JPS63295442A - Method for removing impurity contained in waste acid - Google Patents
Method for removing impurity contained in waste acidInfo
- Publication number
- JPS63295442A JPS63295442A JP12842787A JP12842787A JPS63295442A JP S63295442 A JPS63295442 A JP S63295442A JP 12842787 A JP12842787 A JP 12842787A JP 12842787 A JP12842787 A JP 12842787A JP S63295442 A JPS63295442 A JP S63295442A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- waste acid
- impurities
- hydroxide
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002253 acid Substances 0.000 title claims abstract description 52
- 239000002699 waste material Substances 0.000 title claims abstract description 47
- 239000012535 impurity Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052742 iron Inorganic materials 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 16
- 150000002505 iron Chemical class 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000004062 sedimentation Methods 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 19
- 238000005554 pickling Methods 0.000 abstract description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 9
- 229910000831 Steel Inorganic materials 0.000 abstract description 9
- 239000010959 steel Substances 0.000 abstract description 9
- 239000006228 supernatant Substances 0.000 abstract description 8
- 239000007788 liquid Substances 0.000 abstract description 6
- 238000000926 separation method Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000706 filtrate Substances 0.000 abstract 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 abstract 1
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 230000029219 regulation of pH Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 235000011149 sulphuric acid Nutrition 0.000 abstract 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 18
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 11
- 238000002425 crystallisation Methods 0.000 description 10
- 239000002585 base Substances 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 235000014413 iron hydroxide Nutrition 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 6
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 159000000014 iron salts Chemical class 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- -1 Sin Chemical class 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 235000010213 iron oxides and hydroxides Nutrition 0.000 description 1
- 239000004407 iron oxides and hydroxides Substances 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/69—Sulfur trioxide; Sulfuric acid
- C01B17/90—Separation; Purification
- C01B17/901—Recovery from spent acids containing metallic ions, e.g. hydrolysis acids, pickling acids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、鋼板等の酸洗廃酸よりフェライト原料等のよ
うに高純度を要求される酸化鉄や水酸化鉄を製造する際
の鉄塩水溶液を安価に効率良く精製できるように、その
廃酸中より不純物を除去する方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention is applicable to the production of iron oxide and iron hydroxide, which require high purity, such as ferrite raw materials, from waste acid pickling for steel plates, etc. This invention relates to a method for removing impurities from waste acid so that salt aqueous solutions can be efficiently purified at low cost.
(従来の技術とその問題点〕
周知の通り、鋼板等の酸洗廃酸はそのまま、又は、鉄塩
の結晶として焙焼され、得られる酸化鉄はフェライト原
料や顔料として有効に利用されている。又、一方では、
湿式処理もなされており、得られる酸化鉄や水酸化物も
磁性材料や顔料として有効に利用されている。(Prior art and its problems) As is well known, waste acid from pickling steel plates, etc., is roasted as it is or as iron salt crystals, and the resulting iron oxide is effectively used as a ferrite raw material or pigment. .Also, on the other hand,
Wet processing is also performed, and the resulting iron oxides and hydroxides are also effectively used as magnetic materials and pigments.
しかしながら、前記酸洗廃酸には、酸洗鋼板の種類や、
あるいは外部からの侵入等によって非金属のSin、等
や、非鉄金属のAl、Mn、Ca。However, the pickling waste acid may vary depending on the type of pickling steel plate,
Or, due to invasion from the outside, nonmetals such as Sin, and nonferrous metals Al, Mn, and Ca.
Ni、Cr、Cu、Ti等の不純物が含有されており、
これらの不純物は大部分が前記酸化鉄や水酸化鉄中に混
入してくる。従って、これらの不純物は、フェライト原
料や磁性材料においては特に磁気特性に、又、顔料とし
ては特に色調に多大な影響を及ぼすため、高級な用途に
使用することは困難である。更に、Ni、Cr、Cu等
の重金属が含有される場合には、特性以外に環境面の配
慮からも極力少なくすることが要求され、工業的な用途
も限定される。しかも酸洗鋼板自体、特殊鋼が増加する
傾向にあり、重金属類の不純物はますます問題となるも
のと考えられる。Contains impurities such as Ni, Cr, Cu, and Ti,
Most of these impurities are mixed into the iron oxide and iron hydroxide. Therefore, these impurities have a great effect on the magnetic properties of ferrite raw materials and magnetic materials, and on the color tone of pigments, making it difficult to use them in high-grade applications. Furthermore, when heavy metals such as Ni, Cr, and Cu are contained, they are required to be reduced as much as possible not only from the viewpoint of properties but also from environmental considerations, and industrial applications are also limited. Moreover, as pickled steel sheets themselves tend to be made of special steel, it is thought that impurities of heavy metals will become more of a problem.
これらの不純物のなかでも5iftの除去方法に関して
は、各種の方法が提案されており、例えば、本出願人の
提案に係る特開昭61−222925号公報に開示の方
法によれば数pp−まで低減することが可能である。し
かし、他の不純物の除去方法としては、溶媒抽出法や、
晶析法が提案されているのみであり、これらの方法は精
製法としては大掛かりなものとなり、高コストとならざ
るを得す、さらにこれらの方法においては、不純物を系
外に排出する機構を持たないため、不純物はfilされ
残液は別処理を行わざるを得ない、又、水洗法も提案さ
れているが、一部のアルカリ類にしか適用できず、上記
のような不純物の低減はできない。Among these impurities, various methods have been proposed for removing 5ift. For example, according to the method disclosed in Japanese Patent Application Laid-Open No. 61-222925 proposed by the present applicant, up to several pp- It is possible to reduce the However, other methods for removing impurities include solvent extraction,
Only crystallization methods have been proposed, and these methods are large-scale purification methods and have to be expensive. Furthermore, these methods require a mechanism to discharge impurities from the system. Therefore, impurities must be filtered and the remaining liquid must be treated separately.Additionally, a washing method with water has also been proposed, but it is only applicable to some alkalis and cannot reduce impurities as described above. Can not.
総じて、従来の廃酸処理方法により製造される酸化鉄や
水酸化鉄には、不純物が混入し用途が限定される。In general, iron oxide and iron hydroxide produced by conventional waste acid treatment methods are contaminated with impurities and have limited uses.
従って、本発明においては、廃酸の処理に先立って問題
となる不純物を除去し、精製鉄塩溶液を得る比較的安価
で簡便な手段を提供しようとするものである。又、併せ
て従来の精製法では不純物の−a縮が問題となるが、こ
の面においても系外に不純物を排出する比較的簡単な方
法を提案するものである。Therefore, the present invention aims to provide a relatively inexpensive and simple means for obtaining a purified iron salt solution by removing problematic impurities prior to treatment of waste acid. In addition, in conventional purification methods, -a condensation of impurities is a problem, but we propose a relatively simple method for discharging impurities out of the system in this respect as well.
本発明の目的とするところは、廃酸(塩酸、硫酸)を原
料として不純物の少ない良質の品位の酸化鉄や水酸化鉄
を製造するための鉄塩(塩化鉄。The purpose of the present invention is to produce iron salts (iron chloride) using waste acids (hydrochloric acid, sulfuric acid) as raw materials to produce high-quality iron oxides and iron hydroxides with few impurities.
硫酸鉄)水溶液を精製することにあり、その特徴は、鋼
板等の酸洗廃酸に塩基を添加して中和しpi3〜7に調
整する。その後、生成する水酸化物を自然沈降、濾過、
又は遠心沈降等により分離することによって精製鉄塩溶
液を得る。これを原料として周知の焙焼法や湿式処理法
を行えば、不純物の少ない良質の酸化鉄や水酸化鉄を得
ることができる。The purpose of this method is to purify an aqueous solution (iron sulfate), and its feature is to add a base to the waste acid for pickling steel plates, etc. to neutralize it and adjust it to pi 3 to 7. After that, the generated hydroxide is naturally settled, filtered,
Alternatively, a purified iron salt solution is obtained by separation by centrifugal sedimentation or the like. By using this as a raw material and subjecting it to the well-known roasting method or wet processing method, it is possible to obtain high-quality iron oxide or iron hydroxide with few impurities.
本発明者らは廃酸中の不純物に関して研究を重ねた結果
、次の3点を実験的に確認することができた。As a result of repeated research on impurities in waste acids, the present inventors were able to experimentally confirm the following three points.
■ 多量の鉄を含む廃酸のpHを3〜7に調整すること
により、Fe”に先立ってFe”、Cu”。■ By adjusting the pH of waste acid containing a large amount of iron to 3 to 7, Fe'' and Cu'' are removed before Fe''.
Ni”、Cr”、Al”、Ti”の水酸化物の沈澱が生
成する。Precipitates of hydroxides of Ni", Cr", Al", and Ti" are formed.
■ 生成する水酸化物の沈澱は、自然沈降、濾過、遠心
沈降等の従来の一般的な分離技術の応用により比較的簡
単に分離することが可能である。(2) The generated hydroxide precipitate can be separated relatively easily by applying conventional general separation techniques such as natural sedimentation, filtration, and centrifugal sedimentation.
■ pHの調整に関しては、上記のpH域では中和する
塩基の種類は不純物の生成へはあまり影響せず、又、フ
リーの酸を中和するためには多量の塩基を要することが
多い。(2) Regarding pH adjustment, in the above pH range, the type of base to be neutralized has little effect on the formation of impurities, and a large amount of base is often required to neutralize free acid.
これら水酸化物の生成するpHの領域は、Ti。The pH range where these hydroxides are generated is Ti.
Aiは約4、Cr、Cuは約5に対してFe”は約6と
高いため、廃酸を中和する際にこれらの不純物の水酸化
物が優先的に生成するものと考えられる。なお、Ni等
は単独ではFe”とあまり変わらないが低減可能である
。これらの不純物は、大量のFeが°共存する場合には
単独のときよりも低いpHの領域において低減が可能で
ある。すなわち、後記実施例に示すように、これらの不
純物の量を初期含有量の1710以下に低減することが
可能となった。Since Ai is about 4, Cr and Cu are about 5, and Fe'' is about 6, which is high, it is thought that hydroxides of these impurities are preferentially generated when waste acid is neutralized. , Ni, etc. alone are not much different from Fe'', but can be reduced. These impurities can be reduced in a lower pH range when a large amount of Fe coexists than when Fe is used alone. That is, as shown in Examples below, it became possible to reduce the amount of these impurities to the initial content of 1710 or less.
まず、pHを調整するための中和に使用する塩基につい
てであるが、pH3〜7に調整するためには強塩基性で
ある必要がある。これにはカセイソーダや炭酸ソーダ、
石灰等が使用できるが、これらのNaやCaも不純物と
して嫌う場合は、NH。First, regarding the base used for neutralization to adjust the pH, it needs to be strongly basic in order to adjust the pH to 3 to 7. This includes caustic soda, carbonated soda,
Lime etc. can be used, but if you also dislike Na and Ca as impurities, use NH.
を使用することにより不純物の混入を避けることができ
る。なお、このpH9M域ではNH,による錯塩の生成
は問題とならない、又、場合によってはこれら以外にも
Zn化合物等を中和するために使用することも可能であ
る。By using , contamination with impurities can be avoided. In this pH range of 9M, the formation of complex salts due to NH does not pose a problem, and in some cases, it can also be used to neutralize other compounds such as Zn compounds.
次に、■でも記したように通常の酸洗廃酸の場合、フリ
ーの酸が多くpHは0に近くこれを中和するのには非常
に多くの塩基が必要である0例えば、塩酸酸洗の廃酸の
場合フリーの塩酸が数%、硫酸酸洗の廃酸の場合はフリ
ーの硫酸が10%以上に達することもある。これらのフ
リーの酸が0に近ければ、pHも1以上となり調整に要
する塩基の添加量も少量で目的を達成することが可能と
なる。フリーの酸を0に近づけることは次の2方法を採
用することで比較的容易に達成できる。Next, as mentioned in ①, in the case of ordinary pickling waste acid, there is a lot of free acid, and the pH is close to 0, and a very large amount of base is required to neutralize it.For example, hydrochloric acid In the case of waste acid from washing, the amount of free hydrochloric acid may be several percent, and in the case of waste acid from sulfuric acid pickling, the amount of free sulfuric acid may reach 10% or more. If these free acids are close to 0, the pH will also be 1 or higher, making it possible to achieve the objective with a small amount of base added for adjustment. Bringing the free acid level close to 0 can be achieved relatively easily by employing the following two methods.
(a) スクラップ鉄、鉄スケール等の鉄分を廃酸に
溶解する。(a) Dissolve iron such as scrap iron and iron scale in waste acid.
(ロ)廃酸より鉄塩を晶析回収し水に溶解して鉄塩の水
溶液とする。(b) Iron salts are crystallized and recovered from waste acid and dissolved in water to form an aqueous solution of iron salts.
(a)に関しては、スクラップ鉄、鉄スケール等を廃酸
中に投入して加温、又は常温にても触媒(白金等)の使
用により溶解することが可能であり、容易にフリーの酸
を0.2%以下まで低減させることができる。Regarding (a), it is possible to dissolve scrap iron, iron scale, etc. in waste acid by heating it, or by using a catalyst (platinum, etc.) even at room temperature, and it is easy to dissolve free acid. It can be reduced to 0.2% or less.
(ロ)の場合は、加熱濃縮、又は冷却等により鉄塩を晶
析させることが可能で、この結晶中に含まれるフリーの
酸は微量であり、水溶液とした場合、容易にフリーの酸
を0.2%以下まで低減させることができる。この結晶
分層を注意深く行えばフリーの酸をほぼ0にすることも
可能である0周知のごと(、この晶析法は精製法として
も広く採用されている方法であり、適当な条件を選択す
ることにより、晶析法のみによってもこれらの不純物を
低減することは可能であるが、Feと同じ挙動を示すC
r等は結晶に混入することが多く、これを避けるのは条
件設定が難しいが、本発明の方法を採用することにより
不純物の除去は十分なものとなる。さらに、本発明を前
提として晶析を行う場合は、不純物の除去を優先させる
必要性が少なく、結晶の採取効率を優先することができ
るため晶析操作の自由度が増し、晶析コストの大幅な低
減を図ることが可能となる。その上、本発明では不純物
を系外に排出するため、不純物の濃縮に対しても対応が
可能である。又、晶析法では、フリーの酸が多いほうが
鉄塩の溶解度が低いため結晶の析出は行いやすいが、本
発明の場合は、不純物の混入の多い強msによる晶析条
件も採用できるため、晶析に先立ってスクラップ鉄や鉄
スケールの溶解を行うことも考えられる。In the case of (b), it is possible to crystallize the iron salt by heating, concentrating, cooling, etc. The free acid contained in this crystal is very small, and when it is made into an aqueous solution, the free acid is easily extracted. It can be reduced to 0.2% or less. If this crystal separation is carried out carefully, it is possible to reduce the amount of free acid to almost 0. As is well known, this crystallization method is widely used as a purification method, and if appropriate conditions are selected. Although it is possible to reduce these impurities by crystallization alone, C
Although r and the like are often mixed into crystals, and it is difficult to set conditions to avoid this, impurities can be sufficiently removed by employing the method of the present invention. Furthermore, when performing crystallization based on the present invention, there is less need to prioritize the removal of impurities and priority can be given to crystal collection efficiency, increasing the degree of freedom in crystallization operations and significantly reducing crystallization costs. This makes it possible to achieve significant reductions. Furthermore, since the present invention discharges impurities out of the system, it is possible to deal with the concentration of impurities. In addition, in the crystallization method, it is easier to precipitate crystals when there is a large amount of free acid because the solubility of the iron salt is low, but in the case of the present invention, crystallization conditions using strong ms, which can include many impurities, can also be adopted. It is also possible to melt scrap iron and iron scale prior to crystallization.
また、上記の方法の他に、廃酸処理によく用いられてい
るイオン交換膜を利用してフリーの酸を低減する方法も
考えられる。In addition to the above-mentioned method, a method of reducing free acid using an ion exchange membrane, which is often used in waste acid treatment, can also be considered.
なお、3価の鉄は、中和に際して不純物の水酸化物生成
とともに水酸化物として沈澱を生じ、鉄の損失となるが
、少量の場合には他の不純物を共沈させる働きもあり、
沈澱分離にも有効なため多少は存在したほうが有利であ
る。鋼板等の酸洗廃酸の場合は大半が2価の鉄であり、
3価の鉄は少量であるのであまり問題とはならない、し
かしながら、多量の場合は鉄の損失となり、塩基も多量
に必要とし、水酸化物の生成が多量となり水酸化物の分
離が著しく困難となるため問題となる。このような場合
には、スクラップ鉄のような金属をfJ解する操作を行
うことにより、容易に3価の鉄を2価の鉄に還元するこ
とができる。Furthermore, trivalent iron precipitates as an impurity hydroxide during neutralization, resulting in a loss of iron, but in small amounts it also acts to co-precipitate other impurities.
Since it is also effective for precipitation separation, it is advantageous to have some amount of it. In the case of waste acid for pickling steel plates, etc., most of the acid is divalent iron,
Since the amount of trivalent iron is small, it is not much of a problem. However, if it is in a large amount, iron will be lost, a large amount of base will be required, and a large amount of hydroxide will be produced, making it extremely difficult to separate the hydroxide. This becomes a problem. In such a case, trivalent iron can be easily reduced to divalent iron by performing fJ analysis on a metal such as scrap iron.
最後にp)の調整範囲に関してであるが、pHが3以下
の範囲では水酸化物として沈澱してくるのは殆どが3価
の鉄であり、通常の廃酸中に含まれる不純物の水酸化物
は沈澱を生じない、 pHが3近辺になるとAlの除去
が可能となるが、これら不純物総ての除去を効率良く行
えるのはpH5以上である。又、pHが7以上では2価
の鉄の水酸化物の沈澱の生成が著しく使用に耐えない、
従って、pHの調整範囲は3〜7とし、望ましくはpH
5〜6に設定するのが良い。Finally, regarding the adjustment range for p), in the pH range below 3, most of the precipitated hydroxide is trivalent iron, and the hydroxide of impurities contained in ordinary waste acid When the pH is around 3, Al can be removed without precipitation, but all of these impurities can be efficiently removed at a pH of 5 or higher. In addition, if the pH is 7 or more, the precipitation of divalent iron hydroxide is significantly formed, making the product unusable.
Therefore, the pH adjustment range is 3 to 7, preferably pH
It is best to set it to 5-6.
図面は本発明の方法の一実施例を説明するフローシート
である。The drawing is a flow sheet illustrating one embodiment of the method of the invention.
鉄綱酸洗等により発生する廃酸(塩酸又は硫酸)は受入
タンク1に一時的に貯溜される。Waste acid (hydrochloric acid or sulfuric acid) generated from steel wire pickling, etc. is temporarily stored in a receiving tank 1.
次いで、廃酸ポンプ2により溶解槽3へ送られ、フリー
の酸を減らすために、この廃酸に鉄分が溶解添加される
。溶解させる鉄分としてスクラップ鉄や鉄スケール等を
用いると、経済的である。受人タンクl内の廃酸を加熱
器4を経由して加熱した後、溶解槽3へ送れば、溶解が
早くなる。この加熱は焙焼炉等が近くにある場合は、そ
の排ガス等を利用することができる。Next, the waste acid is sent to the dissolution tank 3 by the waste acid pump 2, and iron is dissolved and added to this waste acid in order to reduce the amount of free acid. It is economical to use scrap iron, iron scale, etc. as the iron content to be melted. If the waste acid in the recipient tank 1 is heated via the heater 4 and then sent to the dissolution tank 3, the dissolution will be accelerated. For this heating, if a roasting furnace or the like is nearby, its exhaust gas can be used.
次に、移送ポンプ5によってpH!11整槽6へ送り、
ここでNaOH又はNH,水等の塩基を加え、pHを3
〜7に調整し、不純物の水酸化物を生成させる。Next, the pH is increased by the transfer pump 5! 11 Send to tank 6,
Add a base such as NaOH, NH, or water to adjust the pH to 3.
~7 to generate impurity hydroxide.
次いで、移送ポンプ7によって遠心分離器8に送り遠心
分離すると、水酸化物は沈降するため、上澄液のみを回
収することにより不純物の少ない精製鉄塩水溶液を得る
ことができる。水酸化物の分離は濾過法(例えばオリバ
ーフィルタ等)で行っても良い、さらに、これを周知の
焙焼法や湿式処理法等で処理することにより、高純度の
酸化物や水酸化物を得ることができる。又、ここで得ら
れる精製鉄塩水溶液は重金属の含有量が少ないため、こ
のまま水処理用等の凝集剤として利用することも可能で
ある。Next, the hydroxide is sent to a centrifugal separator 8 by a transfer pump 7 and centrifuged. Since the hydroxide is precipitated, a purified iron salt aqueous solution containing few impurities can be obtained by collecting only the supernatant liquid. Hydroxide may be separated by a filtration method (for example, an Oliver filter). Furthermore, high-purity oxides and hydroxides can be separated by using a well-known roasting method or wet processing method. Obtainable. Furthermore, since the purified iron salt aqueous solution obtained here has a low content of heavy metals, it can be used as is as a flocculant for water treatment, etc.
スJLLL
廃塩酸にアルカリ添加し、遠心沈降分離してその上澄液
を分析したところ、第1表の通りであった。When an alkali was added to waste hydrochloric acid, centrifuged and sedimented, and the supernatant was analyzed, the results were as shown in Table 1.
廃塩酸に鉄分を溶解させた後、アルカリ添加し、遠心沈
降分離してその上澄液を分析したところ、第2表の通り
であった。After dissolving iron in waste hydrochloric acid, an alkali was added thereto, centrifugal sedimentation was performed, and the supernatant was analyzed, and the results were as shown in Table 2.
Ill良
廃塩酸を加熱濃縮した後、晶析分離し、その水溶液にア
ルカリ添加し、遠心沈降分離してその上澄液を分析した
ところ、第3表の通りであった。After heating and concentrating the Illyoshi waste hydrochloric acid, it was crystallized and separated, an alkali was added to the aqueous solution, centrifugal sedimentation was performed, and the supernatant was analyzed, and the results were as shown in Table 3.
亥m支
廃硫酸にアルカリ添加し、遠心沈降分離してその上澄液
を分析したところ、第4表の通りであった。When an alkali was added to the waste sulfuric acid, centrifugal sedimentation was performed, and the supernatant liquid was analyzed, the results were as shown in Table 4.
廃硫酸に水を加えて鉄分を溶解させた後、アルカリ添加
し、遠心沈降分離してその上澄液を分析したところ、第
5表の通りであった。After water was added to the waste sulfuric acid to dissolve iron, an alkali was added thereto, centrifugal sedimentation was performed, and the supernatant liquid was analyzed, and the results were as shown in Table 5.
員1表
廃硫酸を加熱濃縮した後、晶析分離しその水溶液にアル
カリ添加し、遠心沈降分離してその上澄液を分析したと
ころ、第6表の通りであつた。Table 1 After heating and concentrating the waste sulfuric acid, it was separated by crystallization, an alkali was added to the aqueous solution, centrifugal sedimentation was performed, and the supernatant liquid was analyzed, and the results were as shown in Table 6.
本発明によれば、廃酸(塩酸又は硫酸)中に含まれる不
純物を、掻めて簡単な方法で低減することが可能であり
、比較的安価に純度の高いフェライト原料用等の酸化物
の製造を行うことが可能となるから、工業的に極めて有
用である。According to the present invention, it is possible to reduce impurities contained in waste acid (hydrochloric acid or sulfuric acid) by a simple method, and it is possible to reduce impurities contained in waste acid (hydrochloric acid or sulfuric acid) by a simple method. Since it becomes possible to carry out production, it is extremely useful industrially.
図面は本発明の方法の一実施例を説明するフローシート
である。The drawing is a flow sheet illustrating one embodiment of the method of the invention.
Claims (1)
〜7に調整し、生成する水酸化物を自然沈降、濾過又は
遠心沈降等により分離除去することを特徴とする廃酸中
の不純物の除去方法。 2、鉄分を廃酸に溶解してフリーの酸を減らしてから塩
基を添加して中和することを特徴とする特許請求の範囲
第1項記載の廃酸中の不純物の除去方法。 3、廃酸より鉄塩を晶析回収し、これから得られる鉄塩
の水溶液に対して塩基を添加して中和することを特徴と
する特許請求の範囲第1項記載の廃酸中の不純物の除去
方法。 4、鉄分を廃酸に溶解してから晶析を行うことを特徴と
する特許請求の範囲第3項記載の廃酸中の不純物の除去
方法。[Claims] 1. Neutralize waste acid containing a large amount of iron by adding a base to pH 3.
A method for removing impurities in waste acid, which comprises adjusting the concentration to 7 to 7 and separating and removing the generated hydroxide by natural sedimentation, filtration, centrifugal sedimentation, etc. 2. The method for removing impurities in waste acid according to claim 1, which comprises dissolving iron in waste acid to reduce free acid and then adding a base to neutralize it. 3. Impurities in the waste acid according to claim 1, characterized in that the iron salt is crystallized and recovered from the waste acid, and the resulting aqueous solution of the iron salt is neutralized by adding a base. How to remove. 4. The method for removing impurities from waste acid according to claim 3, characterized in that iron is dissolved in the waste acid and then crystallized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12842787A JPS63295442A (en) | 1987-05-27 | 1987-05-27 | Method for removing impurity contained in waste acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12842787A JPS63295442A (en) | 1987-05-27 | 1987-05-27 | Method for removing impurity contained in waste acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63295442A true JPS63295442A (en) | 1988-12-01 |
Family
ID=14984480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12842787A Pending JPS63295442A (en) | 1987-05-27 | 1987-05-27 | Method for removing impurity contained in waste acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63295442A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249462A (en) * | 2011-06-17 | 2011-11-23 | 东莞市保源达房地产开发有限公司 | Method for recycling and processing residential area acidic water |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61256925A (en) * | 1985-05-08 | 1986-11-14 | Mitsubishi Heavy Ind Ltd | Production of iron oxide from waste liquid of pickling iron or steel |
-
1987
- 1987-05-27 JP JP12842787A patent/JPS63295442A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61256925A (en) * | 1985-05-08 | 1986-11-14 | Mitsubishi Heavy Ind Ltd | Production of iron oxide from waste liquid of pickling iron or steel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249462A (en) * | 2011-06-17 | 2011-11-23 | 东莞市保源达房地产开发有限公司 | Method for recycling and processing residential area acidic water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU969670A1 (en) | Method for producing pure aluminium oxide | |
EP4335823A1 (en) | Manganese sulfate purification and crystallization method | |
CN1028768C (en) | Zinc oxide preparing process by ammonia method | |
WO2013145909A1 (en) | Method for producing high-purity nickel sulfate | |
Queneau et al. | Silica in hydrometallurgy: an overview | |
CN111170499A (en) | Method for recovering nickel sulfate from nickel electroplating waste liquid | |
CN107673400A (en) | Method for producing zinc sulfate heptahydrate from copper-cadmium slag | |
TW202343870A (en) | Method for producing secondary battery material from black mass | |
EP1020537B1 (en) | Separation and concentration method for recovering gallium and indium from solutions by jarosite precipitation | |
CN117321003A (en) | Method for preparing alumina | |
CA2431403A1 (en) | Process for recovering arsenic from acidic aqueous solution | |
JPH04119919A (en) | Production of titanium dioxide | |
JPH01153532A (en) | Purification of ferrous ion-containing solution | |
EP0244910B1 (en) | Separation of non-ferrous metals from iron-containing powdery material | |
JP4275939B2 (en) | Method for recovering tantalum compound and / or niobium compound | |
JPS63295442A (en) | Method for removing impurity contained in waste acid | |
CN114408972A (en) | Method for comprehensively recovering vanadium and chromium from sodium salt roasting water leaching solution of vanadium-containing steel slag | |
JP3188573B2 (en) | Purification method of iron chloride solution | |
JPH082905A (en) | Method for finishing dilute acid | |
JPS60195021A (en) | Method of recovery of arsenious acid from exhaust gas of refining | |
US4508688A (en) | Method of regenerating acetate in a metal removal process | |
CN1356406A (en) | Process for removing Si and Al from solution of ferrous chloride | |
CN1099728A (en) | Impurity removing method from perferrite solution | |
JPH085676B2 (en) | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel | |
JP7531909B2 (en) | Method for purifying iron(II) chloride |