JPS6329587B2 - - Google Patents

Info

Publication number
JPS6329587B2
JPS6329587B2 JP55032468A JP3246880A JPS6329587B2 JP S6329587 B2 JPS6329587 B2 JP S6329587B2 JP 55032468 A JP55032468 A JP 55032468A JP 3246880 A JP3246880 A JP 3246880A JP S6329587 B2 JPS6329587 B2 JP S6329587B2
Authority
JP
Japan
Prior art keywords
carrier
cured
catalyst
attrition
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032468A
Other languages
Japanese (ja)
Other versions
JPS56129039A (en
Inventor
Hideaki Ueno
Fumyoshi Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3246880A priority Critical patent/JPS56129039A/en
Publication of JPS56129039A publication Critical patent/JPS56129039A/en
Publication of JPS6329587B2 publication Critical patent/JPS6329587B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高強度および耐アトリシヨン性に優
れた触媒担体の製造方法に関するものである。 自動車の排気ガス浄化のために、アルミナ等の
触媒担体に白金などの触媒成分を担持させた触媒
が使用されていることは既に知られている。この
触媒は、触媒としての作用はもちろんのこと、エ
ンジンの始動から少なくとも一定時間内に定常状
態で作動しなければならず、また走行時の振動に
も耐えなければならないなどのことから、一定の
暖機性や耐摩耗性が要求されており、この要求は
通常触媒担体によつて得ている。 このような触媒特性に優れたものとして、アル
ミナ触媒担体が最も多く使用されており、従来そ
の製造方法としては;バイヤー法で得られた水酸
化アルミニウムを部分脱水し、これを粉砕し、造
粒してから飽和水蒸気圧中で養生し、乾燥、焼成
する;というのが一般的であつた。 しかしながら、以上の方法で得られるアルミナ
質触媒担体においては、ある一定以上の強度を確
保するためには密度を大きくする必要があり、こ
のため触媒重量が増大するという欠点があつた。
また、密度が大きくなると触媒床の暖機性が著し
く悪化するという問題もあつた。 以上のような欠点を解決する方法として、本発
明者等はさきに、造粒物の養生を苛性アルカル水
溶中またはアルミン酸ナトリウム水溶液中で行な
うことにより担体の強度を向上せしめるという方
法を提案した。しかしながら、この方法において
は強度は向上するが、耐摩耗性の大巾な向上は得
られなかつた。 本発明は、以上のような欠点を解決したもの
で、比強度が大きくしかも耐摩耗性に優れた触媒
担体の製造方法を提供するものである。 本発明は、水酸化アルミニウムを部分脱水し、
この化合物をそのまま或いは粉砕し、必要ならば
適当な添加物と一緒に混合し、造粒してから〓焼
し、この造粒物をアルミン酸ナトリウム水溶液中
で養生した後、乾燥、焼成することを特徴とする
触媒担体の製造方法に関するものである。 本発明において、適する添加物としては、例え
ばセルロース等の有機化合物、CeO2、MgO、
Fe2O3、MnO2、Mn2O3、Cr2O3、TiO2、CuO、
CoO、Co2O3、NiO等の各種酸化物が挙げられ
る。また、〓焼温度は特に限定しないが、150℃
以上が好ましく、特に有機添加物を混合せしめた
場合には、この有機添加物の分解温度以上の温度
で〓焼するのが望ましい。 本発明で製造された触媒担体は、白金、パラジ
ウム、ロジウム等の貴金属をはじめ、鉄、銅、ニ
ツケル等の触媒金属を担持せしめて触媒とする。 以下の実施例で、本発明を更に詳しく説明す
る。 実施例 1 バイヤー法で製造した平均粒径40μの水酸化ア
ルミニウムを部分脱水した後、平均粒径12μまで
粉砕して皿型造粒機で粒径2.8〜4.0mmφのアルミ
ナ粒状体を製造した。 上記アルミナ粒状体を、80〜500℃の各温度で
5時間〓焼した後、10%NaAlO2水溶液中で養生
した。この養生は、160℃の飽和水蒸気圧中で10
時間行なつた。養生された各アルミナ粒状体は、
水洗して付着あるいは固溶しているNa+を除去し
て、担体中のNa量をNa2Oとして0.3%以下とし
た。この後、アルミナ粒状体を150℃で3時間乾
燥し、800℃で3時間焼成して再び活性化した。 以上のようにして得られた活性アルミナ粒状体
について以下に示す方法によつて圧壊強度、嵩密
度、耐アトリシヨン性を調べた。 1 圧壊強度測定法 木屋式硬度計によつて活性アルミナ粒状体の
強度を測定し、20粒の平均値を圧壊強度とし
た。 2 カサ密度測定法 100c.c.のメスシリンダー中に活性アルミナ粒
状体約40c.c.を充填し、その体積と重量とからカ
サ密度を算出した。 3 アトリシヨン率の測定法 第1図に示すアトリシヨン試験機により測定
を行なつた。まず、供試活性アルミナ粒状体55
c.c.を550℃で約1時間焼成した後重量を測定し、
この時の重量をW1とした。次に、この試料を
最大直径130mm、最小直径20mm、円錐の高さ230
mm、頂角90度のガラス管からなる第1図に示す
アトリシヨン試験機のアトリシヨン筒3内に入
れ、ノズル1より空気をアトリシヨン筒3に送
入し、アトリシヨン筒3内の活性アルミナ粒状
体を5分間アトリシヨン運動させた。尚、アト
リシヨン筒3内に吹き込まれた空気は、上部金
網製のキヤツプ2から系外へ放出される。その
後、活性アルミナ粒状体をアトリシヨン筒3か
ら取り出し550℃で1時間焼成して重量を測定
し、この重量をW2として、アトリシヨン率を
次式により算出した。 アトリシヨン率(%)=W1−W2/W1×100 また比較例として造粒したアルミナ粒状体を
〓焼した後、養生をNaAlO2水溶液中ではな
く、水中(比較例1)で行なつた場合と、〓焼
せずにそのままNaAlO2水溶液中(比較例2)
または水中(比較例3)で養生した場合のアル
ミナ粒状体の特性も同様に測定した。 第2図は、養生前のアルミナ粒状体〓焼温度
とアトリシヨン率との関係を示すグラフで、図
中A線は本発明(実施例1)、B線は比較例1、
白丸印は比較例2、白三角印は比較例3を示す
ものである。第3図は、養生前のアルミナ粒状
体〓焼温度と圧壊強度との関係を示すグラフ、
第4図は養生前のアルミナ粒状体〓焼温度とカ
サ密度との関係を示すグラフであり、図中のA
線およびB線ならびに白丸、白三角印は第2図
と同様のものを示している。 これ等の図から明らかなように、本発明によれ
ばアルミナ粒状体の強度、耐アトリシヨン性が著
しく向上し、しかもカサ密度の増加はわずかであ
る。 実施例 2 バイヤー法で製造した平均粒径40μの水酸化ア
ルミニウムを部分脱水した後、平均粒径12μまで
粉砕した。次にこのアルミナ粉末75重量%と結晶
セルロース25重量%を混合し、この粉末を皿型造
粒機で粒径2.8〜4.0mmφのアルミナ粒状体に造粒
した。 上記アルミナ粒状体を用いて、実施例1と同様
の試験を行なつた。また比較例4、5、6とし
て、上記アルミナ粒状体を用いて各々比較例1、
2、3と同様に処理して、試験を行なつた。結果
を第5,6、および7図に示す。各図中のA線は
本発明(実施例2)によるもの、B線および白
丸、白三角印は夫々、比較例4、5、6を示す。 実施例 3 バイヤー法で製造した平均粒径40μの水酸化ア
ルミニウムを部分脱水した後、平均粒径12μまで
粉砕した。次に、このアルミナ粉末72重量%と結
晶セルロース20重量%および平均粒径1μの酸化
セリウム(CeO2)8重量%を混合し、この粉末
を皿型造粒機で粒径2.8〜4.0mmφのアルミナ粒状
体に造粒した。 上記粒状体を400℃で10時間〓焼した後、10%
NaAlO2水溶液中で養生したものを担体A(実施
例3)、同様に〓焼した後、水中で養生したもの
を担体B、〓焼せずにそのまま水中で養生したも
のを担体C、〓焼せずにそのまま10%NaAlO2
溶液中で養生したものを担体D(以上比較例7)
とした。尚、養生条件は全て160℃×5時間とし
た。また、養生後の各担体は、実施例1と同様に
して担体特性を調べた。結果を第1表に示す。
The present invention relates to a method for producing a catalyst carrier having high strength and excellent attrition resistance. It is already known that a catalyst in which a catalyst component such as platinum is supported on a catalyst carrier such as alumina is used for purifying exhaust gas from automobiles. This catalyst not only functions as a catalyst, but also has to operate in a steady state for at least a certain period of time after the engine starts, and must also withstand vibrations during driving. Warm-up properties and abrasion resistance are required, and these requirements are usually achieved by a catalyst carrier. Alumina catalyst carriers are most commonly used as they have excellent catalytic properties, and the conventional manufacturing method is to partially dehydrate aluminum hydroxide obtained by the Bayer process, crush it, and granulate it. It was common practice to cure the material under saturated steam pressure, dry it, and fire it. However, in the alumina catalyst carrier obtained by the above method, it is necessary to increase the density in order to ensure strength above a certain level, which has the disadvantage that the weight of the catalyst increases.
There was also the problem that as the density increased, the warm-up performance of the catalyst bed deteriorated significantly. As a method to solve the above-mentioned drawbacks, the present inventors previously proposed a method in which the strength of the carrier is improved by curing the granulated material in an aqueous solution of caustic alkali or an aqueous solution of sodium aluminate. . However, although this method improves the strength, it does not result in a significant improvement in wear resistance. The present invention solves the above-mentioned drawbacks and provides a method for producing a catalyst carrier having high specific strength and excellent wear resistance. The present invention partially dehydrates aluminum hydroxide,
This compound may be used as it is or pulverized, mixed with appropriate additives if necessary, granulated, and then calcined. The granulated product is cured in an aqueous sodium aluminate solution, then dried and calcined. The present invention relates to a method for producing a catalyst carrier characterized by the following. In the present invention, suitable additives include, for example, organic compounds such as cellulose, CeO 2 , MgO,
Fe 2 O 3 , MnO 2 , Mn 2 O 3 , Cr 2 O 3 , TiO 2 , CuO,
Examples include various oxides such as CoO, Co 2 O 3 and NiO. In addition, the baking temperature is not particularly limited, but is 150℃.
The above is preferred, and especially when an organic additive is mixed, it is desirable to sinter at a temperature higher than the decomposition temperature of the organic additive. The catalyst carrier produced in the present invention is used as a catalyst by supporting noble metals such as platinum, palladium, and rhodium, as well as catalytic metals such as iron, copper, and nickel. The following examples illustrate the invention in more detail. Example 1 Aluminum hydroxide produced by the Bayer process and having an average particle size of 40 μm was partially dehydrated and then ground to an average particle size of 12 μm to produce alumina granules with a particle size of 2.8 to 4.0 mmφ using a dish granulator. The alumina granules were calcined at various temperatures from 80 to 500° C. for 5 hours, and then cured in a 10% NaAlO 2 aqueous solution. This curing is carried out for 10
I spent time. Each cured alumina granule is
By washing with water to remove adhering or solid-dissolved Na + , the amount of Na in the carrier was reduced to 0.3% or less as Na 2 O. Thereafter, the alumina granules were dried at 150°C for 3 hours and fired at 800°C for 3 hours to activate them again. The activated alumina granules obtained as described above were examined for crushing strength, bulk density, and attrition resistance using the methods described below. 1. Method for Measuring Compressive Strength The strength of the activated alumina granules was measured using a Kiya hardness tester, and the average value of 20 grains was taken as the crushing strength. 2. Bulk Density Measuring Method Approximately 40 c.c. of activated alumina granules were filled into a 100 c.c. graduated cylinder, and the bulk density was calculated from the volume and weight. 3. Measuring method of attrition rate The attrition rate was measured using the attrition tester shown in FIG. First, the activated alumina granules tested
After baking cc at 550℃ for about 1 hour, measure the weight.
The weight at this time was defined as W1 . Next, this sample was prepared with a maximum diameter of 130 mm, a minimum diameter of 20 mm, and a cone height of 230 mm.
The activated alumina granules in the attrition tube 3 are placed in the attrition tube 3 of the attrition tester shown in FIG. Atraction exercise was performed for 5 minutes. Note that the air blown into the attrition cylinder 3 is discharged to the outside of the system from the upper metal mesh cap 2. Thereafter, the activated alumina granules were taken out from the attrition cylinder 3 and fired at 550° C. for 1 hour, and their weight was measured. Using this weight as W 2 , the attrition rate was calculated using the following formula. Attrition rate (%) = W 1 - W 2 /W 1 × 100 As a comparative example, the granulated alumina granules were calcined and then cured in water (Comparative Example 1) instead of in an aqueous NaAlO 2 solution. and 〓In NaAlO 2 aqueous solution without baking (Comparative Example 2)
Alternatively, the characteristics of the alumina granules cured in water (Comparative Example 3) were also measured in the same manner. FIG. 2 is a graph showing the relationship between the calcination temperature and attrition rate of alumina granules before curing.
Open circles indicate Comparative Example 2, and open triangles indicate Comparative Example 3. Figure 3 is a graph showing the relationship between calcination temperature and crushing strength of alumina granules before curing.
Figure 4 is a graph showing the relationship between the sintering temperature and bulk density of alumina granules before curing.
Lines and B lines, white circles, and white triangles indicate the same things as in FIG. 2. As is clear from these figures, according to the present invention, the strength and attrition resistance of the alumina granules are significantly improved, and the bulk density increases only slightly. Example 2 Aluminum hydroxide with an average particle size of 40μ produced by the Bayer method was partially dehydrated and then ground to an average particle size of 12μ. Next, 75% by weight of this alumina powder and 25% by weight of crystalline cellulose were mixed, and this powder was granulated into alumina granules having a particle size of 2.8 to 4.0 mmφ using a dish granulator. A test similar to that in Example 1 was conducted using the above alumina granules. In addition, as Comparative Examples 4, 5, and 6, the above alumina granules were used as Comparative Examples 1, 5, and 6, respectively.
The test was conducted in the same manner as in 2 and 3. The results are shown in Figures 5, 6, and 7. Line A in each figure shows the one according to the present invention (Example 2), and line B, white circles, and white triangles show Comparative Examples 4, 5, and 6, respectively. Example 3 Aluminum hydroxide with an average particle size of 40 μm produced by the Bayer method was partially dehydrated and then ground to an average particle size of 12 μm. Next, 72% by weight of this alumina powder, 20% by weight of crystalline cellulose, and 8% by weight of cerium oxide (CeO 2 ) with an average particle size of 1μ are mixed, and this powder is pulverized using a dish-type granulator with a particle size of 2.8 to 4.0 mmφ. It was granulated into alumina granules. After baking the above granules at 400℃ for 10 hours, 10%
Carrier A (Example 3) was cured in NaAlO 2 aqueous solution; Carrier B was cured in water after baking in the same manner; Carrier C was cured in water without baking; Carrier D (Comparative Example 7) was obtained by curing in a 10% NaAlO 2 aqueous solution without
And so. The curing conditions were all 160°C for 5 hours. Further, the carrier properties of each carrier after curing were investigated in the same manner as in Example 1. The results are shown in Table 1.

【表】 実施例 4 バイヤー法で製造した平均粒径1μの水酸化ア
ルミニウムを部分脱水した。このアルミナ粉末75
重量%と結晶セルロース25重量%を混合し、この
粉末を皿型造粒機で粒径2.8〜4.0mmφの粒状体に
造粒した。 上記粒状体を、400℃で10時間〓焼した後、5
%NaAlO2水溶液中で養生したものを担体E(実
施例4)、同様に〓焼した後水中で養生したもの
を担体F、〓焼せずにそのまま水中で養生したも
のを担体G、〓焼せずにそのまま5%NaAlO2
溶液中で養生したものを担体H(以上比較例8)
とした。尚、養生条件は全て160℃×10時間とし
た。また養生後の各担体は、実施例1と同様にし
て担体特性を調べた。結果を第2表に示す。
[Table] Example 4 Aluminum hydroxide having an average particle size of 1 μm produced by the Bayer method was partially dehydrated. This alumina powder 75
% by weight and 25% by weight of crystalline cellulose were mixed, and this powder was granulated into granules having a particle size of 2.8 to 4.0 mmφ using a dish granulator. After baking the above granules at 400℃ for 10 hours,
% NaAlO 2 aqueous solution (Example 4), Carrier F was cured in water after being baked in the same way, Carrier G was cured in water without baking, and Carrier G was cured in water without baking. Carrier H (Comparative Example 8) was obtained by curing in a 5% NaAlO 2 aqueous solution without
And so. The curing conditions were all 160°C for 10 hours. Further, the carrier properties of each carrier after curing were investigated in the same manner as in Example 1. The results are shown in Table 2.

【表】 実施例 5 バイヤー法で製造した平均粒径40μの水酸化ア
ルミニウムを部分脱水した後、粉砕して平均粒径
12μのアルミナ粉末とした。この粉末と酸化マグ
ネシウム(MgO)をAl2O3:MgO=1:1(モル
比)となるように混合し、皿型造粒機で粒径2.8
〜4.0mmφの粒状体を製造した。 上記粒状体を500℃で5時間〓焼した後15%
NaAlO2水溶液中で養生したものを担体K(実施
例5)、同様に〓焼した後水中で養生したものを
担体L、〓焼せずにそのまま養生したものを担体
M、〓焼せずにそのまま15%NaAlO2水溶液中で
養生したものを担体N(以上比較例9)とした。
尚、養生条件は全て120℃×20時間とした。また
養生後の各担体は、実施例1と同様にして担体特
性を調べた。結果を第3表に示す。
[Table] Example 5 After partially dehydrating aluminum hydroxide with an average particle size of 40μ manufactured by the Bayer method, it was crushed to obtain an average particle size of 40 μm.
It was made into 12μ alumina powder. This powder and magnesium oxide (MgO) were mixed at a ratio of Al 2 O 3 :MgO = 1:1 (mole ratio), and the particle size was 2.8 using a dish granulator.
Granules with a diameter of ~4.0 mm were produced. 15% after baking the above granules at 500℃ for 5 hours
Carrier K (Example 5) was cured in NaAlO 2 aqueous solution, Carrier L was cured in water after baking, Carrier M was cured without baking, and Carrier M was cured in water without baking. Carrier N (Comparative Example 9) was prepared by curing it in a 15% NaAlO 2 aqueous solution.
The curing conditions were all 120°C for 20 hours. Further, the carrier properties of each carrier after curing were investigated in the same manner as in Example 1. The results are shown in Table 3.

【表】 以上の如く、本発明によれば従来の製造工程で
製造された触媒担体より強度が大で、しかも耐摩
耗性に優れた触媒担体を製造できる。したがつ
て、同一強度および同一耐摩耗性を有する場合、
従来の触媒担体より密度を小さくできるので、軽
量化並びに暖機性の面から非常に有利であり、本
発明は極めて大なる価値を有するものである。 尚、実施例1と実施例2で養生前の担体〓焼温
度と圧壊強度との関係が異なるのは、実施例2で
は担体中にセルロースが存在するためで、〓焼温
度が低温の場合には、担体中にセルロースが残存
するので養生の効果が小さくなるためであろう。
一方、高温の場合には〓焼時に担体中のセルロー
スが燃焼除去するため、養生の効果が大きくなる
ためであると思われる。また有機添加物としてセ
ルロースを使用した場合のみを示したが、セルロ
ース以外の有機添加物を使用できることは言うま
でもない。
[Table] As described above, according to the present invention, it is possible to produce a catalyst carrier which has greater strength and excellent wear resistance than catalyst carriers produced by conventional production processes. Therefore, if they have the same strength and wear resistance,
Since the density can be lower than that of conventional catalyst carriers, it is very advantageous in terms of weight reduction and warm-up performance, and the present invention has extremely great value. The reason why the relationship between the calcination temperature and the crushing strength of the carrier before curing is different between Example 1 and Example 2 is because cellulose is present in the carrier in Example 2, and when the calcination temperature is low, This is probably because cellulose remains in the carrier, reducing the curing effect.
On the other hand, at high temperatures, the cellulose in the carrier is burned and removed during sintering, which seems to increase the curing effect. Further, although only the case where cellulose is used as the organic additive is shown, it goes without saying that organic additives other than cellulose can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、アトリシヨン率試験機の一部破断
図、第2図、第3図および第4図は、それぞれ実
施例1および比較例1、2、3で得た触媒担体の
〓焼温度に対するアトリシヨン率、圧壊強度およ
びカサ密度の関係を示すグラフ、第5図、第6図
および第7図は、それぞれ実施例2および比較例
4、5、6で得た触媒担体の〓焼温度に対するア
トリシヨン率、圧壊強度およびカサ密度の関係を
示すグラフを表わす。 図中、1…ノズル、2…金網キヤツプ、3…ア
トリシヨン筒、4…粒状体。
Figure 1 is a partially cutaway view of the attrition rate tester, and Figures 2, 3, and 4 show the calcination temperature of the catalyst carriers obtained in Example 1 and Comparative Examples 1, 2, and 3, respectively. Graphs showing the relationship between attrition rate, crushing strength, and bulk density, Figures 5, 6, and 7 show the attrition versus calcination temperature of the catalyst carriers obtained in Example 2 and Comparative Examples 4, 5, and 6, respectively. 2 is a graph showing the relationship between modulus, crushing strength, and bulk density. In the figure, 1...nozzle, 2...wire mesh cap, 3...attrition cylinder, 4...granular material.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化アルミニウムを部分脱水し、該化合物
をそのまま或いは粉砕し、造粒して〓焼し、該造
粒物をアルミン酸ナトリウム水溶液中で養生した
後、乾燥、焼成することを特徴とする触媒担体の
製造方法。
1. A catalyst characterized in that aluminum hydroxide is partially dehydrated, the compound is left as is or pulverized, granulated and calcined, the granulated product is cured in an aqueous sodium aluminate solution, and then dried and calcined. Method for manufacturing carrier.
JP3246880A 1980-03-14 1980-03-14 Preparation of catalyst carrier Granted JPS56129039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246880A JPS56129039A (en) 1980-03-14 1980-03-14 Preparation of catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246880A JPS56129039A (en) 1980-03-14 1980-03-14 Preparation of catalyst carrier

Publications (2)

Publication Number Publication Date
JPS56129039A JPS56129039A (en) 1981-10-08
JPS6329587B2 true JPS6329587B2 (en) 1988-06-14

Family

ID=12359797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246880A Granted JPS56129039A (en) 1980-03-14 1980-03-14 Preparation of catalyst carrier

Country Status (1)

Country Link
JP (1) JPS56129039A (en)

Also Published As

Publication number Publication date
JPS56129039A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
US5733842A (en) Method of making porous catalyst carrier without the addition of pore forming agents
US4237030A (en) Catalyst for purifying exhaust gas from an internal combustion engine
US7172990B2 (en) Highly active spherical metal support catalysts
UA61932C2 (en) A method for producing zeolite x granules with a low content of silicon dioxide having a low content of inert binding agent
US3961037A (en) Process for forming hydrogen and carbon dioxide using a catalyst consisting essentially of oxides of copper, zinc and aluminum or magnesium
US4224302A (en) Process for producing an alumina catalyst carrier
US4598062A (en) Iron oxide-chromium oxide catalyst and process for high temperature water-gas shift reaction
US4061594A (en) Alumina-based bodies obtained by agglomeration which are resistant to elevated temperatures
JPH0764613B2 (en) Inert ceramic catalyst bed support and method of making the same
US2551580A (en) Acid-treated clay catalyst for cracking hydrocarbons
US6660243B1 (en) Titanium dioxide methods of production
US3787322A (en) Catalyst for purification of exhaust gases from motor vehicles and industrial plants
US3867309A (en) Catalyst composition for removing noxious components from a gaseous stream
JPS6330063B2 (en)
JPS58163444A (en) Preparation of catalyst
JP2004276025A (en) Method for producing catalyst which contains zinc aluminate as principal component, and produced catalyst
JPS6329587B2 (en)
JPS633654B2 (en)
US3962138A (en) Cobalt-oxide-based catalytic substances for the oxidation of ammonia
US3251783A (en) Method of preparing an alumina supported catalyst composition
RU2623436C1 (en) Carrier for catalysts based on aluminium oxide and method of its preparation
US4370310A (en) Zinc aluminate prepared using an alumina hydrate
US2419255A (en) Process of making a carbon monoxide oxidation catalyst
CN112007625B (en) Alpha-alumina carrier, preparation method, silver catalyst and application
US3752772A (en) Preparation of catalyst from kaolin clay