JPS63295457A - Formation of optical lens - Google Patents

Formation of optical lens

Info

Publication number
JPS63295457A
JPS63295457A JP13067887A JP13067887A JPS63295457A JP S63295457 A JPS63295457 A JP S63295457A JP 13067887 A JP13067887 A JP 13067887A JP 13067887 A JP13067887 A JP 13067887A JP S63295457 A JPS63295457 A JP S63295457A
Authority
JP
Japan
Prior art keywords
glass plate
glass
optical lens
ions
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13067887A
Other languages
Japanese (ja)
Other versions
JPH0723238B2 (en
Inventor
Kazuhiro Tanaka
和裕 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62130678A priority Critical patent/JPH0723238B2/en
Publication of JPS63295457A publication Critical patent/JPS63295457A/en
Publication of JPH0723238B2 publication Critical patent/JPH0723238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To enable production of an optical lens having an arbitrary refractive index without executing mechanical polishing by implanting the ions of a specific element by an ion implanting machine to a glass plate having both parallel faces, and changing the concn. of the implanted ions continuously radially from the center of the glass plate. CONSTITUTION:After the surface of the glass plate 1 having both the parallel faces is smoothed by sufficient polishing, the glass plate is set to the ion implanting machine and the boron ions 2 are implanted thereto. The implanted ions are continuously changed from the central part to the circumferential edge part of the glass late 1 and are so controlled that the rate of injection is uniform on the circle-radial circle from the center. The transparency of the glass plate which is decreased by the ion implantation is restored to the initial transparency by annealing the glass plate for 2hr at 200 deg.C after the ion implantation. The optical lens of an arbitrary focal length is easily produced by the adjustment of the rate of the ion implantation without mechanically polishing the glass.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学機器などに使用される光学レンズの作成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an optical lens used in optical equipment and the like.

〔従来の技術〕[Conventional technology]

通常光学製器1こは光学レンズが一般的に使用され、極
めて一般的tものとなっており1種々の分野で利用され
ている。
2. Description of the Related Art Optical lenses are commonly used as optical instruments, and are extremely common and used in a variety of fields.

ここで従来の光学レンズの作成方法の一例を第3図を参
照して説明する。光学ガラス(1)を所望の大きさに切
断しくIK3図(勾)、所望の曲率半径をもつように片
面を研磨する(@3図Φン)。
An example of a conventional optical lens manufacturing method will now be described with reference to FIG. 3. Cut the optical glass (1) to the desired size (Fig. IK3) and polish one side to have the desired radius of curvature (Fig. 3).

次に、残る片面についても同様な曲率半径triをもつ
ようにガラスの研磨を行ない、結局@3図re)に示す
ような凸面レンズが形成される。以上のような方法で従
来のレンズは作成されているので。
Next, the glass is polished so that the remaining one side has the same radius of curvature tri, and a convex lens as shown in Figure 3 (re) is finally formed. Conventional lenses are created using the method described above.

研磨技術は高度な熟練と技能が要求されていた。Polishing technology required a high degree of skill and skill.

また、所望の焦点距離fが必要な場合焦点距離fはガラ
ス及び空間の屈折率をそれぞれn及び〜とすると。
Further, when a desired focal length f is required, the focal length f is assumed to be the refractive index of the glass and the space, respectively, as n and ~.

で表わされる。It is expressed as

〔発明が解決しようとする問題点1 以上のようにレンズの焦点距離fは曲率半径rに依存す
るが、ガラスの表面を所望の曲率半径に加工することは
極めて困難で、高度な技術が必要であり、研磨用治具を
各種用意する必要があり。
[Problem to be solved by the invention 1 As mentioned above, the focal length f of a lens depends on the radius of curvature r, but it is extremely difficult to process the glass surface to the desired radius of curvature, and requires advanced technology. Therefore, it is necessary to prepare various polishing jigs.

量産性に乏しかった。従って、任意の所望の形状の光学
レンズを作成することは極めて困難であった。更に、光
学機器などに光学レンズを設置する場合についても形状
の異なったレンズを用いテ光学設計をする必要があり、
設計が複雑になるなどの問題点があった。
It was not suitable for mass production. Therefore, it has been extremely difficult to create an optical lens of any desired shape. Furthermore, when installing optical lenses in optical equipment, etc., it is necessary to design the optical system using lenses with different shapes.
There were problems such as the design being complicated.

この発明は以上のよhな問題点を解消するためになされ
たもので1機械的研磨を用いることな(。
This invention was made to solve the above-mentioned problems and does not use mechanical polishing.

容易に任意の焦点距離の光学レンズを作成する方法を得
ることを目的とする。
The purpose of the present invention is to obtain a method for easily creating an optical lens of any focal length.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光学レンズの作成方法では、光学グラス
番こ原子または分子イオンを所要パターンに注入するも
のである。
In the method for producing an optical lens according to the present invention, atoms or molecular ions of an optical glass are implanted in a desired pattern.

〔作用〕[Effect]

この発明番こおけるイオンの注入は光学ガラスの光屈折
率を変化させる効果があるので所要パターンにイオン注
入することによって光学レンズを形成することができる
Ion implantation in this invention has the effect of changing the optical refractive index of optical glass, so an optical lens can be formed by implanting ions in a desired pattern.

〔実施例〕〔Example〕

第1図はこの発明の詳細な説明するための図で。 FIG. 1 is a diagram for explaining the invention in detail.

光学ガラスに対するイオン注入量と光の屈折Inの変化
との関係を示すグラフである。イオン注入量の増加と共
にほぼ比例して光の屈折率nが変化する。このイオン注
入量と屈折率との関係を利用して光学レンズを形成する
。以下に一実施例を第2図に示す。光学ガラス(1)(
約3■の厚さ)を両表面が平行になるように切り出し十
分研磨する。
3 is a graph showing the relationship between the amount of ion implantation into optical glass and the change in light refraction In. As the amount of ion implantation increases, the refractive index n of light changes almost proportionally. An optical lens is formed using this relationship between the amount of ion implantation and the refractive index. An example is shown in FIG. 2 below. Optical glass (1) (
(approximately 3cm thick) is cut out so that both surfaces are parallel and thoroughly polished.

この光学ガラス(1)をイオン注入機にセットし、イオ
ン注入する。注入するイオン(2)としてホウ素イオン
CB+)とし、光学ガラス(1)の中心部をl0III
ONS/(−の注入量とし0周縁部は106 l0N8
%メの注入量とする。そして、この間は注入量を直縄状
暑こ変化させ、中心から同一半径円上では均一の注入量
となるように制御する。通常、ガラスにイオンを注入す
ることによりガラスの透明度が低下する。
This optical glass (1) is set in an ion implanter and ions are implanted. The ions (2) to be implanted are boron ions (CB+), and the center of the optical glass (1) is 10III.
ONS/(- injection amount and 0 peripheral area is 106 l0N8
The injection amount is %. During this period, the injection amount is varied in a linear manner, and the injection amount is controlled to be uniform on the same radius circle from the center. Typically, implanting ions into glass reduces the transparency of the glass.

これは注入されたイオンがガラス中にカラーセンタを形
成するからであり、ガラス自身が着色する。
This is because the implanted ions form a color center in the glass, and the glass itself becomes colored.

従って、イオン注入後200℃の温度で2時間程度アニ
ールを行ないカラーセンタを拡散させ透明度を復帰させ
る。これ緩こよって、ガラス中心部からガラス周辺部に
亘って徐々に屈折率が変化するようになり、光学レンズ
が形成される。
Therefore, after ion implantation, annealing is performed at a temperature of 200° C. for about 2 hours to diffuse the color center and restore transparency. As a result of this gradual twisting, the refractive index gradually changes from the center of the glass to the periphery of the glass, forming an optical lens.

次に他の実施例について説明する。イオン注入装置の技
術的進歩は著しく、イオン注入量のコントロールが容易
になっている。−万、最近フォーカスイオンビーム(F
IB)露光装置が登場し、イオンビームリングラフィが
比較的容易に行なわれるようになっている。前の実施例
と同様にガラス板を研磨し、このFIB露光装置を用い
てガサ9ムイオン(Ga”)を屓次照射する。イオンビ
ーム露光装置に勿いては液体イオン源を用いた露光が可
能となり、イオンビームの制御が容易となっている。
Next, other embodiments will be described. Technological advances in ion implantation equipment have been remarkable, and it has become easier to control the amount of ion implantation. - 10,000, recently focused ion beam (F
IB) With the advent of exposure equipment, ion beam phosphorography has become relatively easy to perform. As in the previous example, a glass plate is polished and sequentially irradiated with gas9m ions (Ga'') using this FIB exposure device.In addition to the ion beam exposure device, exposure using a liquid ion source is also possible. This makes it easy to control the ion beam.

この場合も、勿論、イオン照射量は中心部から周縁部に
亘って直線的に変化させる。加速電圧25kaVで、照
射量は中心部で700pA、周縁部で350pAとする
。その後、前の実施例の場合と同様、カラーセンタを消
失させるために、200℃の温度で約2時間のアニール
を行なう。
In this case as well, of course, the ion irradiation amount is varied linearly from the center to the periphery. At an accelerating voltage of 25 kaV, the irradiation amount is 700 pA at the center and 350 pA at the periphery. Thereafter, as in the previous embodiment, annealing is performed at a temperature of 200° C. for about 2 hours in order to eliminate the color center.

上記実施例では中央部−ζおいて、イオン注入量を増す
方法1cついて述べたが、その逆でもよく。
In the above embodiment, the method 1c of increasing the amount of ions implanted in the central region -ζ has been described, but the reverse method may also be used.

また、任意の部分のみの注入でもよく屈折率の変化が得
られれば同様の効果を奏する。また、B“イオンについ
て述べたが他のイオンで屈折率の変化を期し得るイオン
であればよ(同様の効果を奏する。
In addition, the same effect can be achieved by implanting only an arbitrary portion, as long as a change in the refractive index can be obtained. Further, although the B" ion has been described, other ions may be used as long as the refractive index can be expected to change (the same effect can be achieved).

〔発明の効果〕〔Effect of the invention〕

以上説明したよろに、この発明ではガラスの機械的研磨
を用いずに、イオンの注入によって光学レンズを作成す
るので、イオンの注入量の制御のみで任意の屈折率が得
られ、任意の焦点距離をもった光学レンズが容易に得ら
れる。また、従来作成困難であった微小光学レンズもこ
の発明の方法で容易に形成できる。更昏こ、従来高度の
光学研磨技術を必要としたレンズ収差の除去も従来の光
学レンズにイオン注入を施すことによって、その目的を
達成することができる。
As explained above, in this invention, an optical lens is created by ion implantation without using mechanical polishing of glass, so any refractive index can be obtained by simply controlling the amount of ion implantation, and any focal length can be obtained. It is easy to obtain an optical lens with Furthermore, micro optical lenses, which have been difficult to produce in the past, can be easily formed using the method of the present invention. Furthermore, the removal of lens aberrations, which conventionally required sophisticated optical polishing techniques, can also be achieved by performing ion implantation into conventional optical lenses.

前述のように、この発明の方法ICよれば、平板状の光
学レンズが実現可能で、レンズの厚さ、形状が大幅番こ
改善され、光学機械のコンパクトな設計が可能となる。
As described above, according to the method IC of the present invention, a flat optical lens can be realized, the thickness and shape of the lens can be greatly improved, and the optical machine can be designed compactly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための図。 第2図はこの発明の一実施例の実施状況を示す側面図、
83図は従来の光学レンズの作成方法の一例を示す側面
図である。 図において、 (1)は光学ガラス、(2)はイオンで
ある。 なお、因中同−符号は同一、または相当部分を示す。
FIG. 1 is a diagram for explaining the invention in detail. FIG. 2 is a side view showing the implementation status of one embodiment of the present invention;
FIG. 83 is a side view showing an example of a conventional optical lens manufacturing method. In the figure, (1) is an optical glass, and (2) is an ion. Note that the same reference numerals in the table indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス板にイオンを所要注入量パターンに注入し
て、各部分の上記イオンの注入量に応じて当該部分の光
屈折率を変化させて光学レンズを得ることを特徴とする
光学レンズの作成方法。
(1) An optical lens characterized in that an optical lens is obtained by injecting ions into a glass plate in a required implantation amount pattern and changing the optical refractive index of each portion according to the amount of ions implanted into each portion. How to make.
JP62130678A 1987-05-27 1987-05-27 How to make an optical lens Expired - Fee Related JPH0723238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130678A JPH0723238B2 (en) 1987-05-27 1987-05-27 How to make an optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130678A JPH0723238B2 (en) 1987-05-27 1987-05-27 How to make an optical lens

Publications (2)

Publication Number Publication Date
JPS63295457A true JPS63295457A (en) 1988-12-01
JPH0723238B2 JPH0723238B2 (en) 1995-03-15

Family

ID=15039996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130678A Expired - Fee Related JPH0723238B2 (en) 1987-05-27 1987-05-27 How to make an optical lens

Country Status (1)

Country Link
JP (1) JPH0723238B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357629A (en) * 1989-07-26 1991-03-13 Hoya Corp Production of intraocular lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104031A (en) * 1974-01-16 1975-08-16
JPS5477727A (en) * 1977-11-25 1979-06-21 Cselt Centro Studi Lab Telecom Method and apparatus for continuously producing light fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104031A (en) * 1974-01-16 1975-08-16
JPS5477727A (en) * 1977-11-25 1979-06-21 Cselt Centro Studi Lab Telecom Method and apparatus for continuously producing light fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357629A (en) * 1989-07-26 1991-03-13 Hoya Corp Production of intraocular lens

Also Published As

Publication number Publication date
JPH0723238B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
EP0134104A2 (en) Integral photosensitive optical device
US20060254316A1 (en) Method for manufacturing gradient refractive index lens
TW201140663A (en) Implant method and implanter by using a variable aperture
US3610924A (en) Method of making bifocal lenses comprising treating a preselected area of a single focal length lens with ionizing radiation
JPS63295457A (en) Formation of optical lens
Townsend Ion beams in optics—an introduction
JPS60127594A (en) Ion implantation magnetic bubble element
JPS62241833A (en) Forming glass raw material and production thereof
RU2620201C1 (en) Method of producing shallow leucosapphire lens with minimal birefringence
JPS5633601A (en) Production of optical parts
JPS62295003A (en) Optical waveguide microlens
JPH0462644B2 (en)
JPH0573705B2 (en)
SU1377252A1 (en) Method of manufacturing aspherical surface
DE1596649B1 (en) Process for the production of complex, one-piece, optical lenses
JPH07270726A (en) Contact lens and its production
JPS6481918A (en) Manufacture of three-dimensional optical circuit element
JP3683728B2 (en) Polarizing element and manufacturing method thereof
JPH04251804A (en) Formation of optical waveguide
SU1073201A1 (en) Process for producing light-conducting or light-insulating ducts in glass
DE1596649C (en) Process for the production of complex one-piece optical lenses
JPH04168401A (en) Manufacture of optical wave-guiding channel
JPS5927881B2 (en) Optical waveguide and its manufacturing method
JP2000206578A (en) Production of nonlinear optical silica thin film
JPS63118701A (en) Production of optical element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees