JPS6329719A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPS6329719A
JPS6329719A JP17272386A JP17272386A JPS6329719A JP S6329719 A JPS6329719 A JP S6329719A JP 17272386 A JP17272386 A JP 17272386A JP 17272386 A JP17272386 A JP 17272386A JP S6329719 A JPS6329719 A JP S6329719A
Authority
JP
Japan
Prior art keywords
lens
group
positive
lenses
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17272386A
Other languages
Japanese (ja)
Inventor
Shinichi Mihara
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP17272386A priority Critical patent/JPS6329719A/en
Publication of JPS6329719A publication Critical patent/JPS6329719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a zoom lens which has a large zoom and aperture ratios and is super-compact and low in cost, by causing an optical system having four groups of lenses to satify prescribed conditions. CONSTITUTION:The zoom lens of this invention is provided with the 1st lens group which is successively composed of a negative, positive, and positive lenses from the object side and has a positive focal distance as a whole and the 2nd group which is composed of a negative, negative, and positive lenses, has a negative focal distance as a whole, and is movable and conducts variable power at the time of variable power. The zoom lens is also provided with the 3rd group which is composed of two lenses of a lens having a weak refracting power and aspheric surface and a positive lens or three lenses of a lens having a weak refracting power and aspheric surface, positive lens, and negative lens, has a positive focal distance as a whole, is always fixed, and produces an almost afocal state on the light emitting side, and the 4th group which is composed of a positive, positive, and negative lenses, has a positive focal distance as a whole, eliminates variation of focusing position produced at the time of variable power, and is movable for focusing. The lenses of the groups are caused to satisfy inequality I. The fr and fAT of of the inequality are the focal distance of the whole system at the telescoping end and resultant focal distance of the lenses of the 1st-3rd groups at the telescoping end, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はズームレンズに関するものでビデオカメラ用と
して好ましいズームレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zoom lens, and particularly to a zoom lens preferable for use in a video camera.

〔従来の技術〕[Conventional technology]

ビデオカメラは、従来の銀塩スチールカメラに比べて高
価であシ又重量が重いためにそれ程普及していなかった
。しかし最近では大幅な小型軽量化や低価格化が進みそ
のため一般ユーザーに急速に普及しつつある。特にカメ
ラ部とデツキ部が一体となったポータプルなカメラも出
てきている。
Video cameras have not become very popular because they are more expensive and heavier than conventional silver halide still cameras. However, in recent years, they have become much smaller, lighter, and cheaper, and as a result, they are rapidly becoming popular among general users. In particular, portable cameras that have a camera part and a deck part integrated are also appearing.

これは主として回路系のLSI化が要因になっており、
その中の一つとして撮像デバイスが従来の2/3インチ
のチューブから1/2インチ相当のCOD等の固体撮像
素子へ移行したことも一役買っている。
This is mainly due to the shift to LSI circuitry.
One factor contributing to this is the shift in imaging devices from conventional 2/3-inch tubes to solid-state imaging devices such as 1/2-inch CODs.

このようにビデオカメラにおいて電気系に大幅なコンパ
クト化、ローコスト化が進むなかで、レンズ系の小型軽
量化、低コスト化は、電気系はどには進展していないの
が現状である。特にレンズ系の全長、前玉径を小にする
点や、構成枚数の点で不十分である。
While the electrical systems of video cameras are becoming much more compact and cost-effective, the current situation is that the electrical systems have not yet become smaller, lighter, and less expensive. In particular, it is insufficient in terms of reducing the overall length of the lens system, the diameter of the front lens, and the number of lenses.

1/2インチイメージサイズ用でズーム比が約6倍のズ
ームレンズの従来例で上記の要求を比較的満足するズー
ムレンズとして、特開昭60−123817号、特開昭
60−1’26618号、特開昭60−12661号等
がある。これら従来例は非球面を使用したもので、全長
の対広角端焦点距離比が11.7〜11.8と短く、構
成枚数も11枚〜12枚と少なく、前玉径も40m近辺
にすることが可能で、性能も比較的良いズームレンズで
ある。しかし広角端でのFナンバーは1.33〜1.4
5であり、1/2インチイメージサイズのCODではF
/1,2クラスの明るさのレンズ系が必要であり、前記
の従来例は明るさの点で不満足である。又この程度のF
ナンバーノズームレンズとしては、レンズ系の全長や前
玉も満足し得る程小さいとは云えない。更にこれら従来
例のように前玉フォーカシング方式では重量の大きな前
玉を繰り出すためにオートフォーカスやパワーフォーカ
スを行なうと、電力消費が大きくなりまた近距離側の軸
外光線のけられが大きく前玉径を大きくしない限りより
近距離側にフォーカシングすることが困難である。
Conventional examples of zoom lenses for 1/2-inch image size with a zoom ratio of approximately 6 times that relatively satisfy the above requirements are disclosed in Japanese Patent Application Laid-open No. 60-123817 and Japanese Patent Application Laid-open No. 60-1'26618. , JP-A-60-12661, etc. These conventional examples use an aspheric surface, have a short overall length to wide-angle end focal length ratio of 11.7 to 11.8, have a small number of constituent elements at 11 to 12, and have a front lens diameter of around 40 m. It is a zoom lens with relatively good performance. However, the F number at the wide-angle end is 1.33 to 1.4.
5, and F for 1/2 inch image size COD.
A lens system with a brightness of /1 or 2 class is required, and the conventional example described above is unsatisfactory in terms of brightness. Also, this level of F
As a number zoom lens, it cannot be said that the overall length of the lens system and the front lens are small enough to be satisfactory. Furthermore, with these conventional front lens focusing systems, when autofocus or power focus is used to advance the heavy front lens, power consumption increases and the off-axis rays on the short distance side are greatly vignetted. Unless the diameter is increased, it is difficult to focus on the shorter distance side.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、ズーム比が6程度
で、広角端のFナンバーが1.2程度で、全長の対広角
端焦点距離比が11.1程度で、前玉径が37■程度と
小さく構成枚数を11枚〜12枚程度にとどめた大ズー
ム比、大口径比、超コンパクト。
The problems to be solved by the present invention are that the zoom ratio is about 6, the F number at the wide-angle end is about 1.2, the overall length to wide-angle end focal length ratio is about 11.1, and the front lens diameter is 37. ■Large zoom ratio, large aperture ratio, and ultra-compact size with only 11 to 12 images.

低コストのズームレンズを提供することにある。The objective is to provide a low-cost zoom lens.

〔問題点を解決するための手段〕 本発明は、前記の問題点を解決するために非球面を用い
ると共にリレー系にコンペンセーターとしての役割をも
たせさらにはフォーカシング機能をも持たせるようにし
たものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses an aspherical surface and also provides a relay system with a role as a compensator and also has a focusing function. It is.

本発明のズームレンズは、物体唄uから順に負レンズ、
正レンズ、正レンズの3枚のレンズにて構成され全体と
して正の焦点距離を有する第1群と、負レンズ、負レン
ズ、正レンズの3枚のレンズにて構成され全体として負
の焦点距離を有し変倍時に可動であって主に変倍をつか
さどる第2群と、弱い屈折力で非球面を有するレンズ、
正レンズの2枚のレンズ又は弱い屈折力で非球面を有す
るレンズ、正レンズ、負レンズの3枚のレンズより構成
され全体として正の焦点距離を有し常時固定であってそ
の射出側にてほぼアフォーカルにする役割を有する第3
群と、前記第3群から少し大きな空気間隔をあけて正レ
ンズ、正レンズ、負レンズの3枚にて構成され全体とし
て正の焦点距離を有し変倍時に生ずる焦点位置の変動を
なくすいわゆるコンペンセーターの役割を有すると共に
合焦のために可動である第4群とにて構成されている。
The zoom lens of the present invention includes, in order from the object song u, a negative lens,
The first group is composed of three lenses, a positive lens, and has an overall positive focal length, and the first group is composed of three lenses, a negative lens, and a positive lens, and has an overall negative focal length. a second group that is movable when changing the magnification and is mainly responsible for changing the magnification; a lens having a weak refractive power and an aspherical surface;
Consisting of two positive lenses or a lens with weak refractive power and an aspherical surface, a positive lens, and a negative lens, it has a positive focal length as a whole and is always fixed on the exit side. The third part has the role of making it almost afocal.
It is composed of three lenses: a positive lens, a positive lens, and a negative lens with a slightly larger air distance from the third group, and has a positive focal length as a whole and eliminates the fluctuation of the focal position that occurs when changing the magnification. It is composed of a fourth group that functions as a compensator and is movable for focusing.

このように、本発BJJは焦点位置の移動の補正とフォ
ーカシングとは同様のものであることに着目し、変倍時
に生ずる焦点位置の移動の補正と合焦とを兼ねた役割を
僅か3枚のレンズにて構成される第4群リレーレンズ系
に集中して持たせ、第3群の固定群の一部に非球面を設
けたことを特徴としている。
In this way, this BJJ focuses on the fact that correction of focal position movement and focusing are the same thing, and uses only three lenses to serve both of the functions of correcting focal position movement and focusing that occur when changing the magnification. It is characterized in that it is concentrated in the fourth group relay lens system consisting of lenses, and that a part of the fixed group of the third group is provided with an aspherical surface.

前記のように群の偏芯による影響のでやすい第1群を固
定することによって偏芯による性能の劣化を小さくする
ことが出来、さらにオートフォーカスを採用した場合こ
れを大きくて重い第1群にて行なうのではなく軽量な第
4群にて行なうことにより応答性を良好にし又消費成力
を少なくする咎が可能になる。また第1群によるフォー
カシングの欠点である近距離物点にフォーカシングした
時の軸外光束のけられにより最至近距離を近くすること
が出来ない点や、それを近くするために前玉径を大きく
しなければならない点を、この第4群によるフォーカシ
ング方式を用いることによって解消し得る。
As mentioned above, by fixing the first group, which is likely to be affected by group eccentricity, it is possible to reduce performance deterioration due to eccentricity.Furthermore, when autofocus is adopted, this can be reduced by a large and heavy first group. By using a lightweight fourth lens group instead of using a conventional lens, it is possible to improve responsiveness and reduce power consumption. Another disadvantage of focusing with the first lens group is that when focusing on a close object point, the off-axis beam is vignetted, making it impossible to get the closest distance, and in order to get it closer, the diameter of the front lens must be increased. This problem can be solved by using the focusing method using the fourth lens group.

また前述の従来例では、変倍時の焦点位置変動の補正を
バリエータ−のすぐ次のレンズが行なっていたが、本発
明ではこの機能を第4群に併わせ持せるいうなれば機能
集中型とすることによって低コスト化をもはかったもの
である。このように第4群にフォーカシングと焦点位置
補正機能を集中して持たせることによって種々のメリッ
トが生ずるが、この第4群の移動によって生ずる収差の
変動による結像性能の劣化を考慮しなければならない。
In addition, in the conventional example described above, the lens immediately after the variator corrects the focal position fluctuation during zooming, but in the present invention, this function is also provided in the fourth group, so that it is a functionally concentrated type. This also aims to reduce costs. Concentrating the focusing and focal position correction functions in the fourth group brings about various benefits, but the deterioration of imaging performance due to fluctuations in aberrations caused by the movement of the fourth group must be taken into account. It won't happen.

この第4群の移動による収差の変動は、球面収差におい
て著しい。これを防止するためには次の条件(1)を満
足する必要がある。
The variation in aberration due to the movement of the fourth lens group is significant in spherical aberration. In order to prevent this, it is necessary to satisfy the following condition (1).

(1)  l fT/fATl < 0.6ただしfT
は望遠端における全系の焦点距離、fATは望遠端にお
ける第1群から第3群までの合成焦点距離である。
(1) l fT/fATl < 0.6 However, fT
is the focal length of the entire system at the telephoto end, and fAT is the combined focal length of the first to third groups at the telephoto end.

第4群を移動させることによって生ずる球面収差の変動
を少なくするためには、第4群の移動による軸上光線高
の変動が少なければよい。つまり第1群から第3群がほ
ぼアフォーカルになればよい。このアフォーカル度を示
したのが上記の条件(1)である。この条件(1)より
外れると望遠端付近の焦点距離における球面収差のフォ
ーカシングによる変動が著しくなる。
In order to reduce fluctuations in spherical aberration caused by moving the fourth group, it is sufficient if the fluctuations in the axial ray height due to the movement of the fourth group are small. In other words, it is sufficient if the first to third groups are almost afocal. Condition (1) above indicates this afocal degree. If this condition (1) is not met, the fluctuation of spherical aberration due to focusing becomes significant at the focal length near the telephoto end.

次に本発明のズームレンズは、構成枚数を11枚〜12
枚に留めたことを特徴の一つとしている。現在実用化さ
れているズームレンズのうち最も代表的なズームレンズ
では、コンペンセータート、エレクタ−と、リレーレン
ズ系の前群とはつまり絞り付近のレンズは合わせて4枚
〜6枚にて構成されているが本発明では2枚〜3枚にて
構成されている。この従来例で前記絞り付近のレンズを
6枚も使用しているのは、球面収差が補正不足になりや
すいのを良好に補正するためである。したがってこの部
分を一気に3枚〜4枚減すると当然球面収差が補正不足
になる。したがってこの部分に非球面を導入することが
望ましいことがわかる。そしてその非球面はそれが発散
面の場合は光軸上の球面よりも径の外側へ向かうにした
がって強くなる発散面また収斂面の場合は逆に光軸上の
球面よりも径の外側へ向かうにしたがって弱くなるよう
な面にすればよい。これによって負の大きな球面収差を
補正又は緩和することが出来る。
Next, the zoom lens of the present invention has a configuration of 11 to 12 lenses.
One of its characteristics is that it is kept in one piece. The most typical zoom lens currently in practical use consists of a compensator, an erector, and the front group of a relay lens system, that is, the lens near the aperture, which consists of a total of 4 to 6 elements. However, in the present invention, it is composed of two to three sheets. The reason why as many as six lenses are used near the aperture in this conventional example is to satisfactorily correct spherical aberration, which tends to be undercorrected. Therefore, if the number of lenses in this area is reduced by three or four at once, the spherical aberration will naturally become insufficiently corrected. Therefore, it can be seen that it is desirable to introduce an aspherical surface into this portion. If the aspherical surface is a diverging surface, it becomes stronger as it goes to the outside of the radius compared to a spherical surface on the optical axis.If it is a convergent surface, it becomes stronger toward the outside of the radius than the spherical surface on the optical axis. The surface should be made so that it becomes weaker. As a result, large negative spherical aberration can be corrected or alleviated.

前述のようにズームレンズ系全体としては負の球面収差
が発生しやすい順向がある。そしてレンズ系全体のうち
嘱3群の正レンズが特に大きな球面収差が発生する。こ
の球面収差を補正するためにこの正レンズには比較的高
い屈折率の材料が用いられる。したがって更にこのレン
ズに非球面を用いることはレンズ加工上からは好ましく
ない。
As mentioned above, the zoom lens system as a whole has a forward direction in which negative spherical aberration is likely to occur. Among the entire lens system, particularly large spherical aberration occurs in the positive lens of the third group. In order to correct this spherical aberration, a material with a relatively high refractive index is used for this positive lens. Therefore, it is not preferable to use an aspheric surface for this lens from the viewpoint of lens processing.

そのため本発明ではこの正レンズよりも入射側に屈折力
の弱いレンズ(正レンズでも負レンズでもよい)を付加
しこのレンズに非球面を設けるようにしである。このレ
ンズは高い屈折率を用いる必要は特にないので加工が容
易であり、これをプラスチックレンズにすれば加工が一
層容易である。
Therefore, in the present invention, a lens (either a positive lens or a negative lens) having a weaker refractive power is added on the incident side than the positive lens, and this lens is provided with an aspherical surface. This lens does not particularly need to use a high refractive index, so it is easy to process, and if it is made of a plastic lens, it will be even easier to process.

又この弱い屈折力のレンズを負にすればペッツバール和
を補正する上でも有利である。
Furthermore, if the lens having a weak refractive power is made negative, it is advantageous in correcting the Petzval sum.

本発明のズームレンズは以上のように構成することによ
って従来は少なくとも13枚は必要としていたものを1
1枚〜12枚に減じしかも小型、軽量化、高性能化を大
口径比、高変倍比を保ちつつ実現し得たものである。更
にリアーフォーカスを採用することによってフォーカシ
ングの軽量化、前群の偏芯量による影響の軽減、クロー
ズアップフォー刀シングの容易化も実現した。
By configuring the zoom lens of the present invention as described above, the number of lenses that conventionally required at least 13 can be reduced to 1.
It is possible to reduce the number of lenses to 1 to 12, and achieve smaller size, lighter weight, and higher performance while maintaining a large aperture ratio and a high zoom ratio. Furthermore, by adopting rear focusing, we have achieved lighter focusing, reduced effects of eccentricity of the front group, and easier close-up focusing.

本発明のズームレンズは、次の条件(2)乃至条件(8
)を満足することによって一層高性能なズームレンズを
得ることが出来る。
The zoom lens of the present invention satisfies the following conditions (2) to (8).
), a zoom lens with even higher performance can be obtained.

(2)   1.2 < fy/rrvF< 0.11
(110,5< fVrrvR< 0.5(4)  2
.O< l f 7 l/J〒「(s)   0.1 
< ci3./慴< 0.55(6)  0.53 <
 (e2wezT)/e2w< 0.77(γ)1<f
l鉋τ石<1.3 L81   nB > 1.65 ただしfyは広角端における全系の合成焦点距離、fT
は望遠端における全系の合成焦点距離、flyは第4群
の合成焦点距離、f7は第3群の弱い屈折力の非球面レ
ンズの焦点距離、d31は第3群中の非球面レンズと正
レンズとの空気間隔、82wは第2群と第3群の広角端
での主点間隔、e2Tは第2群と第3群の望遠端での主
点間隔、rTVFは第4群の最も物体側の面の曲率半径
、rlVRは第4群の最も像側の面の曲率半径、nBは
第3#のパワーの強い正レンズの屈折率である。
(2) 1.2 < fy/rrvF < 0.11
(110,5<fVrrvR<0.5(4) 2
.. O< l f 7 l/J〒"(s) 0.1
<ci3. /Kei< 0.55(6) 0.53<
(e2wezT)/e2w<0.77(γ)1<f
L81 nB > 1.65 where fy is the composite focal length of the entire system at the wide-angle end, fT
is the combined focal length of the entire system at the telephoto end, fly is the combined focal length of the 4th group, f7 is the focal length of the aspherical lens with weak refractive power in the 3rd group, and d31 is the focal length of the aspherical lens in the 3rd group. The air distance between the lens and the lens, 82w is the distance between the principal points of the second and third groups at the wide-angle end, e2T is the distance between the principal points of the second and third groups at the telephoto end, and rTVF is the distance between the principal points of the fourth group at the wide-angle end. The radius of curvature of the side surface, rlVR, is the radius of curvature of the surface closest to the image side of the fourth group, and nB is the refractive index of the third # strong positive lens.

以上の各条件について説明する。Each of the above conditions will be explained.

条件(2)、(a)は夫々第4群の最も物体側の面と最
も像側の面の曲率半径を規定したものである。これら条
件は、第4群の近距離合焦のための移動に伴う軸外上側
光線の縦収差が正側へ変動するために発生するコマ収差
と若干の非点収差を極力小さくするために設けた条件で
ある。これら条件において上限を越えると上記収差が近
距離物点合焦時に著しく発生し好ましくない。下限を越
えると全状態において球面収差やコマ収差が補正不足に
なりやすい。
Conditions (2) and (a) define the radius of curvature of the surface closest to the object side and the surface closest to the image side of the fourth group, respectively. These conditions were established in order to minimize coma aberration and slight astigmatism that occur because the longitudinal aberration of the off-axis upper ray changes toward the positive side as the fourth group moves for close-range focusing. These are the conditions. If the upper limit is exceeded under these conditions, the above-mentioned aberrations will occur significantly when focusing on a short-distance object, which is undesirable. When the lower limit is exceeded, spherical aberration and coma aberration tend to be undercorrected in all conditions.

条件(4)は非球面レンズのパワーを規定したものであ
る。この非球面レンズに加工上最も有利なようにプラス
チックを用いることが考えられるが、プラスチックを用
いた場合、温度変化によるピント移動の影響を少なくし
なければならない。そのためにはレンズのパワーを条件
に示す限度内に弱めなければならない。したがって条件
(4)の範囲をこえると温度変化によるピント移動が大
きくなり好ましくない。
Condition (4) defines the power of the aspherical lens. It is conceivable to use plastic for this aspherical lens because it is most advantageous in terms of processing, but when plastic is used, it is necessary to reduce the influence of focus shift due to temperature changes. For this purpose, the power of the lens must be weakened within the limits shown in the conditions. Therefore, if the range of condition (4) is exceeded, the focus shift due to temperature changes will become large, which is not preferable.

条件(5)は非球面が最も効果をあげるための非球面レ
ンズの位置を規定したものである。本発明のレンズ系で
負の球面収差が最も発生するのは第3群中のパワーの強
い正レンズである。この正レンズで発生する負の球面収
差を補正するだめの正の球面収差を発生させる上で効果
的なのは前記の非球面レンズをこの正レンズから少し物
体側へ距離を隔てて配置するのがよい。したがって条件
(5)の下限を越えると非球面による球面収差補正の効
果が少なくなる。又上限を越えるとバリエータ−の可動
範囲が狭くなり、ズーミングによる収差変動が大きくな
りやすい。
Condition (5) defines the position of the aspherical lens so that the aspherical surface is most effective. In the lens system of the present invention, negative spherical aberration occurs most in the positive lens with strong power in the third group. In order to generate positive spherical aberration to correct the negative spherical aberration generated by this positive lens, it is effective to place the aspherical lens mentioned above at a distance slightly toward the object side from this positive lens. . Therefore, when the lower limit of condition (5) is exceeded, the effect of correcting spherical aberration by the aspherical surface decreases. If the upper limit is exceeded, the movable range of the variator becomes narrower, and aberration fluctuations due to zooming tend to increase.

条件(6)は第2群バリエータ−の可動範囲を規定し、
たものである。バリエータ−の可動範囲を犬きくとる程
ズーミングによる収差変動は少なくなシ好ましいがバリ
エータ−のパワーが弱くなる程又、<IJエータ−が第
3群に近づく程全系のペッツバール和か正の大きな値を
とるようにな9好ましくない。それはバリエータ−の負
のパワーが弱くなることの他に第3群、第4群の正のパ
ワーが強くなるためである。したがって条件(6)の上
限を越えるとペッツバール和が正の大きな値になりやす
く、下限を越えるとバリエータ−のパワーが強くなりズ
ーミングによる収差変動が大きくなりやすい。
Condition (6) defines the movable range of the second group variator,
It is something that It is preferable that the wider the variator's movable range, the less aberration fluctuations due to zooming.However, the weaker the variator's power is, and the closer the IJ eater is to the third group, the larger the positive Petzval sum of the entire system. It takes a value of 9, which is unfavorable. This is because, in addition to weakening the negative power of the variator, the positive powers of the third and fourth groups become stronger. Therefore, when the upper limit of condition (6) is exceeded, the Petzval sum tends to take a large positive value, and when the lower limit is exceeded, the power of the variator becomes strong and aberration fluctuations due to zooming tend to become large.

条件(7)は第4群の合成焦点距離を規定したものであ
る。この条件の上限を越えると第4群のレンズ径が増大
しフォーカシング移動量も増大するので好ましくない。
Condition (7) defines the composite focal length of the fourth group. If the upper limit of this condition is exceeded, the lens diameter of the fourth group will increase and the amount of focusing movement will also increase, which is not preferable.

又下限を越えると全系のペッツバール和が正方向に増大
し好ましくない。
Moreover, if the lower limit is exceeded, the Petzval sum of the entire system increases in the positive direction, which is not preferable.

条件(8)は第3群の強いパワーの正レンズの屈折率を
規定したものである。条件(8)の下限を越えると全系
のペッツバール和が正方向に増大し又全系の球面収差が
負の方向に増大しやすくなる。
Condition (8) defines the refractive index of the positive lens with strong power in the third group. When the lower limit of condition (8) is exceeded, the Petzval sum of the entire system tends to increase in the positive direction, and the spherical aberration of the entire system tends to increase in the negative direction.

次に本発明のズームレンズで用いられる非球面について
詳細に説明する。
Next, the aspherical surface used in the zoom lens of the present invention will be explained in detail.

本発明では非球面を第3群の最も物体側のレンズの像側
の面にもうけ、そのレンズ形状を物体側に凸面を向けた
メニスカスレンズにしである。又その非球面は、光軸に
おける曲率半径の球面に対して像側へ偶奇しその偶奇量
はレンズの径方向において外側に行くにしたがって単調
に増加するようにし、次の条件(9)を満足することが
望ましい。
In the present invention, an aspherical surface is provided on the image side surface of the lens closest to the object in the third group, and the lens shape is a meniscus lens with a convex surface facing the object side. The aspheric surface has a radius of curvature on the optical axis that is even-odd toward the image side with respect to the spherical surface, and the amount of even-oddity increases monotonically toward the outside in the radial direction of the lens, satisfying the following condition (9). It is desirable to do so.

(9)y = 0.21fF31において0、2X10
−”< Δx / JT’;;”了T < 0.18X
10−1ここで非球面はrを光軸上における近軸球面の
曲率半径とした時、下記の式で表わされΔXはEy’ 
+ Fy6+ Gy’ + Hy’°の値である。また
fF 3はする偶奇量を規定したものである。前述のよ
うに球面系のみの場合、負の大きな球面収差が発生する
のをこの非球面によって補正又は緩和している。
(9) y = 0.21f at F31, 2X10
−”< Δx / JT';;”T < 0.18X
10-1 Here, the aspheric surface is expressed by the following formula, where r is the radius of curvature of the paraxial sphere on the optical axis, and ΔX is Ey'
+Fy6+Gy'+Hy'°. Further, fF3 defines the even-odd amount. As mentioned above, in the case of only a spherical system, the occurrence of large negative spherical aberration is corrected or alleviated by the aspheric surface.

この条件の下限を越えると球面収差が補正不足になりや
すく、また上限を越えると逆に補正過剰になシやすく更
に非球面レンズの製造上の偏芯が性能劣下をきたしやす
くなる。
When the lower limit of this condition is exceeded, spherical aberration is likely to be under-corrected, and when the upper limit is exceeded, conversely, over-correction is likely to occur, and furthermore, eccentricity during manufacturing of the aspherical lens is likely to cause performance deterioration.

〔実施例〕〔Example〕

次に本発明ズームレンズの各実施例を示す。 Next, examples of the zoom lens of the present invention will be shown.

実施例1 f  =9〜54、F/1.2〜F/1.6 、ω=2
4.0%4.2゜r、 =138.5871 d、 =1.2000  nl =1.78472  
v、 =25.68r2 ==47.5057 d2=0.3500 r3  =53.6234 d3=5.400On、2 =1.60311   シ
2=60.70r4 =−91,5618 d4 =0.3000 r5 =27.7173 d5 =4,4000   n3 ==L 60311
   v3 =60.70r6 =67.4923 d6 =D1 r7  =42.3316 d7 =1.0000   n4 (83400z  
=37.16r8 =12.5771 d8 =4.5000 rg  ”−16,4261 dg =1,0000  15 =1.69350  
115 =53.23rlo  =23.1199 dlg =2,7000   ng =l、84666
   シロ=23,78r1、=−66,8174 dll”D2 r12 =102,3270 d、□=1,5000   n7 =1.49216 
  v7=57.5Or+3 =39.0772 (非
球面)d、 3 =5.0000 r14=co(絞り) d、4 =3.0000 r、5 =26.6547 dl5 =4.7000   n8=1.69680 
  νB =55,52r 16 =−73,1675 d16 =0.8000 r1□ =1056.0485 d17=1.0000   ng =1.80518 
 1’g =25.43r+8  =68.4734 dl8”D3 r、、=−757,0535 dl、=3.200OnIO=1.77250   ν
、。=49.66r2o =−31,4990 d2o=0.1500 r2□ =22.0561 d21  =6.8000   nll  =1.56
873   ν1、=63.16r2□ =−16,2
445 d22=1.0000n02=1.80518ν1゜=
25.43r23=−216,4248 d23 ” D4 r24 = ω d24=5.5500   n13=1.51633 
  シュ3=64.15r25  ″ 0 fD1D2D3D4 9   1.000  25.696  8,827 
 5.85031.5  15.415  11.28
1  7,7436.93554   25.696 
 1,000 11.677  3.000r13の非
球面係数 B = O、Fli =0,43303X10−’、F
 =0.30701X10−7() =−0,3308
6Xl0−’ 、 H=0.18449 xlo−”f
T/fAT=0.1872、  fPi”’rfVF 
=  0.0324fly/r[Vr=−0,1135
、l fy 1hLF旺=5.8732d3□%! =
0.3,629  、 (e2y−e2T)/e2w=
o、5934fIv/V/fw−fT=1.1143 
 、 ng =1.69680y =8.4858  
、1Δx l/v6丁庁=0.0119実踊例2 f =9〜54、 Vl、2〜11’/1.6 、ω=
24.00〜4.2゜r、=140.0595 d、=1,2000   nl  =L 78472 
  v、=25,68r、3  =54.9266 d3  =5.9500   n2 =1.60311
  1’z =60.70r4 =−84,7893 d4 =0.2500 r5  =26.9309 d5 =4,3000   n3 =1.60311 
  v3 =60.70r6 =61.4229 d6= D。
Example 1 f = 9 to 54, F/1.2 to F/1.6, ω = 2
4.0%4.2゜r, =138.5871 d, =1.2000 nl =1.78472
v, =25.68r2 ==47.5057 d2=0.3500 r3 =53.6234 d3=5.400On,2 =1.60311 C2=60.70r4 =-91,5618 d4 =0.3000 r5 = 27.7173 d5 =4,4000 n3 ==L 60311
v3 =60.70r6 =67.4923 d6 =D1 r7 =42.3316 d7 =1.0000 n4 (83400z
=37.16r8 =12.5771 d8 =4.5000 rg ”-16,4261 dg =1,0000 15 =1.69350
115 = 53.23 rlo = 23.1199 dlg = 2,7000 ng = l, 84666
Shiro = 23,78r1, = -66,8174 dll"D2 r12 = 102,3270 d, □ = 1,5000 n7 = 1.49216
v7=57.5Or+3 =39.0772 (Aspherical surface) d, 3 = 5.0000 r14=co (aperture) d, 4 = 3.0000 r, 5 = 26.6547 dl5 = 4.7000 n8 = 1.69680
νB =55,52r 16 =-73,1675 d16 =0.8000 r1□ =1056.0485 d17=1.0000 ng =1.80518
1'g = 25.43r + 8 = 68.4734 dl8"D3 r,, = -757,0535 dl, = 3.200OnIO = 1.77250 ν
,. =49.66r2o =-31,4990 d2o=0.1500 r2□ =22.0561 d21 =6.8000 nll =1.56
873 ν1, =63.16r2□ =-16,2
445 d22=1.0000n02=1.80518ν1゜=
25.43r23=-216,4248 d23'' D4 r24=ω d24=5.5500 n13=1.51633
Sh3=64.15r25″ 0 fD1D2D3D4 9 1.000 25.696 8,827
5.85031.5 15.415 11.28
1 7,7436.93554 25.696
1,000 11.677 3.000r13 aspherical coefficient B = O, Fli =0,43303X10-', F
=0.30701X10-7() =-0,3308
6Xl0-', H=0.18449 xlo-"f
T/fAT=0.1872, fPi"'rfVF
= 0.0324fly/r[Vr=-0,1135
, l fy 1hLF = 5.8732d3□%! =
0.3,629, (e2y-e2T)/e2w=
o, 5934fIv/V/fw-fT=1.1143
, ng = 1.69680y = 8.4858
, 1Δx l/v6 blocks = 0.0119 Actual dance example 2 f = 9~54, Vl, 2~11'/1.6, ω=
24.00~4.2°r, = 140.0595 d, = 1,2000 nl = L 78472
v, = 25,68r, 3 = 54.9266 d3 = 5.9500 n2 = 1.60311
1'z =60.70r4 =-84,7893 d4 =0.2500 r5 =26.9309 d5 =4,3000 n3 =1.60311
v3 = 60.70r6 = 61.4229 d6 = D.

r7  =42.5209 d、=1.0000   n4 =1,83400  
 ν4 =37.16r8−12.’3908 d8 =4.3000 rg  ニー15.6689 d9 =1.0000   n5=1.69350  
 ν5 =53.23r、、)=22.2536 d1o=2,7000   n6=1,84666  
 シロ=23.78r、 、=−66,4278 dll  ” D2 r1□=102.8525 d1□=1,300On7  =1,49216   
V7 =57.50r13 =42.2736 (非球
面)d、 3=4.6000 r14=oO(絞り) d14 =3.0000 r、5 =26.9382 d、5 =5.3000   n8 =1,69680
   vB  =55,52r16  =−53,85
68 dos  =0.5000 r1□ =−524,8070 d、、=1.0000   ng  =1.80518
   v9 =25.43r1g =77.2138 dl8” D3 r、g =−444,9998 dl、=2,8000   nto=1.77250 
  ν、。=49.66rzo = 33.7334 d2o =0.1500 r2、=21.8592 d21  =6.9000   n、□ =1,568
73   v1□ =63,16r2゜=−16,06
65 d22=1.0OOCI  n12=1,80518 
  ν12=25.43r23 ”−163,1585 d23 ”’ D4 r24 :(1) d24 =5.5500   n13 =1.5163
3   ’13  =54.15′ r25 :■ f     Dl      D2      D3 
    D49     1.600  25.324
   9,310  5,32131.5  15.7
95  11.129   7,982  6,649
54    25.924   1,000  11.
631  3,000r+3の非球面係数 B = O、” =0.48999 XIO”’、F 
=−0,20431X]、O−’G =0.39446
X10−8、H=−〇、91401 xlo−11fT
/fAT−0,2139、fIV/’rrvF =−0
,0570flV/’rrt/R−0,1556、l 
f 71Z47コ〒=6.6628d31乙f、−ff
i =0.3448、(e2we2T)/e2+、y=
0.6015f+V斤i石=1.1517、n8=1.
69680y=7.2680  、  ΔV劉]〒=0
.0061実施%J 3 f=9−54、F/1.2〜F/1.6、ω=24.0
0〜4.2゜rl =124.3606 dl−1,2000n、 =1.78472  v1=
25.68r2=45.1181 d2=0.6000 r3 =s4.0934 d3=6.2000  n2 =1.60311  シ
2=60.70r4=−76、1604 d4=0.2500 r5 =25.54j7 d5 =4.0500  n3=1.60311  シ
3=60.70r6 =49.3267 d6= Dl r7 =41.7487 d、 =1.0000  n4=1.83400  V
4=37.16rg =12.5990 d8=4.3000 r9 =−15,2875 dg =1,0000   n5  =1.69350
  1’5 =53.23r、0 =22.1064 d、、)=2,7000   n6 =1,84666
   シロ=23.78r、1  =−77,2551 dll =D2 rl2 =49.6547 d、□ =1.3000   n7  =1.4921
6  1’7 ==57.50r13 =33.397
4 (弁球1Iii)d13=4.6000 r工、 == co (絞り) d14=3.0000 r15=25.1392 d、5 =5,1000   nB=1.69680 
  vB =55.52rts  =−87,3442 d16 =0.5000 r1□ 工49719.5913 at?  =1.oooo    n9  =1.80
518   79  =25.43r+s =78.8
472 (its  =])3 r、g  =31961.3448 d、g =3,100Onio =1.77250  
 νto =49.66r2o=−32,8055 d2゜=0.1500 r2、=20.8988 d2、=6,9000   nil =1,56873
   ν1 、=63.16r2□=−15,7316 d22 =1.0000   n、。=1.80518
  1/12 =25,43rz3  =−672,5
171 d23 =D4 r24  °c。
r7 =42.5209 d, =1.0000 n4 =1,83400
ν4 =37.16r8-12. '3908 d8 =4.3000 rg knee 15.6689 d9 =1.0000 n5=1.69350
ν5 = 53.23r, ) = 22.2536 d1o = 2,7000 n6 = 1,84666
Shiro=23.78r, ,=-66,4278 dll” D2 r1□=102.8525 d1□=1,300On7=1,49216
V7 = 57.50r13 = 42.2736 (aspherical surface) d, 3 = 4.6000 r14 = oO (aperture) d14 = 3.0000 r, 5 = 26.9382 d, 5 = 5.3000 n8 = 1,69680
vB =55,52r16 =-53,85
68 dos =0.5000 r1□ =-524,8070 d,, =1.0000 ng =1.80518
v9 = 25.43r1g = 77.2138 dl8” D3 r,g = -444,9998 dl, = 2,8000 nto = 1.77250
ν,. =49.66rzo = 33.7334 d2o =0.1500 r2, =21.8592 d21 =6.9000 n, □ =1,568
73 v1□ =63,16r2゜=-16,06
65 d22=1.0OOCI n12=1,80518
ν12=25.43r23 ”-163,1585 d23 ”' D4 r24 :(1) d24 =5.5500 n13 =1.5163
3 '13 =54.15' r25 : ■ f Dl D2 D3
D49 1.600 25.324
9,310 5,32131.5 15.7
95 11.129 7,982 6,649
54 25.924 1,000 11.
631 3,000r+3 aspheric coefficient B = O," = 0.48999 XIO"', F
=-0,20431X], O-'G =0.39446
X10-8, H=-〇, 91401 xlo-11fT
/fAT-0,2139, fIV/'rrvF =-0
,0570flV/'rrt/R-0,1556,l
f 71Z47ko = 6.6628d31 f, -ff
i = 0.3448, (e2we2T)/e2+, y=
0.6015f+V stone=1.1517, n8=1.
69680y=7.2680, ΔV Liu]〒=0
.. 0061 Implementation% J 3 f=9-54, F/1.2 to F/1.6, ω=24.0
0~4.2゜rl =124.3606 dl-1,2000n, =1.78472 v1=
25.68r2 = 45.1181 d2 = 0.6000 r3 = s4.0934 d3 = 6.2000 n2 = 1.60311 si2 = 60.70r4 = -76, 1604 d4 = 0.2500 r5 = 25.54j7 d5 = 4.0500 n3=1.60311 C3=60.70r6 =49.3267 d6= Dl r7 =41.7487 d, =1.0000 n4=1.83400 V
4=37.16rg =12.5990 d8=4.3000 r9 =-15,2875 dg =1,0000 n5 =1.69350
1'5 = 53.23r, 0 = 22.1064 d, ) = 2,7000 n6 = 1,84666
White = 23.78r, 1 = -77,2551 dll = D2 rl2 = 49.6547 d, □ = 1.3000 n7 = 1.4921
6 1'7 ==57.50r13 =33.397
4 (Valve ball 1Iii) d13 = 4.6000 r work, == co (aperture) d14 = 3.0000 r15 = 25.1392 d, 5 = 5,1000 nB = 1.69680
vB =55.52rts =-87,3442 d16 =0.5000 r1□ Eng49719.5913 at? =1. oooo n9 = 1.80
518 79 =25.43r+s =78.8
472 (its =]) 3 r, g = 31961.3448 d, g = 3,100 Onio = 1.77250
νto =49.66r2o=-32,8055 d2゜=0.1500 r2, =20.8988 d2,=6,9000 nil =1,56873
ν1, =63.16r2□=-15,7316 d22 =1.0000 n,. =1.80518
1/12 =25,43rz3 =-672,5
171 d23 = D4 r24 °c.

d24 =5,5500   n13 =1.5163
3  1’13  =64.15r25 :■ f     Dl     D2     D3   
 D49    1.600   25,220   
9,926  4.76731.5  15.699 
 11,122   8.367  6,32654 
   25.820   1.000  @ ll、6
93  3,000r13の非球面係数 B =01F =0.41143 XiO”、F’ =
−0,15990Xl0−’G =0.46014X 
10−8. H=−0,19482Xl0−10fT/
f4T=0.1861  、frV/’r[VF =0
.0008fIV/rrvR=−0,0372、l f
71/、/fw−fT=9.6570d3を乙5票扉=
0.3448、(e2W−e2T)/’e2W =0.
6214fフf7テー=1.1352  、 n8=1
.69680y =7.0028  、 Δ6r7  
=0.0046実施例4 f =9〜54、F/1.2〜F’/1.6、ω=24
.00〜4.2゜r 、 =117.4644 dl =1.2000  nl ’=1.78472 
 v1==25.68r2 =42.7622 d2=0.8000 r3 =52.9839 d3 =6.5000  n2 =1.60311  
v2=60.70r4 =−68,8451 d4=0.2500 r5 =23.7117 d5  =4.0500   n3  =1.6031
1   ν2  =60.70r5 =43.6883 d6= D。
d24 =5,5500 n13 =1.5163
3 1'13 =64.15r25 :■ f Dl D2 D3
D49 1.600 25,220
9,926 4.76731.5 15.699
11,122 8.367 6,32654
25.820 1.000 @ ll, 6
93 3,000r13 aspheric coefficient B = 01F = 0.41143 XiO", F' =
-0,15990Xl0-'G =0.46014X
10-8. H=-0, 19482Xl0-10fT/
f4T=0.1861, frV/'r[VF=0
.. 0008fIV/rrvR=-0,0372, l f
71/, /fw-fT=9.6570d3 Otsu 5 vote door=
0.3448, (e2W-e2T)/'e2W =0.
6214ff7te=1.1352, n8=1
.. 69680y =7.0028, Δ6r7
=0.0046 Example 4 f =9~54, F/1.2~F'/1.6, ω=24
.. 00~4.2゜r, = 117.4644 dl = 1.2000 nl' = 1.78472
v1==25.68r2 =42.7622 d2=0.8000 r3 =52.9839 d3 =6.5000 n2 =1.60311
v2=60.70r4 =-68,8451 d4=0.2500 r5 =23.7117 d5 =4.0500 n3 =1.6031
1 ν2 =60.70r5 =43.6883 d6=D.

r7 =35.2282 d7 =1,0000   n= =1.83400 
  v4=37.16rB  =12.2472 d8 =4.5000 rg  =−14,4787 dg =1.0000   n5  =1.69350
  1’5 =53.23r1o =22.4133 d、。 =2,7000   n6 =1.84666
   シロ =23.78r1、=−95,2069 dll  ”’ D2 r1□=28.5635 d12 =1.300On7  =1.49216  
 F7 =57.50r、3=25.4338 (非球
面) d、3 =4.6000 r14=oO(絞り) d14 =3.0000 r、5 =23.5302 d、5=4.4000   n4=1.69680  
1’g=55.52rts  =−270,1245 d16 =0.6000 F1フ −2+3.4753 d、7−1,0000   n9 =1,80518 
  F9 =25,43r、8 =71.1123 d18  :D3 rl、=306.2786 d、9 =3,1000   nl。=1.77250
   シ1o=49.66r2o =−31,6738 d2o =0.1500 F2、=16.8414 C12t  =6.9000   n、、=1.568
73   v、□ =63,16r2□ =−15,4
878 d2゜=1,0000   nl。=1.80518 
  v、。=25.43r23 =69.3524 d23 = D4 F24 = ■ d24 =5.5500   n13 =1.5163
3   F13 =64.15r25 =ω f     DI      D2      D3 
    D49     1.600  23.710
   9,676  4,99931.5  14,7
54  10.556   8,119  6,556
54    24.310   1,000  11.
675  3.000r13の非球面係数 B =O、F2 =0.30709 x 10−’、F
 =0.77384 xlO−7G =0.22959
 X 10−8、H=−0,12307Xl0−1゜f
T/fAT−0,1994、frv//rrVF=0.
0795fff/rrVR=0.3510  、1f7
1h倶Fq=24.7922d31乙壬1■=0.34
48、(e2w−e2T)/e2w=0.6305f■
早=1.1042  、 ng =1.69680y=
7.3394  、 ΔVnE「=o、ous2実施列
5 f−9〜54、F/1.2〜F/1.6、ω=24.O
o〜4.20r、 =141.2006 d、=L、2000    nl  =1,78472
    v、=25,68r2 ==47.2013 d2=0.4500 F3”53.4868 d3 =5.8000  n2 =1.60311  
L’2 =60.70r4 =−95,5930 d4=0,2500 F5 =29.1819 d5 =4.30(70n3 =1.60311  ν
3 =60.70rs  =89.1867 d6 =])1 F7  =35.5751 d7 =1,0000   n4 =1.83400 
 2 =37.16r3 =12.4183 d8 =4.6000 rg =−15,9656 dg =1.0000   n5 =1.69350 
  V5 =53.23r、。 =19.3103 d、(、=2,7000   n5 =1.84666
   v6=23.78r、、=−114,8216 d1□ =D2 rr2 =−44,0758 d12 =1,300On7 =1.69895   
F7 、=30.12r13 = 714.1310 
(非球面)d13 =4.0000 r14=oo(絞り) d14 =2.5000 F15 =27.7574 d15 ”5,0000   nB =1.69680
   ’B =55.52r16 =−107,921
3 dl6 :D3 r、、=−432,6513 d□、=3.2000   ng =1.77250 
  V、=49.66r18−−34.0843 d18 =0.1500 r19 =19.8572 dlg =7.5000   nio =1.5687
3   ν、。=63.16r2.)=−16,115
3 d2o=1.0000   nl、=1,84666 
  ν11 =23.78r2、=−289,8674 d21  =D4 r22  ° c。
r7 =35.2282 d7 =1,0000 n= =1.83400
v4 = 37.16rB = 12.2472 d8 = 4.5000 rg = -14,4787 dg = 1.0000 n5 = 1.69350
1'5 = 53.23 r1o = 22.4133 d,. =2,7000 n6 =1.84666
Shiro =23.78r1, =-95,2069 dll ”' D2 r1□=28.5635 d12 =1.300On7 =1.49216
F7 = 57.50r, 3 = 25.4338 (aspherical surface) d, 3 = 4.6000 r14 = oO (aperture) d14 = 3.0000 r, 5 = 23.5302 d, 5 = 4.4000 n4 = 1 .69680
1'g=55.52rts =-270,1245 d16 =0.6000 F1 fu -2+3.4753 d, 7-1,0000 n9 =1,80518
F9 = 25,43r, 8 = 71.1123 d18 :D3 rl, = 306.2786 d, 9 = 3,1000 nl. =1.77250
C1o=49.66r2o=-31,6738 d2o=0.1500 F2,=16.8414 C12t=6.9000 n,,=1.568
73 v,□ =63,16r2□ =-15,4
878 d2°=1,0000 nl. =1.80518
v. =25.43r23 =69.3524 d23 = D4 F24 = ■ d24 =5.5500 n13 =1.5163
3 F13 =64.15r25 =ω f DI D2 D3
D49 1.600 23.710
9,676 4,99931.5 14,7
54 10.556 8,119 6,556
54 24.310 1,000 11.
675 3.000r13 aspheric coefficient B = O, F2 = 0.30709 x 10-', F
=0.77384 xlO-7G =0.22959
X 10-8, H=-0, 12307Xl0-1゜f
T/fAT-0, 1994, frv//rrVF=0.
0795fff/rrVR=0.3510, 1f7
1hFq=24.7922d31Otsumi1■=0.34
48, (e2w-e2T)/e2w=0.6305f■
Early=1.1042, ng=1.69680y=
7.3394, ΔVnE'=o, ous2 implementation row 5 f-9~54, F/1.2~F/1.6, ω=24.O
o~4.20r, =141.2006 d, =L, 2000 nl =1,78472
v, =25,68r2 ==47.2013 d2=0.4500 F3”53.4868 d3 =5.8000 n2 =1.60311
L'2 = 60.70r4 = -95,5930 d4 = 0,2500 F5 = 29.1819 d5 = 4.30 (70n3 = 1.60311 ν
3 =60.70rs =89.1867 d6 =])1 F7 =35.5751 d7 =1,0000 n4 =1.83400
2 = 37.16r3 = 12.4183 d8 = 4.6000 rg = -15,9656 dg = 1.0000 n5 = 1.69350
V5 = 53.23r,. =19.3103 d, (, =2,7000 n5 =1.84666
v6=23.78r,,=-114,8216 d1□=D2 rr2=-44,0758 d12=1,300On7=1.69895
F7, = 30.12r13 = 714.1310
(Aspherical surface) d13 = 4.0000 r14 = oo (aperture) d14 = 2.5000 F15 = 27.7574 d15 ''5,0000 nB = 1.69680
'B = 55.52r16 = -107,921
3 dl6 :D3 r,,=-432,6513 d□,=3.2000 ng=1.77250
V, =49.66r18--34.0843 d18 =0.1500 r19 =19.8572 dlg =7.5000 nio =1.5687
3 ν,. =63.16r2. )=-16,115
3 d2o=1.0000 nl,=1,84666
ν11 =23.78r2, =-289,8674 d21 =D4 r22 °c.

dz。=5,5500   n12 =1.51633
   ’12 =64,15r23 : l f      Dl     D2     D3  
   D49     1.600  24,739 
 11.’444  5.71831.5  15.3
74  10.965  10,248  6.915
54    25.339   1,000  14.
162  3.00Or+3の非球面係数 B=O1E =0.35018 Xl0−’、F =−
0,19573Xl0−7G=O,’10783X10
   、  H=0.15879X10−10fT/f
AT=0.1967  、  fIV/rIVF =−
0,0599frV/’rlVR= 0.0894  
、lhl//jfw・fT=3.0513d31/v”
fy]7 =0.2949、(e2we2T)/e2w
=0.5656f「q戸]〒=1.1750  、 n
8=1.69680y=7.5918  、 Δx//
′fw−fT=0.006まただしrl、r2.  ・
・・はレンズ各面の曲率半径、dl、 d2.  ・・
・は各レンズの肉厚およびレンズ間隔、nl 、 n2
 、  ・・・は各レンズの屈折率、し1.ν2.・・
・は各レンズのアツベ数である。
dz. =5,5500 n12 =1.51633
'12 =64,15r23: l f Dl D2 D3
D49 1.600 24,739
11. '444 5.71831.5 15.3
74 10.965 10,248 6.915
54 25.339 1,000 14.
162 3.00Or+3 aspheric coefficient B = O1E = 0.35018 Xl0-', F =-
0,19573Xl0-7G=O,'10783X10
, H=0.15879X10-10fT/f
AT=0.1967, fIV/rIVF=-
0,0599frV/'rlVR= 0.0894
, lhl//jfw・fT=3.0513d31/v”
fy]7 = 0.2949, (e2we2T)/e2w
= 0.5656f "q doors" = 1.1750, n
8=1.69680y=7.5918, Δx//
'fw-fT=0.006 but rl, r2.・
... is the radius of curvature of each lens surface, dl, d2.・・・
・ is the thickness of each lens and the distance between lenses, nl, n2
, ... is the refractive index of each lens, and 1. ν2.・・・
・ is the Atsube number of each lens.

上記実施例のうち実施EflJ 1乃至実施例4は第1
図に示すレンズ構成で第3群レンズが弱い屈折力の非球
面レンズと正レンズと負レンズとより構成されている。
Among the above examples, Implementation EflJ 1 to Example 4 are the first
In the lens configuration shown in the figure, the third lens group is composed of an aspherical lens with weak refractive power, a positive lens, and a negative lens.

尚図中Fはフィルターである。In addition, F in the figure is a filter.

これらの実施例のうち実施例1のf=9.31.5゜5
4および望遠端での近距離合焦時の収差状況は夫々第3
図、第4図、第5図、第6図に示す通りである。同様に
実施例2の各状態における収差状況は夫々第7図、第8
図、第9図、第10図に、実施例3の各状態における収
差状況は夫々第11図、第12図、第13図、第14図
に、更に実施例4の各状態における収差状況は第15図
、第16図、第17図、第18図に示す通りである。
Among these examples, f=9.31.5°5 in Example 1
4 and the aberration situation during close-range focusing at the telephoto end are respectively 3rd.
As shown in FIGS. 4, 5, and 6. Similarly, the aberration conditions in each state of Example 2 are shown in FIGS. 7 and 8, respectively.
9 and 10, the aberration situation in each state of Example 3 is shown in FIGS. 11, 12, 13, and 14, respectively, and the aberration situation in each state of Example 4 is shown in FIG. As shown in FIGS. 15, 16, 17, and 18.

実施例5は第3群が弱い屈折力の非球面レンズと正レン
ズとより構成されている。<第2 図参、!! )この
実施例5のf = 9.31,5.54および望遠端で
の近距離合焦時の収差状況は夫々第19図、第加図、第
21図、第ρ図に示す通りである。
In Example 5, the third group is composed of an aspherical lens with weak refractive power and a positive lens. <See Figure 2! ! ) The aberration conditions of Example 5 at f = 9.31, 5.54 and when focusing at close range at the telephoto end are as shown in Fig. 19, Fig. 1, Fig. 21, and Fig. ρ, respectively. .

〔発明の効果〕〔Effect of the invention〕

本発明のズームレンズは、非球面を用いると共ニ従来の
ズームレンズのコンペンセーターtなくし第4群のリレ
ーレンズ系にその役割をもたせることによって今まで少
なくとも13枚のレンズを必要としていたものを11枚
〜12枚とし更に小型化。
The zoom lens of the present invention uses an aspherical surface and eliminates the compensator t of conventional zoom lenses by giving that role to the relay lens system of the fourth group, thereby eliminating the need for at least 13 lenses. Further miniaturization with 11 to 12 sheets.

軽量化、高性能化を大口径比、高変倍比を保ちながら実
現し得たものである。また第4群によるリアーフォーカ
スも可能でこれによつ・てフォーカシングの軽量化、前
玉の偏芯量の軽減をも可能とし又容易にクローズアップ
フォーカシングが可能であるという効果を有するもので
ある。
Light weight and high performance were achieved while maintaining a large aperture ratio and high zoom ratio. Rear focusing is also possible with the fourth group, which has the effect of reducing the weight of focusing, reducing the amount of eccentricity of the front lens, and easily enabling close-up focusing. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1乃至実施例4の断面図、第2
図は本発明の実施例5の断面図、第3図乃至第6図は本
発明の実施列1の収差曲線図、第7図乃至第10図は本
発明の実施例2の収差曲線図、第11図乃至第14図は
本発明の実施例3の収差曲線図、第15図乃至第18図
は本発明の実施例4の収差曲線図、第19図乃至第22
図は本発明の実施レリ5の収差曲線図である。 出願人   オリンパス光学工業株式会社代理人  向
    寛   − 第2図 第3 収り 第4E 球面収差 非点収差 歪曲収3 〉  倍率の色収差  コ マ収差 互 を  倍率の色収差  コ マ収差 第5図 第6図 第7図 第8図 球面収差 非点収差 、歪曲収差 倍率の色収差   コ マ収差 第9図 第10図 倍率の色収差  コマ収差 第11図 第12図 倍率の色収差  コ マ収差 第13図 第14図 一す、l:l   Let)   リ、b−u・)  
 U、tJ   tJb−5,0Go   bIJ第1
5図 第16図 倍率の色収差  コマ収差 第17図 第18図 倍率の色収差  コ マ収差 第19図 第20図 球面収差 非点収差 歪曲収差 倍率の色収差  コ マ収差 第21図 第22図 一〇’p00  [、)、’:)   ()、b   
UIJ   U−1)    −5tl   0.0 
  >U倍率の色収差  コヤ収差 −U、ub uリ  リ、Uコ
FIG. 1 is a sectional view of embodiments 1 to 4 of the present invention, and FIG.
The figure is a sectional view of Example 5 of the present invention, FIGS. 3 to 6 are aberration curve diagrams of Example 1 of the present invention, and FIGS. 7 to 10 are aberration curve diagrams of Example 2 of the present invention. 11 to 14 are aberration curve diagrams of Example 3 of the present invention, FIG. 15 to 18 are aberration curve diagrams of Example 4 of the present invention, and FIGS. 19 to 22.
The figure is an aberration curve diagram of the embodiment of the present invention. Applicant Olympus Optical Co., Ltd. Agent Hiroshi Mukai - Fig. 2 Fig. 3 Convergence No. 4E Spherical aberration Astigmatism Distortion aberration 3 > Lateral chromatic aberration Comatic aberration Alternating Lateral chromatic aberration Comatic aberration Fig. 5 Fig. 6 Figure 7 Figure 8 Spherical aberration Astigmatism, distortion Chromatic aberration of magnification Comatic aberration Figure 9 Figure 10 Chromatic aberration of magnification Comatic aberration Figure 11 Figure 12 Chromatic aberration of magnification Comatic aberration Figure 13 Figure 14 Figure 1 Su, l:l Let) ri, b-u・)
U, tJ tJb-5,0Go bIJ 1st
5 Figure 16 Chromatic aberration of magnification Comatic aberration Figure 17 Figure 18 Chromatic aberration of magnification Comatic aberration Figure 19 Figure 20 Spherical aberration Astigmatism Distortion Chromatic aberration of magnification Comatic aberration Figure 21 Figure 22 Figure 10' p00 [,),':) (), b
UIJ U-1) -5tl 0.0
>U magnification chromatic aberration Coya aberration - U, ub uri, U co

Claims (1)

【特許請求の範囲】 (1)物体側から順に負レンズ、正レンズ、正レンズの
3枚のレンズにて構成され全体として正の焦点距離を有
する第1群と、負レンズ、負レンズ、正レンズの3枚の
レンズにて構成され全体として負の焦点距離を有し変倍
時に可動であつて主に変倍をつかさどる第2群と、弱い
屈折力で非球面を有するレンズ、正レンズの2枚のレン
ズ又は弱い屈折力で非球面を有するレンズ、正レンズ、
負レンズの3枚のレンズにて構成され全体として正の焦
点距離を有し常時固定であつて射出側にてほぼアフオー
カルにする役割をなす第3群と、正レンズ、正レンズ、
負レンズの3枚のレンズにて構成され全体として正の焦
点距離を有し変倍時に発生する焦点位置の変動をなくす
いわゆるコンペンセーターの役割を有すると共に合焦の
ために可動である第4群とより構成され、次に示す条件
(1)を満足するズームレンズ。 (1)|f_T/f_A_T|<0.6 ただしf_Tは望遠端における全系の焦点距離、f_A
_Tは望遠端における第1群から第3群までの合成焦点
距離である。 (2)次の条件(2)乃至条件(8)を満足する特許請
求の範囲(1)のズームレンズ。 (2)−1.2<f_IV/r_IV_F<0.11(3)
−0.5<f_IV/r_IV_R<0.5(4)2.0<
|f_7|/√(f_W・f_T)(5)0.1<d_
3_1/√(f_W・f_T)<0.55(6)0.5
3<(e_2_W−e_2_T)/e_2_W<0.7
7(7)1<f_IV/√(f_W・f_T)<1.3(
8)n_8>1.65 ただしf_Wは広角端における全系の合成焦点距離、f
_Tは望遠端における全系の焦点距離、f_IVは第4群
の合成焦点距離、f_7は第3群の弱い屈折力の非球面
レンズの焦点距離、d_3_1は第3群中の非球面レン
ズと正レンズとの空気間隔、e_2_Wは第2群と第3
群との広角端における主点間隔、e_2_Tは第2群と
第3群との望遠端における主点間隔、r_IV_Fは第4
群の最も物体側の面の曲率半径、r_IV_Rは第4群の
最も像側の面の曲率半径、n_8は第3群のパワーの強
い正レンズの屈折率である。 (3)第3群の弱い屈折力の非球面レンズが像側の面を
光軸における曲率半径の球面に対して像側へ偏奇しレン
ズの径方向の外側へ行くほど単調に増加する非球面であ
つて、該非球面が下記の式(A)で表わされる時に次の
条件(9)を満足することを特徴とするズームレンズ。 (A)X=y^2/[r+√(r^2−y^2)]+Δ
_X=y^2/[r+√(r^2−y^2)]+Ey^
4+Fy^6+Gy^8+Hy^1^0(9)y=0.
2|f_F_3|において 0.2×10^−^2<Δ_X/√(f_W・f_T)
<0.18×10^−^1ただしyは非球面における光
軸からの径方向の高さ、rは非球面の光軸上における近
似球面の曲率半径、f_F_3は第3群の前側焦点位置
である。
[Claims] (1) A first group consisting of three lenses in order from the object side, a negative lens, a positive lens, and a positive lens, and having a positive focal length as a whole, a negative lens, a negative lens, and a positive lens; The lens consists of three lenses, the second group has a negative focal length as a whole and is movable when changing the magnification and is mainly responsible for changing the magnification, a lens with a weak refractive power and an aspherical surface, and a positive lens. Two lenses or a lens with a weak refractive power and an aspherical surface, a positive lens,
A third group consisting of three lenses, a negative lens, which has a positive focal length as a whole and is always fixed and serves to create an almost afocal on the exit side, a positive lens, a positive lens,
The fourth lens group is composed of three negative lenses, has a positive focal length as a whole, has the role of a so-called compensator to eliminate fluctuations in the focal position that occur when changing the magnification, and is movable for focusing. A zoom lens that satisfies the following condition (1). (1) |f_T/f_A_T|<0.6 where f_T is the focal length of the entire system at the telephoto end, f_A
_T is the combined focal length from the first group to the third group at the telephoto end. (2) A zoom lens according to claim (1) that satisfies the following conditions (2) to (8). (2) −1.2<f_IV/r_IV_F<0.11(3)
−0.5<f_IV/r_IV_R<0.5(4)2.0<
|f_7|/√(f_W・f_T) (5) 0.1<d_
3_1/√(f_W・f_T)<0.55(6)0.5
3<(e_2_W-e_2_T)/e_2_W<0.7
7 (7) 1<f_IV/√(f_W・f_T)<1.3(
8) n_8>1.65 where f_W is the composite focal length of the entire system at the wide-angle end, f
_T is the focal length of the entire system at the telephoto end, f_IV is the combined focal length of the fourth group, f_7 is the focal length of the aspherical lens with weak refractive power in the third group, and d_3_1 is the focal length of the aspherical lens in the third group. The air distance between the lens and the lens, e_2_W, is the distance between the second and third groups.
e_2_T is the principal point distance between the second and third groups at the wide-angle end, r_IV_F is the principal point distance between the second and third groups at the telephoto end,
The radius of curvature of the surface closest to the object side of the group, r_IV_R is the radius of curvature of the surface closest to the image side of the fourth group, and n_8 is the refractive index of the positive lens with strong power in the third group. (3) An aspherical lens with a weak refractive power in the third group has an aspherical surface whose image side surface is biased toward the image side with respect to a spherical surface with a radius of curvature on the optical axis, and which increases monotonically toward the outside in the radial direction of the lens. A zoom lens characterized in that the aspherical surface satisfies the following condition (9) when expressed by the following formula (A). (A)X=y^2/[r+√(r^2-y^2)]+Δ
_X=y^2/[r+√(r^2-y^2)]+Ey^
4+Fy^6+Gy^8+Hy^1^0 (9) y=0.
0.2×10^-^2<Δ_X/√(f_W・f_T) in 2|f_F_3|
<0.18×10^-^1 where y is the radial height of the aspherical surface from the optical axis, r is the radius of curvature of the approximate spherical surface on the optical axis of the aspherical surface, and f_F_3 is the front focal position of the third group It is.
JP17272386A 1986-07-24 1986-07-24 Zoom lens Pending JPS6329719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17272386A JPS6329719A (en) 1986-07-24 1986-07-24 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17272386A JPS6329719A (en) 1986-07-24 1986-07-24 Zoom lens

Publications (1)

Publication Number Publication Date
JPS6329719A true JPS6329719A (en) 1988-02-08

Family

ID=15947135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17272386A Pending JPS6329719A (en) 1986-07-24 1986-07-24 Zoom lens

Country Status (1)

Country Link
JP (1) JPS6329719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405856A2 (en) * 1989-06-26 1991-01-02 Matsushita Electric Industrial Co., Ltd. Zoom lens
US5359457A (en) * 1991-10-03 1994-10-25 Minolta Camera Co., Ltd. Wide-angle zoom lens system
JPWO2016194111A1 (en) * 2015-06-01 2018-03-22 オリンパス株式会社 Single focus optical system and optical apparatus including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405856A2 (en) * 1989-06-26 1991-01-02 Matsushita Electric Industrial Co., Ltd. Zoom lens
US5359457A (en) * 1991-10-03 1994-10-25 Minolta Camera Co., Ltd. Wide-angle zoom lens system
JPWO2016194111A1 (en) * 2015-06-01 2018-03-22 オリンパス株式会社 Single focus optical system and optical apparatus including the same

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US7639430B2 (en) Zoom lens and image pickup apparatus having the same
JPH0961717A (en) High variable power large-aperture zoom optical system
US20220075141A1 (en) Zoom lens, optical apparatus and method for manufacturing the zoom lens
JPH07199070A (en) Zoom lens
JP2001154093A (en) Small-sized high variable power wide-angle zoom lens
US20010009479A1 (en) Zoom lens system, and image pickup system using the same
WO2017094665A1 (en) Variable power optical system, optical device, and method for producing variable power optical system
JPH03158817A (en) Variable power lens
JPH1164732A (en) Zoom lens
JPH06175027A (en) Small zoom lens of rear-focusing type
JPH06160716A (en) Zoom lens for scarcely causing short distance aberration fluctuation
US6008953A (en) Zoom lens
JP2019045555A (en) Zoom lens and imaging apparatus having the same
JP2000275526A (en) Zoom lens
JP2003262793A (en) Zoom lens
JPH1184239A (en) Zoom lens
JPH10197793A (en) Zoom lens
JP3518886B2 (en) High-performance wide-angle lens
US5815312A (en) Real image type finder
JPS60186818A (en) Zoom lens
JPS6329719A (en) Zoom lens
US6025960A (en) Zoom optical system
JPH04301612A (en) Rear focus type zoom lens
JP2551026B2 (en) Zoom lens