ、き
裂発生までの回数で評価した。
Mixed prescription (part) Polymer 100FEF carbon black 30 zinc white
5 stearic acid
1 Vulcanization accelerator cz
2 (cyclohexyl-benzothiazole-sulfenamide) sulfur 2 The extension fatigue test was performed using a Demasocha flexure tester, with 100% and 1
The material was repeatedly stretched and bent at 50% or 200% elongation, and evaluated by the number of times until cracking occurred.

回数の大きいほど良好である。The larger the number of times, the better.

防振特性の評価は、加硫物を■岩本製作所製の粘弾性ス
ペクトロメーターを用い、振動数5Hzで測定した複素
動的ヤング率の実数部 (E’  (5Hz))と振動数100Hzで測定した
複素動的ヤング率の実数部(E’  (100Hz))
との比(静動比)(E’  (100Hz>/E’  
(5Hz))で表し、静動比=CE’  (100H2
)/E’  (5H2))が小さいほど良好である。
The vibration damping properties were evaluated using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho, and the real part of the complex dynamic Young's modulus (E' (5Hz)) was measured at a frequency of 100Hz. The real part of the complex dynamic Young's modulus (E' (100Hz))
(static-dynamic ratio) (E'(100Hz>/E'
(5Hz)), static dynamic ratio = CE' (100H2
)/E' (5H2)) is smaller, the better.

参考例1 内容積51の攪拌機付きオートクレーブにチッ素雰囲気
下でシクロヘキサン2,500g、イソプレン350g
および1.3−ブタジェン150gを仕込み、60℃に
調節した。
Reference Example 1 2,500 g of cyclohexane and 350 g of isoprene were placed in an autoclave with an internal volume of 51 cm and equipped with a stirrer under a nitrogen atmosphere.
and 150 g of 1,3-butadiene were charged and the temperature was adjusted to 60°C.

別容器に、(a)2−エチルヘキサン酸ネオジム/(b
)トリイソブチルアルミニウム/(C)ジエチルアルミ
ニウムクロライド/(d)アセチルアセトン(モル比)
=1/40/4/2の割合で添加混合し、少量のイソプ
レンの存在下、50℃で30分間熟成して触媒を調製し
た。
In a separate container, (a) neodymium 2-ethylhexanoate/(b)
) triisobutylaluminum/(C) diethylaluminum chloride/(d) acetylacetone (molar ratio)
A catalyst was prepared by adding and mixing at a ratio of 1/40/4/2 and aging at 50° C. for 30 minutes in the presence of a small amount of isoprene.

この熟成触媒を、イソプレン、1,3−ブタジェンのモ
ノマー1.2×104モルに対してネ第G ジム原子1モルとなるように前記オートクレーブ中に仕
込み、60℃で7時間重合反応を行った。
This aged catalyst was charged into the autoclave in an amount of 1 mole of G-dim atoms per 1.2 x 104 moles of isoprene and 1,3-butadiene monomers, and a polymerization reaction was carried out at 60°C for 7 hours. .

重合転化率が100%であることを確認したのち、2.
6−ジーt−ブチルカテコール4gをメタノール5ml
に溶かした溶液を添加して反応を終了させた。次いで、
得られたポリマー溶液をメタノール中に注ぎ、ポリマー
を回収し、次いで60℃の真空乾燥機でポリマーを乾燥
し、ポリマー480gを得た。このポリマーのムーニー
粘度(ML++4.100℃)は、50であった。
After confirming that the polymerization conversion rate is 100%, 2.
4 g of 6-di-t-butylcatechol and 5 ml of methanol
The reaction was terminated by adding a solution dissolved in . Then,
The obtained polymer solution was poured into methanol to recover the polymer, and then the polymer was dried in a vacuum dryer at 60° C. to obtain 480 g of polymer. The Mooney viscosity (ML++4.100°C) of this polymer was 50.

得られたポリマー(以下「ポリマーA」という)の組成
およびミクロ構造を第1表に示す。
Table 1 shows the composition and microstructure of the obtained polymer (hereinafter referred to as "Polymer A").

参考例2〜5 1.3−ブタジェンとイソプレンとの量を変える以外は
、参考例1と同様にして重合反応を実施し、ポリマーB
−Eを得た。得られた各ポリマーのムーニー粘度、ミク
ロ構造を、あわせて第1表に示す。
Reference Examples 2 to 5 A polymerization reaction was carried out in the same manner as in Reference Example 1 except that the amounts of 1,3-butadiene and isoprene were changed, and polymer B
-E was obtained. The Mooney viscosity and microstructure of each of the obtained polymers are also shown in Table 1.

参考例6 参考例1と同様の方法により、イソプレン単独重合体(
ポリマーF)を得た。このポリマーのムーニー粘度、ミ
クロ構造を、第1表に示す。
Reference Example 6 Isoprene homopolymer (
Polymer F) was obtained. The Mooney viscosity and microstructure of this polymer are shown in Table 1.

実施例1〜4 参考例1〜4で得られたポリマーA〜Dをそれぞれ単独
で、前記配合処方に従って加硫し、その加硫物の加硫物
性を第2表に示す。
Examples 1 to 4 Polymers A to D obtained in Reference Examples 1 to 4 were each individually vulcanized according to the above-mentioned formulation, and the vulcanized physical properties of the vulcanized products are shown in Table 2.

比較例1〜3 参考例5で得られたポリマーEもしくは参考例6で得ら
れたポリマーFをそれぞれ単独、または市販のポリブタ
ジェン(日本合成ゴム■製、BRol)と天然ゴム(R
3S#3)のブレンド系を、前記配合処方に従って加硫
し、その加硫物の加硫物性を第2表に示す。実施例1〜
4と比較例1〜3とから、本発明のイソプレン−ブタジ
エン系共重合体を主成分とするゴム組成物は、従来のポ
リブタジェン、ポリイソプレンなどを主成分とするゴム
組成物に比較して特に伸長疲労性能に優れ、かつ静動比
も優れていることが分かる。
Comparative Examples 1 to 3 Polymer E obtained in Reference Example 5 or Polymer F obtained in Reference Example 6 was used alone, or commercially available polybutadiene (manufactured by Japan Synthetic Rubber ■, BRol) and natural rubber (R
The blend system of 3S#3) was vulcanized according to the above-mentioned formulation, and the vulcanized physical properties of the vulcanized product are shown in Table 2. Example 1~
4 and Comparative Examples 1 to 3, it is clear that the rubber composition containing the isoprene-butadiene copolymer of the present invention as the main component is particularly superior to the conventional rubber composition containing polybutadiene, polyisoprene, etc. as the main component. It can be seen that it has excellent elongation fatigue performance and also has an excellent static-dynamic ratio.

〔発明の効果〕〔Effect of the invention〕

本発明は、ランタン系列希土類金属触媒を用いて得られ
るイソプレン−ブタジエン系共重合体を主成分とする防
振ゴム組成物であり、公知の共役ジエン系重合体に比較
して耐疲労性および防振性能、すなわち振動吸収特性に
優れた加硫物が得られる。
The present invention is a vibration-proof rubber composition mainly composed of an isoprene-butadiene copolymer obtained using a lanthanum series rare earth metal catalyst, which has better fatigue resistance and anti-fatigue properties than known conjugated diene polymers. A vulcanizate with excellent vibration performance, that is, vibration absorption properties, can be obtained.

特許出願人  日本合成ゴム株式会社 代理人  弁理士  白 井 重 隆Patent applicant: Japan Synthetic Rubber Co., Ltd. Agent: Patent Attorney Takashi Shirai

Claims (1)

【特許請求の範囲】[Claims] (1)ランタン系列希土類金属触媒の存在下で重合して
得られ、シス−1,4結合を90%以上含有し、かつイ
ソプレン部分を10〜95モル%、ブタジエン部分を9
0〜5モル%有するイソプレン−ブタジエン系共重合体
を主成分とする防振ゴム組成物。
(1) Obtained by polymerization in the presence of a lanthanum series rare earth metal catalyst, containing 90% or more of cis-1,4 bonds, and containing 10 to 95 mol% of isoprene moiety and 9% of butadiene moiety.
A vibration-proof rubber composition containing as a main component an isoprene-butadiene copolymer having 0 to 5 mol%.
JP31236887A 1987-12-11 1987-12-11 Vibration-proof rubber composition Pending JPH01153739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31236887A JPH01153739A (en) 1987-12-11 1987-12-11 Vibration-proof rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31236887A JPH01153739A (en) 1987-12-11 1987-12-11 Vibration-proof rubber composition

Publications (1)

Publication Number Publication Date
JPH01153739A true JPH01153739A (en) 1989-06-15

Family

ID=18028416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31236887A Pending JPH01153739A (en) 1987-12-11 1987-12-11 Vibration-proof rubber composition

Country Status (1)

Country Link
JP (1) JPH01153739A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629640A1 (en) * 1993-06-17 1994-12-21 The Goodyear Tire & Rubber Company Process for the synthesis of isoprene-butadiene rubber
CN103102437A (en) * 2011-11-11 2013-05-15 中国石油化工股份有限公司 Rare earth catalyst for polymerization of butadiene, and preparation and application methods thereof
EP2873681A4 (en) * 2012-07-12 2016-03-09 Bridgestone Corp Isoprene copolymer, and manufacturing method for same
EP2873697A4 (en) * 2012-07-12 2016-03-23 Bridgestone Corp Manufacturing method for polymer composition, and polymer composition
JP2017200983A (en) * 2016-05-06 2017-11-09 株式会社ブリヂストン Conjugated diene copolymer and method for producing the same, rubber composition, crosslinked rubber composition, and tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629640A1 (en) * 1993-06-17 1994-12-21 The Goodyear Tire & Rubber Company Process for the synthesis of isoprene-butadiene rubber
CN103102437A (en) * 2011-11-11 2013-05-15 中国石油化工股份有限公司 Rare earth catalyst for polymerization of butadiene, and preparation and application methods thereof
EP2873681A4 (en) * 2012-07-12 2016-03-09 Bridgestone Corp Isoprene copolymer, and manufacturing method for same
EP2873697A4 (en) * 2012-07-12 2016-03-23 Bridgestone Corp Manufacturing method for polymer composition, and polymer composition
US9714338B2 (en) 2012-07-12 2017-07-25 Bridgestone Corporation Method for manufacturing polymer composition and the polymer composition
JP2017200983A (en) * 2016-05-06 2017-11-09 株式会社ブリヂストン Conjugated diene copolymer and method for producing the same, rubber composition, crosslinked rubber composition, and tire

Similar Documents

Publication Publication Date Title
CA2372404C (en) Low molecular weight high-cis polybutadienes and their use in high molecular weight/low molecular weight high-cis polybutadiene blends
RU2579577C2 (en) Anti-vibration rubber composition, cross-linked anti-vibration composition and anti-vibration rubber
US8153723B2 (en) Process for producing conjugated diene polymer, conjugated diene polymer, and rubber composition
JP5507078B2 (en) Rubber composition for tire sidewall and tire
JP6496400B2 (en) Modified butadiene polymers and modifiers useful in the production
RU2727714C1 (en) Method of producing modified polydienes, modified polydienes obtained using said method, and rubber mixtures based on obtained polydienes
JP4367589B2 (en) Process for producing conjugated diene polymer and rubber composition
JP5997939B2 (en) Process for producing conjugated diene polymer
JP5463838B2 (en) Method and composition for producing cis-1,4-polybutadiene
JP7238154B2 (en) Modified high cis polydiene polymers, related methods and rubber compositions
CN108884270B (en) Modified conjugated diene polymer and preparation method thereof
CN108884269B (en) Modified conjugated diene polymer and preparation method thereof
RU2579103C1 (en) Vibration-absorbing rubber mixture, cross-linked vibration-absorbing rubber mixture and vibration-absorbing rubber
JPH01153739A (en) Vibration-proof rubber composition
KR101622067B1 (en) Method for producing polymerization catalyst composition, polymerization catalyst composition, method for producing polymer composition, and polymer composition
KR20170074681A (en) Rubber composition and tire produced by the same
CN111344315B (en) Process for preparing conjugated diene polymer by continuous polymerization
JPS63297437A (en) Vibration-insulation rubber composition
CN114502563B (en) Novel imino-containing compound, modified conjugated diene polymer, process for producing polymer, and rubber composition
CN113348185B (en) Modified conjugated diene polymer, method for producing same, and rubber composition containing same
JP6163822B2 (en) Modified cis-1,4-polybutadiene, process for producing the same, and rubber composition
JP2013082822A (en) Vibration-proof rubber composition, crosslinked vibration-proof rubber composition, and vibration-proof rubber
KR20170075671A (en) Preparation method of conjugated diene polymer and conjugated diene polymer produced by the same
CN118613509A (en) Process for preparing catalyst composition and process for preparing conjugated diene polymer
JP3928246B2 (en) Process for producing conjugated diene polymer