JPS6329695B2 - - Google Patents

Info

Publication number
JPS6329695B2
JPS6329695B2 JP6072580A JP6072580A JPS6329695B2 JP S6329695 B2 JPS6329695 B2 JP S6329695B2 JP 6072580 A JP6072580 A JP 6072580A JP 6072580 A JP6072580 A JP 6072580A JP S6329695 B2 JPS6329695 B2 JP S6329695B2
Authority
JP
Japan
Prior art keywords
ion
group
fluorine
cation exchange
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6072580A
Other languages
Japanese (ja)
Other versions
JPS56157432A (en
Inventor
Sakae Tsushima
Hiroshi Sagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6072580A priority Critical patent/JPS56157432A/en
Priority to US06/258,637 priority patent/US4339549A/en
Priority to CA000376655A priority patent/CA1145236A/en
Priority to DE8181103436T priority patent/DE3165645D1/en
Priority to EP19810103436 priority patent/EP0039897B1/en
Priority to SU813284352A priority patent/SU1069629A3/en
Publication of JPS56157432A publication Critical patent/JPS56157432A/en
Publication of JPS6329695B2 publication Critical patent/JPS6329695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A fluorinated polymer having pendant cation exchange groups selected from sulfonic acid, carboxylic acid or sulfonamide groups, or their salts, is modified with a sulfonium compound and/or a phosphonium compound for substitution of the counter-ions of the cation exchange groups with sulfonium ions and/or phosphonium ions. The polymers treated in this manner are improved in their melt-flow characteristic to make fusion bonding between these polymers possible. The process is particularly suitable for repairing damaged cation exchange membranes for use in chlor-alkali electrolytic cells to advantageously elongate the life of the membranes.

Description

【発明の詳細な説明】 本発明はスルホン酸及びその塩、カルボン酸及
びその塩、スルホンアミド及びその塩から選ばれ
た1種又は2種以上の官能基を側鎖に有するフツ
素系陽イオン交換膜の溶融接合法に関するもので
ある。スルホン酸基、カルボン酸基、スルホンア
ミド基の如き官能基を有するフツ素系陽イオン交
換膜が特にクロルアルカリ電解槽の陽極と陰極と
を分離するイオン交換膜として有用なことは良く
知られている。これ等のイオン交換膜は使用中に
引裂き、ピンホール、亀裂等の損傷を受けること
がある。損傷を受けた膜は電解性能が低下し、継
続しての使用や再使用することは出来なかつた。
このような損傷膜を修理して使用することが出来
るならば高価なフツ素系イオン交換膜の寿命を延
ばすことになり非常に有効である。
Detailed Description of the Invention The present invention provides fluorine-based cations having one or more functional groups selected from sulfonic acids and their salts, carboxylic acids and their salts, sulfonamides and their salts in their side chains. This invention relates to a fusion bonding method for exchange membranes. It is well known that fluorine-based cation exchange membranes having functional groups such as sulfonic acid groups, carboxylic acid groups, and sulfonamide groups are particularly useful as ion exchange membranes for separating the anode and cathode of chloralkali electrolytic cells. There is. These ion exchange membranes may suffer damage such as tears, pinholes, and cracks during use. The electrolytic performance of the damaged membrane deteriorated, and it could not be continued or reused.
If such a damaged membrane could be repaired and reused, it would be very effective to extend the life of the expensive fluorine-based ion exchange membrane.

このような損傷を受けた膜の修理法として損傷
部に同じ膜を重ねて溶融接合する方法が考えられ
るが、フツ素系イオン交換膜は加熱により温度を
上げていくと、溶融前に分解を起すため、溶融接
合は困難である。これに対し本発明者らは特開昭
54―155273号にて水性媒体存在下にて加熱溶融接
合する方法を開示した。
One possible method for repairing such damaged membranes is to overlay the same membrane on the damaged area and melt-bond it, but fluorine-based ion-exchange membranes decompose before they melt when the temperature is increased by heating. This makes fusion bonding difficult. In contrast, the present inventors
No. 54-155273 discloses a method of heat-melting bonding in the presence of an aqueous medium.

この方法は小さな損傷部の溶融接合法としては
充分有用であるが、比較的に高い温度及び圧力条
件を要するため、損傷部が大きい場合の溶融接合
法としては充分に満足のいく方法とは言えない。
そこで、本発明者等はこれ等の欠点を解決すべく
陽イオン交換基を有するフツ素系重合体の溶融接
合法につき検討した結果、該フツ素系重合体をス
ルホニウム化合物、ホスホニウム化合物にて処理
することにより重合体の少くとも表面が比較的低
温、低圧で溶融流動することを見い出し本発明を
完成するに到つたものである。
This method is quite useful as a fusion bonding method for small damaged areas, but because it requires relatively high temperature and pressure conditions, it cannot be said to be a fully satisfactory fusion bonding method for large damaged areas. do not have.
Therefore, in order to solve these drawbacks, the present inventors investigated a method for melt joining fluorine-based polymers having cation exchange groups, and found that the fluorine-based polymers were treated with a sulfonium compound or a phosphonium compound. The present invention was completed by discovering that at least the surface of the polymer melts and flows at relatively low temperatures and low pressures.

即ち本発明はスルホン酸及びその塩、カルボン
酸及びその塩、スルホンアミド及びその塩から選
ばれた1種又は2種以上の官能基を側鎖に有する
フツ素系重合体を溶融接合する方法に於て、該重
合体の少くとも一方をスルホニウム化合物及び/
又はホスホニウム化合物にて処理することにより
陽イオン交換基の対イオンをスルホニウムイオン
及び/又はホスホニウムイオンと交換せしめるこ
とにより該重合体の流動性を改良し、分解するこ
となく溶融接合を可能にする方法を提供するもの
である。
That is, the present invention relates to a method for melt-bonding fluoropolymers having one or more functional groups selected from sulfonic acids and salts thereof, carboxylic acids and salts thereof, and sulfonamides and salts thereof in their side chains. At least one of the polymers is treated with a sulfonium compound and/or a sulfonium compound.
Or a method of improving the fluidity of the polymer by exchanging the counter ion of the cation exchange group with a sulfonium ion and/or phosphonium ion by treatment with a phosphonium compound, thereby enabling melt bonding without decomposition. It provides:

次に本発明につき詳細に説明する。 Next, the present invention will be explained in detail.

本発明のフツ素系重合体は一般式 ―(OCF2―CFY)l―(O)n―(CFY′)o―X ここでY及びY′は各々F又はC1〜C10のパーフ
ルオルアルキル基、l=0〜3、m=0〜1、
n=0〜12、X=スルホン酸基又はカルボン酸
基又はスルホンアミド基、又はそれらの塩 で表わされる側鎖構造を有するフツ素系陽イオン
交換体であれば良く特にその製造法等により本発
明が制限されるものではない。本発明で使用する
フツ素系重合体の代表的製造法としては下記に示
す2つの群のそれぞれから選ばれた少くとも1種
ずつの単量体を共重合せしめ成形加工することに
より作られる。第1群の単量体としてはフツ素化
オレフイン化合物であり、例えばテトラフルオル
エチレン、ヘキサフルオルプロピレン、クロルト
リフルオルエチレン、フツ化ビニリデン等であ
る。
The fluoropolymer of the present invention has the general formula - (OCF 2 - CFY) l - (O) n - (CFY') o -X where Y and Y' are each F or C 1 to C 10 perfur Oralkyl group, l=0-3, m=0-1,
n = 0 to 12, The invention is not limited. A typical method for producing the fluoropolymer used in the present invention is to copolymerize and mold at least one monomer selected from each of the two groups shown below. The first group of monomers are fluorinated olefin compounds, such as tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and vinylidene fluoride.

第2群の単量体としては一般式 ―(OCF2CFY)l―(O)n―(CFY′)o(X′) ここでY及びY′は各々F又はC1〜C10のパーフ
ルオルアルキル基、l=0〜3、m=0〜1、
n=0〜12、(X′)=スルホニルフルオライド
又はカルボン酸のC1〜C10から成るアルキルエ
ステル で示されるスルホニルフルオライド基又はカルボ
ン酸エステル基を有するオレフイン化合物であ
る。例えばCF2=CFO(CF22―SO2F、 CF2=CFOCF2CF(CF3)O(CF22―SO2F、 CF2=CFOCF2CF(CF3)O(CF23SO2F、 CF2=CFO〔CF2CF(CF3)O〕2(CF22SO2F、 CF2=CF(CF22SO2F、 CF2=CFO(CF23COOCH3、 CF2=CFOCF2CF(CF3)OCF2COOCH3、 CF2=CFOCF2CF(CF3)O(CF22COOCH3、 CF2=CFOCF2CF(CF3)O(CF23COOCH3、 CF2=CFO〔CF2CF(CF3)O〕2(CF22COOCH3
である。
The second group of monomers has the general formula - (OCF 2 CFY) l - (O) n - (CFY') o (X') where Y and Y' are each F or a part of C 1 to C 10 . Fluoroalkyl group, l=0-3, m=0-1,
It is an olefin compound having a sulfonyl fluoride group or a carboxylic acid ester group, where n=0 to 12 and (X')=sulfonyl fluoride or an alkyl ester consisting of C1 to C10 of carboxylic acid. For example, CF 2 = CFO (CF 2 ) 2 - SO 2 F, CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 - SO 2 F, CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F, CF 2 = CFO [CF 2 CF (CF 3 ) O] 2 (CF 2 ) 2 SO 2 F, CF 2 = CF (CF 2 ) 2 SO 2 F, CF 2 = CFO (CF 2 ) 3 COOCH 3 , CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 COOCH 3 , CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 COOCH 3 , CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 COOCH 3 , CF 2 =CFO [CF 2 CF (CF 3 )O] 2 (CF 2 ) 2 COOCH 3 , etc.

官能基の量は当量重量(1g当量の官能基を含
有する重合体のg数)で表わされ通常400〜2000
になるように共重合される。
The amount of functional groups is expressed in equivalent weight (number of grams of polymer containing 1 g equivalent of functional groups) and is usually 400 to 2000.
It is copolymerized to become

また、特開昭52―24176号、特開昭53―132094
号、特開昭54―83982号などに記載されているよ
うにフツ素化重合体のスルホニル基の一部又は全
部を化学処理によりカルボン酸基又はその誘導体
に変換したものも用いられる。
Also, JP-A-52-24176, JP-A-53-132094
Fluorinated polymers in which part or all of the sulfonyl groups are converted into carboxylic acid groups or derivatives thereof by chemical treatment may also be used, as described in JP-A-54-83982.

本発明の溶融接合方法は、重合体の形状に特に
限定されず膜状、粒状、粉状のものなどすべての
ものの溶融接合に有効であり、又繊維状物質によ
り補強されたフイルム状物にも有効である。
The melt bonding method of the present invention is not limited to the shape of the polymer, and is effective for melt bonding all types of polymers, such as membranes, particles, and powders, and is also effective for melt bonding of all types of polymers, such as film-like, granular, and powder-like materials. It is valid.

得られた重合体の官能基を必要によりスルホン
酸基及びカルボン酸基に変換するためにはアルコ
ール性アルカリ水溶液処理等の一般のケン化条件
にて処理する。又スルホンアミド基に変換するた
めにはスルホニルフルオライド基をアンモニア、
アルキルアミン等にて処理する。
In order to convert the functional groups of the obtained polymer into sulfonic acid groups and carboxylic acid groups, if necessary, the polymer is treated under general saponification conditions such as treatment with an aqueous alcoholic alkali solution. In addition, in order to convert the sulfonamide group to a sulfonyl fluoride group, ammonia,
Treat with alkylamine, etc.

本発明で使用するフツ素系重合体の塩としては
アルカリ金属塩(例えば、Na、K)又はアンモ
ニウム塩が好ましい。
The salt of the fluorine-based polymer used in the present invention is preferably an alkali metal salt (eg, Na, K) or an ammonium salt.

次に本発明に用いられるフツ素化重合体の陽イ
オン交換基の対イオンについて説明する。
Next, the counter ion of the cation exchange group of the fluorinated polymer used in the present invention will be explained.

フツ素系重合体の溶融接合に当りその陽イオン
交換基の対イオンが該重合体の流動性を改善する
に当り非常に重要である。おどろくべきことに対
イオンをスルホニウムイオン、ホスホニウムイオ
ンとすることにより該重合体の流動性が大きく改
善され溶融接合を容易に行うことが出来る。
In melt bonding of fluorine-based polymers, the counter ion of the cation exchange group is very important in improving the fluidity of the polymer. Surprisingly, by using a sulfonium ion or a phosphonium ion as the counter ion, the fluidity of the polymer is greatly improved and melt bonding can be easily performed.

ここでスルホニウムイオンとは一般式〔R3S〕+
で示される化合物を言う。Rは、例えばアルキル
基、アリール基又はアラルキル基等であるが、好
ましくはアルキル基又はアラルキル基である。
〔R3S〕+で示される化合物のRの一つが水素基で
あつてもよい。アルキル基としては炭素数1〜10
のものが好ましく、特に1〜7のものが好まし
い。アリール基としては炭素数6〜10のものが好
ましく、特に6、7のものが好ましい。アラルキ
ル基としては炭素数7〜10のものが好ましく、特
に7のものが好ましい。本発明で使用するスルホ
ニウムイオンの具体例としては、トリメチルスル
ホニウムイオン、トリエチルスルホニウムイオ
ン、トリベンジルスルホニウムイオン等がある。
Here, the sulfonium ion has the general formula [R 3 S] +
refers to the compound represented by R is, for example, an alkyl group, an aryl group, or an aralkyl group, and is preferably an alkyl group or an aralkyl group.
[R 3 S] One of the R's in the compound represented by + may be a hydrogen group. Alkyl group has 1 to 10 carbon atoms
Those with numbers 1 to 7 are preferred, and those with numbers 1 to 7 are particularly preferred. The aryl group preferably has 6 to 10 carbon atoms, particularly 6 or 7 carbon atoms. The aralkyl group preferably has 7 to 10 carbon atoms, and particularly preferably has 7 carbon atoms. Specific examples of the sulfonium ion used in the present invention include trimethylsulfonium ion, triethylsulfonium ion, tribenzylsulfonium ion, and the like.

本発明で使用するホスホニウムイオンとは一般
式〔R′4P〕+で示される化合物である。R′は、例
えばアルキル基、アリール基又はアラルキル基等
であるが、好ましくはアルキル基又はアリール基
である。〔R′4P〕+で示される化合物のR′の一つ又
は二つが水素基であつてもよい。アルキル基とし
ては炭素数1〜10のものが好ましく、特に1〜7
のものが好ましい。アリール基としては炭素数6
〜10のものが好ましく、特に6、7のものが好ま
しい。アラルキル基としては炭素数7〜10のもの
が好ましく、特に7のものが好ましい。
The phosphonium ion used in the present invention is a compound represented by the general formula [R' 4 P] + . R' is, for example, an alkyl group, an aryl group, or an aralkyl group, and is preferably an alkyl group or an aryl group. One or two R's of the compound represented by [R' 4 P] + may be a hydrogen group. The alkyl group preferably has 1 to 10 carbon atoms, particularly 1 to 7 carbon atoms.
Preferably. Aryl group has 6 carbon atoms
-10 is preferable, and 6 and 7 are especially preferable. The aralkyl group preferably has 7 to 10 carbon atoms, and particularly preferably has 7 carbon atoms.

特にR′が4ケ共にアルキル、アリール基に置
換された第4ホスホニウムイオンが好ましい。
Particularly preferred is a quaternary phosphonium ion in which all four R's are substituted with alkyl or aryl groups.

例えばテトラメチルホスホニウムイオン、テト
ラエチルホスホニウムイオン、テトラフエニルホ
スホニウムイオン等である。
Examples include tetramethylphosphonium ion, tetraethylphosphonium ion, tetraphenylphosphonium ion, and the like.

次にフツ素系重合体の陽イオン交換基の対イオ
ンをスルホニウムイオン、ホスホニウムイオンに
置換せしめるにはスルホニウム塩基又はその塩
(〔R3S〕+X-、X-=OH-又はハロゲンイオン)、
ホスホニウム塩基又はその塩(〔R′4P〕+X-、X-
=OH-又はハロゲンイオン)の水溶液と該フツ
素系重合体を接触せしめることによりイオン交換
法にて容易に行うことが出来る。
Next, to replace the counter ion of the cation exchange group of the fluorine-based polymer with a sulfonium ion or phosphonium ion, a sulfonium base or its salt ([R 3 S] + X - , X - = OH - or halogen ion) is used. ,
Phosphonium base or its salt ([R′ 4 P] + X - , X -
This can be easily carried out by an ion exchange method by bringing the fluorine-based polymer into contact with an aqueous solution of (=OH - or halogen ion).

溶媒としては水が好ましい。しかし溶解性を改
良するため必要によりアルコール、ケトンの如き
有機溶媒との混合溶媒を用いても良い。
Water is preferred as the solvent. However, in order to improve solubility, a mixed solvent with an organic solvent such as alcohol or ketone may be used if necessary.

陽イオン交換基の対イオンの置換をイオン交換
法で行うときは、対立イオン(例えばNa+、K+
イオンなど)の濃度はできるだけ小さい状態で行
うことが好ましい。
When replacing the counter ion of a cation exchange group by the ion exchange method, the counter ion (e.g. Na + , K +
It is preferable to keep the concentration of (ions, etc.) as low as possible.

スルホニウム及び/又はホスホニウムイオンの
濃度は一般には0.01〜0.5規定で行なわれる。
The concentration of sulfonium and/or phosphonium ions is generally 0.01 to 0.5 normal.

置換の程度については置換量に応じてその効果
が異る、しかし全陽イオン交換基の10%以上の対
イオンが置換されれば流動特性は充分に改善され
溶融接合が容易となる。しかし10%未満でも置換
の程度に応じて効果がみられるが、10%以上置換
されることが好ましい。
Regarding the degree of substitution, the effect differs depending on the amount of substitution, but if 10% or more of the counter ions of all the cation exchange groups are substituted, the flow characteristics are sufficiently improved and melt bonding becomes easy. However, although effects can be seen depending on the degree of substitution even if it is less than 10%, it is preferable to substitute 10% or more.

本発明においては、陽イオン交換基を有するフ
ツ素系重合体が全く同一のもの同志は勿論のこ
と、二種以上の重合体を溶融接合する場合には、
各々の陽イオン交換基、その当量重量、分子量
等々が、互に異なつたもの同志でもよい。このさ
い溶融接合に当つては一方の片のみについてその
陽イオン交換基の対イオンがスルホニウムイオン
及び/又はホスホニウムイオンであれば充分に本
発明の効果はみられる。もちろん両方の重合体の
対イオンを置換してもよい。
In the present invention, when fluorine-based polymers having cation exchange groups are the same, or when two or more types of polymers are melt-joined,
Each cation exchange group, its equivalent weight, molecular weight, etc. may be different from each other. In this case, the effect of the present invention can be sufficiently achieved when the counter ion of the cation exchange group of only one piece is a sulfonium ion and/or a phosphonium ion in the case of melt joining. Of course, the counterions of both polymers may be replaced.

溶融接合は接合される該重合体の少くとも一方
の交換基の対イオンをスルホニウムイオン及び/
又はホスホニウムイオンとした後、乾燥又は湿潤
状態のまま加熱プレスすることにより行われる。
Melt bonding replaces the counter ions of at least one exchange group of the polymers to be bonded with sulfonium ions and/or
Alternatively, after forming phosphonium ions, the phosphonium ions are heated and pressed in a dry or wet state.

これは損傷部に該重合体小片(以下パツチと云
う)を当て溶融接合する方法に於てパツチのみを
スルホニウム化合物、ホスホニウム化合物処理す
れば良く、実用上非常に有効である。
This is a method in which a small piece of the polymer (hereinafter referred to as a patch) is applied to a damaged area and melt-bonded, and only the patch needs to be treated with a sulfonium compound or phosphonium compound, and is very effective in practice.

加熱方法としては熱板による加熱、超音波加
熱、インパルス加熱、摩擦加熱、高周波加熱等が
用いられるが作業性の面で超音波加熱が優れてい
る。加熱湿度及びプレス圧力は該重合体の分子
量、補強材の有無、交換基の種類、形状、スルホ
ニウムイオン及び/又はホルホニウムイオンの置
換割合等により異なり一概に言えないが150℃〜
300℃が一般的であり通常200〜260℃にて行われ
る。溶融接合に当つては加圧することが有効であ
るが、一般的には3〜20Kg/cm2好ましくは5〜10
Kg/cm2にて行われる。超音波を用いる場合一般的
にはホーン先端振幅が50〜300ミクロン、圧力5
〜60Kg/cm2、印加時間が0.1〜10秒の範囲より選
択して行われる。
As a heating method, heating with a hot plate, ultrasonic heating, impulse heating, friction heating, high frequency heating, etc. are used, but ultrasonic heating is superior in terms of workability. The heating humidity and pressing pressure vary depending on the molecular weight of the polymer, the presence or absence of reinforcing material, the type and shape of the exchange group, the substitution ratio of sulfonium ions and/or phorphonium ions, etc., but it cannot be stated unconditionally, but from 150 ° C.
300°C is common, and it is usually carried out at 200-260°C. Pressure is effective for melt joining, but generally 3 to 20 Kg/ cm2 , preferably 5 to 10
Performed in Kg/cm 2 . When using ultrasonic waves, the horn tip amplitude is generally 50 to 300 microns and the pressure is 5
~60Kg/cm 2 , and the application time is selected from the range of 0.1 to 10 seconds.

以上の如く溶融接合した該重合体は水、5規定
苛性ソーダ水溶液、水+メタノール混合溶媒によ
る煮沸に耐えることが出来る程度に充分強固に接
合される。
The polymers melt-bonded as described above are bonded firmly enough to withstand boiling in water, a 5N aqueous solution of caustic soda, and a mixed solvent of water and methanol.

以上本発明につき詳細に説明したが本発明の方
法によればスルホン酸及びその塩、カルボン酸及
びその塩、スルホンアミド及びその塩から選ばれ
た1種又は2種以上の官能基を側鎖に有し溶融す
る前に分解するおそれのあるフツ素系重合体につ
いて少くとも接合する一方をスルホニウム化合物
及び/又はホスホニウム化合物にて処理すること
によりその陽イオン交換基の対イオンをスルホニ
ウムイオン及び/又はホスホニウムイオンに置換
せしめることにより該重合体の流動性が改善され
溶融接合が可能になる。本発明は特にクロルアル
カリ電解用陽イオン交換膜の損傷部の溶融接合に
よる修理法として非常に有効である。
The present invention has been described in detail above, and according to the method of the present invention, one or more functional groups selected from sulfonic acids and their salts, carboxylic acids and their salts, sulfonamides and their salts are added to the side chain. By treating at least one side of the fluorine-containing polymer that is likely to decompose before melting with a sulfonium compound and/or a phosphonium compound, the counter ion of the cation exchange group can be changed to a sulfonium ion and/or By substituting phosphonium ions, the fluidity of the polymer is improved and melt bonding becomes possible. The present invention is particularly effective as a method for repairing damaged parts of cation exchange membranes for chlor-alkali electrolysis by melt-bonding.

また本発明の方法を用いることにより、フツ素
系陽イオン交換膜を接合して筒状ないし袋状に加
工することが容易にできる。このように加工され
たものは、例えばフインガー型電解槽に好適に装
着できるので、従来のアスベスト隔膜法の電解槽
をそのまま用いてイオン交換膜法に転換でき、経
済的にも大きなメリツトとなる。
Furthermore, by using the method of the present invention, fluorine-based cation exchange membranes can be easily joined and processed into a cylindrical or bag shape. Since the product processed in this way can be suitably attached to, for example, a finger-type electrolytic cell, the electrolytic cell using the conventional asbestos diaphragm method can be used as is and converted to the ion exchange membrane method, which is a great economic advantage.

以下実施例にて詳細に説明する。 This will be explained in detail in Examples below.

実施例 1 共重合比が当量重量で1500であるCF2=CF2
CF2=CFOCF2CF(CF3)OCF2CF2SO2Fとの共重
合体であつてポリテトラフルオルエチレン繊維に
て補強された厚み0.4ミリのフイルムを15%水酸
化カリウム、30%メタノール、55%水からなる溶
液で処理することにより重合体側鎖の―SO2Fを
―SO3Kにした。
Example 1 CF 2 = CF 2 with a copolymerization ratio of 1500 in terms of equivalent weight
CF 2 = CFOCF 2 CF (CF 3 ) A 0.4 mm thick film made of a copolymer with OCF 2 CF 2 SO 2 F and reinforced with polytetrafluoroethylene fibers was mixed with 15% potassium hydroxide and 30%. -SO 2 F in the polymer side chain was converted to -SO 3 K by treatment with a solution consisting of methanol and 55% water.

このフイルム状重合体2枚を0.1規定トリメチ
ルスルホニウムアイオダイド水溶液中に室温で10
時間浸漬処理した。湿潤状態のまま2枚を重ね合
せ温度240℃、圧力10Kg/cm2にて加熱プレスを5
分間行つた。このものは5規定苛性ソーダ水溶液
中10時間煮沸に耐える接着力を有していた。
Two sheets of this film-like polymer were placed in a 0.1N aqueous solution of trimethylsulfonium iodide for 10 minutes at room temperature.
Soaked for a period of time. Layer the two sheets in a wet state and heat press at a temperature of 240℃ and a pressure of 10Kg/ cm2 for 5 minutes.
I went for a minute. This product had adhesive strength that withstood boiling in a 5N aqueous solution of caustic soda for 10 hours.

実施例 2 共重合比が当量重量で1100であるCF2=CF2
CF2=CFOCF2CF(CF3)O(CF23SO2Fとの共重
合体で厚み0.3ミリのフイルムを実施例―1と同
様の条件にてケン化処理することにより重合体側
鎖の―SO2Fを―SO3Kに変換した。このものを
2規定塩酸にて処理することにより―SO3Hとし
た2枚の内1枚のみを0.25規定テトラエチルホス
ホニウム塩基水溶液に室温で1時間浸漬すること
によりスルホニウムタイプとした。これを―
SO3Hタイプのフイルムに重ね湿潤状態のまま、
温度260℃、圧力8Kg/cm2にて加熱プレスを6分
間行つた。このものは煮沸水に充分耐える程度に
強固に接合されていた。
Example 2 CF 2 = CF 2 with a copolymerization ratio of 1100 in terms of equivalent weight
CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 A 0.3 mm thick film made of a copolymer with SO 2 F was saponified under the same conditions as in Example 1 to form a polymer side chain. -SO 2 F was converted to -SO 3 K. This material was treated with 2N hydrochloric acid to form -SO 3 H. Only one of the two sheets was made into a sulfonium type by immersing it in a 0.25N tetraethylphosphonium base aqueous solution for 1 hour at room temperature. this-
Layer it on SO 3 H type film and keep it moist.
Hot pressing was performed for 6 minutes at a temperature of 260° C. and a pressure of 8 Kg/cm 2 . This item was strongly bonded to the extent that it could withstand boiling water.

実施例 3 共重合比が当量重量で1200であるCF2=CF2
CF2=CFOCF2CF(CF3)OCF2CF2SO2Fとの共重
合体で厚み0.4ミリのフイルム状成形物をエチン
ジアミンにて処理することによりその―SO2Fの
一部をスルホンアミド基に変換した。これを15%
水酸化ナトリウム、30%メタノール、55%水から
なる溶液で処理することにより加水分解しナトリ
ウム型に変換した。このものを0.15規定テトラメ
チルホスホニウム塩基水溶液にて室温で15時間処
理した。この2枚を重ね超音波溶着器にてホーン
先端振幅200ミクロン、圧力35Kg/cm2にて2秒間
溶融接合した。このものは15%水酸化ナトリウ
ム、30%メタノール、55%水からなる混合溶液の
煮沸に充分耐える程度に強固に接合されていた。
Example 3 CF 2 = CF 2 with a copolymerization ratio of 1200 in terms of equivalent weight
CF 2 = CFOCF 2 CF (CF 3 ) By treating a 0.4 mm thick film-shaped copolymer with OCF 2 CF 2 SO 2 F with ethynediamine, a part of the SO 2 F is converted into sulfonamide. Converted to base. 15% of this
It was hydrolyzed and converted to the sodium form by treatment with a solution consisting of sodium hydroxide, 30% methanol, and 55% water. This material was treated with a 0.15N aqueous tetramethylphosphonium base solution at room temperature for 15 hours. These two sheets were stacked and melted and bonded using an ultrasonic welder at a horn tip amplitude of 200 microns and a pressure of 35 kg/cm 2 for 2 seconds. The bond was strong enough to withstand boiling of a mixed solution consisting of 15% sodium hydroxide, 30% methanol, and 55% water.

実施例 4 共重合比が当量重量で1300であるCF2=CF2
CF2=CFOCF2CF(CF3)O(CF23SO2Fとの共重
合体でポリテトラフルオルエチレン繊維にて補強
された厚み0.4ミリのフイルムを実施例1と同様
の方法にてケン化することによりその―SO2F基
を―SO3K基に変換した。このフイルム状重合体
2枚を0.15規定トリメチルスルホニウムアイオダ
イド水溶液にて室温で5時間処理した。このもの
を2枚重ね超音波溶着器にてホーン先端振幅120
ミクロン、圧力28Kg/cm2にて3秒間溶融接合し
た。このものは煮沸水に充分耐える程度に強固に
接合されていた。
Example 4 CF 2 = CF 2 with a copolymerization ratio of 1300 in terms of equivalent weight
CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 A 0.4 mm thick film made of a copolymer with SO 2 F and reinforced with polytetrafluoroethylene fibers was prepared in the same manner as in Example 1. The --SO 2 F group was converted to --SO 3 K group by saponification using . Two sheets of this film-like polymer were treated with a 0.15N aqueous solution of trimethylsulfonium iodide at room temperature for 5 hours. Layer two sheets of this and use an ultrasonic welder to make the horn tip amplitude 120.
Welding was carried out for 3 seconds at a pressure of 28 kg/cm 2 . This item was strongly bonded to the extent that it could withstand boiling water.

実施例 5 共重合比が当量重量で1100であるCF2=CF2
CF2=CFO(CF23COOCH3との共重合体で厚み
0.3ミリのフイルム状成形物を実施例1と同様の
ケン化条件にて処理し―COOCH3基を―COOK
に変換した。このものを0.15規定テトラメチルホ
スホニウム塩基水溶液にて室温で15時間処理し
た。このものを2枚重ね超音波溶着器にてホーン
先端振幅150ミクロン、圧力30Kg/cm2にて1秒間
溶着接合した。このものは5規定水酸化ナトリウ
ム水溶液煮沸に充分耐える程度に強固に接合され
ていた。
Example 5 CF 2 = CF 2 with a copolymerization ratio of 1100 in terms of equivalent weight
CF 2 = CFO (CF 2 ) 3 Thickness due to copolymer with COOCH 3
A 0.3 mm film-like molded product was treated under the same saponification conditions as in Example 1, and three COOCH units were added to the COOK.
Converted to . This material was treated with a 0.15N aqueous tetramethylphosphonium base solution at room temperature for 15 hours. Two of these were stacked and welded together using an ultrasonic welder at a horn tip amplitude of 150 microns and a pressure of 30 kg/cm 2 for 1 second. This product was firmly bonded to the extent that it could withstand boiling in a 5N aqueous sodium hydroxide solution.

実施例 6 CF2=CF2とCF2=CFOCF2CF(CF3
OCF2CF2SO2Fとを1・1・2―トリクロロ―
1・2・2―トリフルオルエタン中でパーフルオ
ルプロピオニルパーオキサイドを重合開始剤とし
て重合温度45℃、圧力5Kg/cm2に保持しながら共
重合させた。これを重合体―1とする。同じ操作
で圧力を3Kg/cm2に保持しながら共重合させた。
これを重合体―2とする。
Example 6 CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3 )
OCF 2 CF 2 SO 2 F and 1,1,2-trichloro-
Copolymerization was carried out in 1,2,2-trifluoroethane using perfluoropropionyl peroxide as a polymerization initiator while maintaining the polymerization temperature at 45° C. and the pressure at 5 kg/cm 2 . This will be referred to as Polymer-1. Copolymerization was carried out in the same manner while maintaining the pressure at 3 Kg/cm 2 .
This will be referred to as Polymer-2.

これらのポリマーの1部をそれぞれ5規定カセ
イソーダ水溶液とメタノールとの混合溶液(容積
比1:1)で温度90℃にて16時間加水分解処理し
スルホン酸ナトリウム型にした後、それぞれの交
換容量を測定したところ重合体―1は0.74ミリ当
量/g―乾燥樹脂、重合体―2は0.91ミリ当量/
g―乾燥樹脂であつた。重合体―1及び―2を加
熱成形し、それぞれ50ミクロン、100ミクロンの
膜に成形後両膜を合せて加熱成形しラミネートフ
イルムとした。
A portion of each of these polymers was hydrolyzed in a mixed solution of 5 N caustic soda aqueous solution and methanol (volume ratio 1:1) at a temperature of 90°C for 16 hours to form a sodium sulfonate form. As measured, Polymer-1 was 0.74 milliequivalent/g - dry resin, Polymer-2 was 0.91 milliequivalent/g
g - It was a dry resin. Polymers-1 and -2 were heat-molded to form films of 50 microns and 100 microns, respectively, and then both films were combined and heat-formed to form a laminate film.

この膜を2.5規定苛性ソーダ/50%メタノール
中60℃で16時間ケン化し1規定塩酸中でH型に戻
した後1規定NH4OH水溶液にて5時間処理する
ことによりNH4型に変換した。これをPCl5
POCl3溶液中にて100℃にて30時間処理しスルホ
ニルクロライド基に変換した。反応終了後CCl4
で洗浄し、表面赤外スペクトルを測定したところ
スルホニルクロライドの特性吸収である1420cm-1
の吸収が強くあらわれ、クリスタルバイオレツト
による染色を行つても膜は全く染色されなかつ
た。この膜2枚を重合体―1の面を外側にしてア
クリル樹脂製の枠の間にポリテトラフルオルエチ
レン製ガスケツトを用い締付けた。57%のヨウ化
水素酸水溶液中に浸漬し80℃で24時間重合体―1
の側の片面のみを反応させた。
This membrane was saponified in 2.5N caustic soda/50% methanol at 60° C. for 16 hours, returned to the H form in 1N hydrochloric acid, and then converted to the NH 4 form by treating with a 1N NH 4 OH aqueous solution for 5 hours. PCl 5 /
It was treated in a POCl 3 solution at 100°C for 30 hours to convert it into a sulfonyl chloride group. CCl 4 after reaction completion
When the surface infrared spectrum was measured, it was found to be 1420 cm -1 which is the characteristic absorption of sulfonyl chloride.
Absorption was strongly observed, and even when stained with crystal violet, the membrane was not stained at all. The two membranes were clamped between acrylic resin frames using a polytetrafluoroethylene gasket with the polymer-1 side facing outward. Polymer-1 immersed in 57% hydroiodic acid aqueous solution at 80℃ for 24 hours
Only one side of the side reacted.

その後、クリスタルバイオレツトにて断面を染
色したところ表面20ミクロンが青色に染色されか
つ表面赤外スペクトルによりカルボン酸が確認さ
れた。この膜を塩素ガス中にて室温で常圧にて5
時間処理した後2.5規定苛性ソーダ/50%メタノ
ール中にて90℃で40時間処理しスルホン酸及びカ
ルボン酸のナトリウム塩型に変換した。この様に
して一方の表面にカルボン酸基を他面にスルホン
酸基を有するフツ素系陽イオン交換膜を製造し
た。この陽イオン交換膜2枚を0.15規定トリメチ
ルスルホニウムアイオダイド水溶液中に室温で15
時間浸漬しスルホニウムイオン型とした。この2
枚を重合体―2面が接するように重ね温度250℃、
圧力10Kg/cm2にて加熱プレスを5分間行つた。こ
のものは5規定苛性ソーダ水溶液中10時間煮沸に
耐える接着力を有していた。
Afterwards, when the cross section was stained with crystal violet, 20 microns of the surface was stained blue, and carboxylic acid was confirmed by surface infrared spectrum. This membrane was placed in chlorine gas at room temperature and normal pressure for 5 minutes.
After treatment for an hour, the mixture was treated in 2.5N caustic soda/50% methanol at 90°C for 40 hours to convert it into the sodium salt form of sulfonic acid and carboxylic acid. In this way, a fluorine-based cation exchange membrane having carboxylic acid groups on one surface and sulfonic acid groups on the other surface was produced. Two of these cation exchange membranes were placed in a 0.15 N trimethylsulfonium iodide aqueous solution at room temperature for 15 min.
It was immersed for a period of time to form a sulfonium ion type. This 2
Layer the polymer sheets so that the two sides are in contact at a temperature of 250°C.
Heat pressing was performed for 5 minutes at a pressure of 10 kg/cm 2 . This product had adhesive strength that withstood boiling in a 5N aqueous solution of caustic soda for 10 hours.

実施例 7 300c.c.のステンレス製オートクレーブに10g
のCF2=CFOCF2CF(CF3)O(CF23SO2F、
1ppmの硫酸銅を含んだ水95c.c.、過硫酸アンモ
ニウム0.18g、リン酸水素ナトリウム2.0g及び
パーフルオルオクタン酸アンモニウム1.9gを入
れて乳化させた後、0.16%の亜硫酸水素ナトリウ
ム溶液を5c.c.加え温度40℃に保ちながら、テト
ラフルオルエチレンを4Kg/cm2の圧力で共重合さ
せ、重合速度が一定になるようにテトラフルオル
エチレンの圧力を制御した。
Example 7 10g in a 300c.c. stainless steel autoclave
CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F,
After emulsifying 95 c.c. of water containing 1 ppm copper sulfate, 0.18 g of ammonium persulfate, 2.0 g of sodium hydrogen phosphate, and 1.9 g of ammonium perfluorooctanoate, add 5 c.c. of 0.16% sodium bisulfite solution. c. While maintaining the temperature at 40° C., tetrafluoroethylene was copolymerized at a pressure of 4 kg/cm 2 , and the pressure of tetrafluoroethylene was controlled so that the polymerization rate was constant.

得られたポリマーは元素分析より2.47重量%の
硫黄を含有しており、またポリマーの一部を加水
分解処理してイオン交換容量を測定したところ
0.72meq/g―乾燥樹脂であつた。
The obtained polymer contained 2.47% by weight of sulfur according to elemental analysis, and when a part of the polymer was hydrolyzed and the ion exchange capacity was measured.
0.72 meq/g - dry resin.

上記スルホニルフルオライド型のポリマーを厚
さ250ミクロンの膜状物に成形し、以下実施例6
と同様に処理し片側表層にカルボン酸基を有する
フツ素系陽イオン交換膜を得た。この陽イオン交
換膜2枚を0.10規定テトラメチルホスホニウム塩
基水溶液中に浸漬しホスホニウムイオン型に変換
した。この2枚をスルホン酸面が接するように重
ね温度270℃、圧力7Kg/cm2にて4分間加熱プレ
スした。このものは、2.5規定苛性ソーダ水/メ
タノール溶液(体積比=1:1)にて温度60℃で
1日処理しても充分に耐える接着力を有してい
た。
The above sulfonyl fluoride type polymer was molded into a film with a thickness of 250 microns, and the following Example 6
A fluorine-based cation exchange membrane having carboxylic acid groups on one surface layer was obtained in the same manner as above. Two sheets of this cation exchange membrane were immersed in a 0.10 N tetramethylphosphonium base aqueous solution to convert it into a phosphonium ion type. These two sheets were stacked so that the sulfonic acid sides were in contact with each other and heated and pressed at a temperature of 270° C. and a pressure of 7 kg/cm 2 for 4 minutes. This product had sufficient adhesive strength to withstand treatment with a 2.5N caustic soda water/methanol solution (volume ratio = 1:1) at a temperature of 60°C for one day.

実施例 8 実施例5と同様の方法で作成したカルボン酸基
を有しテトラフルオロエチレン製繊維状物で補強
された膜であつて、巾100cm、長さ130cmのものを
2枚用いた。これらの膜の周辺を巾約10cmにわた
つてトリメチルスルホニルアイオダイド水溶液に
て室温で15時間処理した。
Example 8 Two membranes having a carboxylic acid group and reinforced with a tetrafluoroethylene fibrous material prepared in the same manner as in Example 5 and having a width of 100 cm and a length of 130 cm were used. The periphery of these membranes over a width of about 10 cm was treated with an aqueous solution of trimethylsulfonyl iodide for 15 hours at room temperature.

次いでこの2枚の膜を重ねて巾方向の一辺と長
さ方向の二辺の縁をそれぞれ温度260℃、圧力10
Kg/cm2にて加熱プレスを5分間行ない接合して袋
状に加工した。
Next, these two membranes were stacked and the edges of one width direction and two length sides were heated at a temperature of 260℃ and a pressure of 10℃.
Heat pressing was performed at Kg/cm 2 for 5 minutes to join and form a bag.

このものは15%水酸化ナトリウム、30%メタノ
ール、55%水からなる混合溶液の煮沸に充分耐え
る程度に強固に接合されていた。
The bond was strong enough to withstand boiling of a mixed solution consisting of 15% sodium hydroxide, 30% methanol, and 55% water.

実施例 9 実施例6と同様の方法で、繊維状物で補強され
た、一方の面にカルボン酸基を他面にスルホン酸
基を有する短辺が130cm、長辺が250cmの膜を作成
した。
Example 9 A membrane with a short side of 130 cm and a long side of 250 cm, reinforced with a fibrous material and having a carboxylic acid group on one side and a sulfonic acid group on the other side, was created in the same manner as in Example 6. .

この膜の両短辺を巾約10cmにわたつて、0.2規
定テトラエチルホスホニウム塩基水溶液に室温で
10時間浸漬した。
Both short sides of this membrane, approximately 10 cm wide, were soaked in a 0.2 N tetraethylphosphonium base aqueous solution at room temperature.
Soaked for 10 hours.

次いでこの両短辺をカルボン酸基の面とスルホ
ン酸基の面が接合面となる様重ね合せ、超音波溶
着器でホーン先端振幅150ミクロン、圧力30Kg/
cm2にて30秒間溶融接合して筒状膜とした。
Next, the two short sides were overlapped so that the carboxylic acid group surface and the sulfonic acid group surface were the bonding surfaces, and welded using an ultrasonic welder with a horn tip amplitude of 150 microns and a pressure of 30 kg/
A cylindrical membrane was formed by melt-bonding at cm 2 for 30 seconds.

このものは90℃の6.5規定苛性ソーダ水溶液中
で30日間以上の処理に耐える接着力を有してい
た。
This product had adhesive strength that withstood treatment in a 6.5N caustic soda aqueous solution at 90°C for more than 30 days.

実施例 10 実施例5と同様の方法でカルボン酸基を有し、
テトラフルオロエチレン製繊維状物で補強された
膜を作成した。
Example 10 Having a carboxylic acid group in the same manner as in Example 5,
A membrane reinforced with tetrafluoroethylene fibrous material was created.

この膜を実施例9と同様の方法で超音波溶着器
を用いた溶融接合して筒状膜とした。
This film was melt-bonded using an ultrasonic welder in the same manner as in Example 9 to form a cylindrical film.

このものは90℃、6.5規定苛性ソーダ水溶液中
で30日間以上の処理に耐える接着力を有してい
た。
This product had adhesive strength that withstood treatment in a 6.5N caustic soda aqueous solution at 90°C for more than 30 days.

Claims (1)

【特許請求の範囲】 1 スルホン酸及びその塩、カルボン酸及びその
塩、スルホンアミド及びその塩から選ばれた1種
又は2種以上の陽イオン交換基を側鎖に有するフ
ツ素系重合体を相互に溶融接合する方法に於て、
該重合体の少くとも一方のイオン交換基の対イオ
ンをスルホニウムイオン及び/又はホスホニウム
イオンで置換した後、溶融接合することを特徴と
する溶融接合方法。 2 フツ素系重合体が一般式 ―(OCF2CFY)l―(O)n―(CFY′)o―X ここでY及びY′は各々F又はC1〜C10のパーフ
ルオルアルキル基、l=0〜3、m=0〜1、
n=0〜12、X=スルホン酸基、カルボン酸
基、スルホンアミド基、又はそれらの塩 で表される側鎖構造を有する特許請求の範囲第1
項記載の方法。 3 陽イオン交換基の対イオンの少くとも10%が
スルホニウムイオン及び/又はホスホニウムイオ
ンである特許請求の範囲第1項記載の方法。 4 フツ素系重合体の一方のみの陽イオン交換基
の対イオンがスルホニウムイオン及び/又はホス
ホニウムイオンである特許請求の範囲第1項記載
の方法。 5 スルホニウムイオンが一般式〔R3S〕+で表わ
され、Rが炭素数1〜10のアルキル基又は炭素数
7〜10のアラルキル基である特許請求の範囲第1
項記載の方法。 6 ホスホニウムイオンが一般式〔R′4P〕+で表
わされ、R′が炭素数1〜10のアルキル基又は炭
素数6〜10のアリール基である特許請求の範囲第
1項記載の方法。 7 フツ素系重合体がフツ素系繊維にて補強され
たフツ素系陽イオン交換膜である特許請求の範囲
第1項記載の方法。 8 溶融接合を超音波にて行う特許請求の範囲第
1項記載の方法。 9 フツ素系重合体を溶融接合して筒状膜又は袋
状膜に形成する特許請求の範囲第1〜8項のいず
れか一項に記載の方法。
[Scope of Claims] 1. A fluorinated polymer having one or more cation exchange groups selected from sulfonic acids and their salts, carboxylic acids and their salts, sulfonamides and their salts in their side chains. In the method of mutually melting and joining,
A method for melt joining, which comprises replacing the counter ion of at least one of the ion exchange groups of the polymer with a sulfonium ion and/or a phosphonium ion, and then performing melt joining. 2 The fluorine-based polymer has the general formula -(OCF 2 CFY) l -(O) n -(CFY') o -X where Y and Y' are each F or a C 1 to C 10 perfluoroalkyl group. , l=0-3, m=0-1,
Claim 1 where n=0 to 12, X=side chain structure represented by a sulfonic acid group, a carboxylic acid group, a sulfonamide group, or a salt thereof
The method described in section. 3. The method according to claim 1, wherein at least 10% of the counterions of the cation exchange group are sulfonium ions and/or phosphonium ions. 4. The method according to claim 1, wherein the counter ion of only one cation exchange group of the fluorine-based polymer is a sulfonium ion and/or a phosphonium ion. 5. Claim 1 in which the sulfonium ion is represented by the general formula [R 3 S] + , and R is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms.
The method described in section. 6. The method according to claim 1, wherein the phosphonium ion is represented by the general formula [R' 4 P] + , and R' is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. . 7. The method according to claim 1, wherein the fluorine-based polymer is a fluorine-based cation exchange membrane reinforced with fluorine-based fibers. 8. The method according to claim 1, wherein the fusion bonding is performed using ultrasonic waves. 9. The method according to any one of claims 1 to 8, wherein the fluorine-based polymer is melt-bonded to form a cylindrical membrane or a bag-shaped membrane.
JP6072580A 1980-05-09 1980-05-09 Method for hot-melt joining of fluorine containing polymer Granted JPS56157432A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6072580A JPS56157432A (en) 1980-05-09 1980-05-09 Method for hot-melt joining of fluorine containing polymer
US06/258,637 US4339549A (en) 1980-05-09 1981-04-29 Process for fusion bonding of fluorocarbon type polymers which comprises counter-ion substitution prior to fusion bonding
CA000376655A CA1145236A (en) 1980-05-09 1981-04-30 Process for fusion bonding of fluorocarbon type polymers
DE8181103436T DE3165645D1 (en) 1980-05-09 1981-05-06 Improved process for fusion bonding of fluorocarbon type polymers
EP19810103436 EP0039897B1 (en) 1980-05-09 1981-05-06 Improved process for fusion bonding of fluorocarbon type polymers
SU813284352A SU1069629A3 (en) 1980-05-09 1981-05-08 Process for connecting together cation-exchange fluorocarbon membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6072580A JPS56157432A (en) 1980-05-09 1980-05-09 Method for hot-melt joining of fluorine containing polymer

Publications (2)

Publication Number Publication Date
JPS56157432A JPS56157432A (en) 1981-12-04
JPS6329695B2 true JPS6329695B2 (en) 1988-06-15

Family

ID=13150534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6072580A Granted JPS56157432A (en) 1980-05-09 1980-05-09 Method for hot-melt joining of fluorine containing polymer

Country Status (6)

Country Link
US (1) US4339549A (en)
EP (1) EP0039897B1 (en)
JP (1) JPS56157432A (en)
CA (1) CA1145236A (en)
DE (1) DE3165645D1 (en)
SU (1) SU1069629A3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792028A (en) * 1980-11-29 1982-06-08 Asahi Chem Ind Co Ltd Fluorocarbon cation exchange membrane
GB2121352B (en) * 1982-05-25 1986-03-19 Chlorine Eng Corp Ltd Bonding of cation exchange membrane
US4604323A (en) * 1985-02-22 1986-08-05 E. I. Du Pont De Nemours And Company Multilayer cation exchange membrane
DE4446675C2 (en) * 1994-12-12 1997-10-23 Daramic Inc Process for the repair of separator sheets for accumulators
GB0009506D0 (en) * 2000-04-17 2000-06-07 Innogy Ltd Ion exchange membrane
US6858045B2 (en) * 2002-11-29 2005-02-22 Praxair Technology, Inc. Method of manufacturing an electrolytic cell
US7043912B1 (en) 2004-12-27 2006-05-16 Utc Power, Llc Apparatus for extracting exhaust heat from waste heat sources while preventing backflow and corrosion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146213A (en) * 1959-03-23 1964-08-25 Dow Chemical Co Composition for use in solvent extraction process for the recovery of uranium and rare earth metals from aqueous solutions
DE2655145C2 (en) * 1976-12-06 1985-10-03 Basf Ag, 6700 Ludwigshafen Process for welding membranes made from fluorinated polymers
US4218275A (en) * 1978-02-03 1980-08-19 Olin Corporation Method of sealing separators for electrolytic cells for alkali metal chloride brines
JPS6041085B2 (en) * 1978-05-30 1985-09-13 旭化成株式会社 Melt processing method for fluoropolymer
US4284460A (en) * 1979-04-30 1981-08-18 Olin Corporation Heat sealing untreated sulfonamide-type cation exchange membranes
US4290833A (en) * 1979-09-28 1981-09-22 Olin Corporation Method for sealing cation exchange membranes of carboxylic acid type fluorinated polymers

Also Published As

Publication number Publication date
EP0039897A1 (en) 1981-11-18
SU1069629A3 (en) 1984-01-23
CA1145236A (en) 1983-04-26
US4339549A (en) 1982-07-13
JPS56157432A (en) 1981-12-04
EP0039897B1 (en) 1984-08-22
DE3165645D1 (en) 1984-09-27

Similar Documents

Publication Publication Date Title
KR840000725B1 (en) Novel polymers having acid functionality
US4090931A (en) Anode-structure for electrolysis
JPS63297406A (en) Sulfonic fluoro polymer with low equivalent weight
NO157822B (en) PROCEDURE FOR PREPARING A MIXTURE OF A FLUID AND A PERFLUORATED IONE EXCHANGE POLYMER, AND APPLICATION OF THE MIXTURE.
NO843527L (en) PROCEDURE FOR PREPARING A MEMBRANE OF POOD POLYMES
JPH0237936B2 (en)
US4165248A (en) Method of joining fluorocarbon membrane sheets with quaternary ammonium compounds
US4147844A (en) Reverse-side treatment of fabric reinforced membranes
US3925135A (en) Method of making laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups
US3884885A (en) Melt processing of fluorinated polymers
JPH0256252A (en) Homogeneous mixture of organic polymer material, ion exchange membrane composed of said mixture and electrolytic cell containing it
JPS6329695B2 (en)
GB2030152A (en) Process foe heat-treating a fluoro-carbon sulphonamide cation exchange membrane
CA1133425A (en) Fluorinated ion exchange polymer containing carboxylic groups, and film and membrane thereof
US4076571A (en) Method of bonding electrolytic diaphragms of perfluorosulfonic acid resins
JPS5887286A (en) Cationic exchange electrolytic cell membrane, manufacture and repairment
JPS609053B2 (en) Manufacturing method of cation exchange membrane
US4535112A (en) Cation exchange electrolytic cell membranes and method for making and repairing
US4487668A (en) Fluorinated ion exchange polymer containing carboxylic groups, and film and membrane thereof
JPS62501079A (en) Fluoropolymer solution/dispersion compositions
US4290833A (en) Method for sealing cation exchange membranes of carboxylic acid type fluorinated polymers
SU1494869A3 (en) Method of producing fluorinated cation-exchange membrane
JPS58500567A (en) Method for producing sheet-like or shaped cation exchange membranes
JPS6011933B2 (en) Fluorine-based cation exchange membrane with two-layer structure and method for producing the same
CA1112820A (en) Melt processing of fluorinated polymers