JPS63295178A - Grinder control method - Google Patents
Grinder control methodInfo
- Publication number
- JPS63295178A JPS63295178A JP12873787A JP12873787A JPS63295178A JP S63295178 A JPS63295178 A JP S63295178A JP 12873787 A JP12873787 A JP 12873787A JP 12873787 A JP12873787 A JP 12873787A JP S63295178 A JPS63295178 A JP S63295178A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- force
- grinding force
- constant
- tangential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000005520 cutting process Methods 0.000 claims description 38
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 238000001514 detection method Methods 0.000 description 23
- 230000007423 decrease Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 238000003754 machining Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は研削盤の制御方法に関し、特に研削面の粗さ及
び円筒度を改善するようにした方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling a grinding machine, and more particularly to a method for improving the roughness and cylindricity of a grinding surface.
一般に、研削盤は、切込みモータで切込み送りされる切
込みテーブルと、切込みテーブル上に鉛直軸回りに回動
可能に設けられスイベルモータでスイベル駆動されるス
イベルテーブルと、スイベルテーブル上に設けられたワ
ーク取付の為のチャックを有する主軸及び主軸駆動モー
タと、砥石テーブルと、砥石テーブル上に設けられたホ
イールヘッドと、ホイールヘッドに取付けられた砥石と
、ホイールヘッドを駆動する砥石駆動モータと、砥石ド
レッサなどを備えている。In general, a grinding machine consists of a cutting table whose cutting is fed by a cutting motor, a swivel table which is rotatably mounted on the cutting table so as to be rotatable around a vertical axis and which is swivel-driven by a swivel motor, and a workpiece which is mounted on the swivel table. A main shaft and a main shaft drive motor having a chuck for mounting, a grindstone table, a wheel head provided on the grindstone table, a grindstone attached to the wheel head, a grindstone drive motor that drives the wheel head, and a grindstone dresser. It is equipped with such things as
研削盤でワークを研削する場合、ワーク及び砥石を回転
させるとともに、砥石軸の撓み角に相当する角度だけス
イベルテーブルを回動させることによりワークの軸心と
砥石の軸心とを平行に保持した状態で切込みテーブルを
切込み送りさせながら研削する。When grinding a workpiece with a grinding machine, the workpiece and grindstone are rotated, and the swivel table is rotated by an angle corresponding to the deflection angle of the grindstone shaft, thereby keeping the axis of the workpiece parallel to the axis of the grindstone. Grind while feeding the cutting table in this state.
この研削時、実施例に係る第5図に示すように砥石3か
らワークWに対して切込み送り力の反力として発生する
水平な法線方向の研削力F、4(以下、法線方向研削力
Fsという)と主に砥石駆動モータのトルクに起因し摩
擦力を介してワークWに伝わる接線方向の研削力FT
(以下、接線方向研削力Ftという)とが作用し、こ
の法線方向研剛力F、と接線方向研削力FTのペルトル
合力である研削力FがワークWに作用する。During this grinding, as shown in FIG. 5 according to the embodiment, a horizontal normal grinding force F,4 (hereinafter referred to as normal (referred to as force Fs) and tangential grinding force FT, which is mainly caused by the torque of the grindstone drive motor and is transmitted to the workpiece W through frictional force.
(hereinafter referred to as tangential grinding force Ft) acts on the workpiece W, and a grinding force F, which is a Peltor resultant force of this normal grinding force F and the tangential grinding force FT, acts on the workpiece W.
研削時、砥石が摩耗するためまた研削途中で何回も砥石
をドレスするため研削の進行につれて砥石の直径が減少
していくが、通常は砥石駆動モータヘ一定の電力を供給
しその回転数とトルクとを略一定に保持して研削するの
で、砥石径の減少に応じて接線方向研削力FTは太き(
なり、その接線方向研削力FTの増大により研削性能が
向上することから法線方向研削力FNは小さくなる。During grinding, the diameter of the grinding wheel decreases as grinding progresses as the grinding wheel wears out and the grinding wheel is dressed many times during grinding. Normally, a constant amount of power is supplied to the grinding wheel drive motor to control its rotation speed and torque. Since the tangential grinding force FT increases as the grinding wheel diameter decreases (
Since the grinding performance is improved by increasing the tangential grinding force FT, the normal grinding force FN becomes smaller.
上記接線方向研削力FTは研削性能を支配するものなの
で、接線方向研削力F7が大きくなると研削面の表面粗
さが大きくなる。また上記法線方向研削力FMは砥石軸
の撓み角を大きく左右するものなので、法線方向研削力
F、が変動すると研削面がテーパ化して研削面の円筒度
が悪化し研削の精度が低下することになる。但し、砥石
軸は法線方向研削力F、によって切込みテーブルの送り
方向に弾性変形するのと同時に、接線方向研削力F7の
反力によっても弾性変形する。Since the tangential grinding force FT governs the grinding performance, as the tangential grinding force F7 increases, the surface roughness of the ground surface increases. In addition, the normal grinding force FM greatly affects the deflection angle of the grinding wheel shaft, so if the normal grinding force F changes, the grinding surface becomes tapered, the cylindricity of the grinding surface worsens, and the grinding accuracy decreases. I will do it. However, the grindstone shaft is elastically deformed in the feed direction of the cutting table by the normal grinding force F, and at the same time is also elastically deformed by the reaction force of the tangential grinding force F7.
従来より、研削面の粗さや円筒度を向上させる高程々の
研削盤の制御方法が提案されて来た。BACKGROUND ART Conventionally, methods for controlling grinding machines have been proposed to improve the roughness and cylindricity of the ground surface.
例えば、特開昭51−143983号公報には、砥石軸
の撓みを検出し、その撓みが一定となるように、切込み
モータを介して切込み速度を制御する技術が記載されて
いる。これは、法線方向研削力F8を一定に保持して研
削面の円筒度の精度を高めようとするものである。For example, Japanese Patent Application Laid-Open No. 51-143983 describes a technique for detecting the deflection of a grindstone shaft and controlling the cutting speed via a cutting motor so that the deflection becomes constant. This is intended to maintain the normal grinding force F8 constant and improve the accuracy of the cylindricity of the ground surface.
また、特公昭53−34036号公報には、砥石駆動モ
ータへの供給電力を検出し、その電力が設定値となるよ
うに切込み送り速度を制御する技術が記載されている。Furthermore, Japanese Patent Publication No. 53-34036 describes a technique for detecting the power supplied to a grindstone drive motor and controlling the cutting feed rate so that the power becomes a set value.
これは、接線方向研削力F7を一定に保持して研削面の
粗さを向上させようとするものである。This is intended to improve the roughness of the ground surface by keeping the tangential grinding force F7 constant.
上記のように接線方向研削力F7を一定に保持して研削
する技術と、法線方向研削力F9を一定に保持して研削
する技術について実施例に係る第10図により検討を加
えてみる。As described above, the technique of grinding by keeping the tangential grinding force F7 constant and the technique of grinding by keeping the normal grinding force F9 constant will be discussed with reference to FIG. 10 according to the embodiment.
図中、点Oは無負荷時の砥石中心、点0.1はワ一りの
中心、点O6は研削開始初期の砥石中心・点Oテは接線
研削力F7を一定に制御して研削し砥石径が小さくなっ
たときの砥石中心、点ONは法線方向研削力FNを一定
に制御して研削し砥石径が小さくなったときの砥石中心
である。In the figure, point O is the center of the grinding wheel when no load is applied, point 0.1 is the center of the grinding wheel, point O6 is the center of the grinding wheel at the beginning of grinding, and point O is the center of the grinding wheel when the tangential grinding force F7 is controlled constant. The center of the grindstone when the diameter of the grindstone becomes small, point ON, is the center of the grindstone when the diameter of the grindstone becomes small when grinding is performed by controlling the normal grinding force FN to be constant.
研削開始後、切込み送りによる法線方向研削力F、と砥
石のトルクによる接線方向研削力F丁とが作用し\F、
とFTのペルトル合力である研削力Fが作用するので、
砥石中心は0゜となり、このときの研削点がP。となり
、ワークの加工半径は線分OwWo となる。After the start of grinding, the normal grinding force F due to the cutting feed and the tangential grinding force F due to the torque of the grinding wheel act,
Since the grinding force F which is the Peltor resultant force of and FT acts,
The center of the grinding wheel is 0°, and the grinding point at this time is P. Therefore, the machining radius of the workpiece becomes the line segment OwWo.
研削開始時上記法線方向研削力FMで水平方向に撓んだ
砥石軸の撓み角に相当する角度だけスイベルテーブルを
介して主軸をスイベルさせることにより砥石軸軸心と主
軸軸心(ワーク軸心)とが平行となるように調整して研
削していくのが一般的である。At the start of grinding, the spindle is swiveled via the swivel table by an angle corresponding to the deflection angle of the grindstone spindle deflected in the horizontal direction by the normal grinding force FM. ) is generally adjusted and ground so that they are parallel to each other.
研削の進行につれて砥石径が小さくなり、既述の如く接
線方向研削力F7と法線方向研削力F。As the grinding progresses, the diameter of the grinding wheel becomes smaller, and as mentioned above, the tangential grinding force F7 and the normal grinding force F.
の大きさが変動するが、上記前者の公報のように法線方
向研削力FNが一定となるように制御する場合には、砥
石中心が00からONへ移行し、研削点がPsとなり、
ワークの加工半径は線分0゜WNとなる。この場合、法
線方向研削力F sが一定に保持されるが、接線方向研
削力F7が大きくなることから砥石軸の撓み角は増大側
へ変動し、その結果研削点がPNとなる。そして、接線
方向研削力FTが著しく増大するので、研削性能が大き
くなり研削面の粗さが悪化する。Although the magnitude of is changed, when controlling the normal direction grinding force FN to be constant as in the former publication, the center of the grinding wheel shifts from 00 to ON, the grinding point becomes Ps,
The machining radius of the workpiece is the line segment 0°WN. In this case, the normal grinding force Fs is kept constant, but since the tangential grinding force F7 increases, the deflection angle of the grindstone shaft changes toward the increasing side, and as a result, the grinding point becomes PN. Since the tangential grinding force FT increases significantly, the grinding performance increases and the roughness of the ground surface deteriorates.
これに対して、上記後者の公報のように、接線方向研削
力F7が一定となるように制御する場合には、砥石中心
が00からOlへ移行し、研削点がP7となり、ワーク
の加工半径は線分08Wアとなる。この場合、接線方向
研削力Ft一定の制御なので、研削性能は一定に保持さ
れ研削面の粗さは小さくなる。しかし、図示のように法
線方向研削力FMが小さくなり研削力Fが小さくなるの
で砥石軸の撓み角が小さくなって、研削面のテーパ化の
度合が大きくなり研削面の円筒度が低下し、このときの
研削点は点Pアとなる。On the other hand, when controlling the tangential grinding force F7 to be constant as in the latter publication, the center of the grinding wheel shifts from 00 to Ol, the grinding point becomes P7, and the machining radius of the workpiece becomes line segment 08Wa. In this case, since the tangential grinding force Ft is controlled to be constant, the grinding performance is kept constant and the roughness of the ground surface is reduced. However, as shown in the figure, as the normal direction grinding force FM becomes smaller and the grinding force F becomes smaller, the deflection angle of the grinding wheel shaft becomes smaller, the degree of taper of the grinding surface increases, and the cylindricity of the grinding surface decreases. , the grinding point at this time is point Pa.
以上のように法線方向研削力FHを一定に制御する場合
には、研削面の粗さが改善されず、研削面の円筒度があ
る程度改善されるのみである。また、接線方向研削力F
Tを一定に制御する場合には研削面の粗さが改善される
が研削面の円筒度の面で問題が残っている。When the normal grinding force FH is controlled to be constant as described above, the roughness of the ground surface is not improved, and the cylindricity of the ground surface is only improved to some extent. Also, the tangential grinding force F
When T is controlled to be constant, the roughness of the ground surface is improved, but a problem remains in terms of cylindricity of the ground surface.
C問題点を解決するための手段〕
本発明に係る研削盤の制御方法は、研削盤で研削する際
に、研削力のうち法線方向の研削力を検出し、この法線
方向研削力が一定となるように切込み送りモータを制御
するとともに、研削力のうち接線方向の研削力を検出し
、この接線方向研削力が一定となるように砥石軸駆動上
−タを制御するものである。Means for Solving Problem C] The method for controlling a grinding machine according to the present invention detects the grinding force in the normal direction of the grinding force when grinding with the grinder, and detects the grinding force in the normal direction among the grinding forces. In addition to controlling the cutting feed motor so that the cutting force is constant, the tangential grinding force of the grinding force is detected, and the grindstone shaft drive upper is controlled so that the tangential grinding force is constant.
C作用〕
本発明に係る研削盤の制御方法においては、法線方向研
削力を検出しそれが一定となるように切込み送りモータ
を制御するとともに、接線方向研削力を検出しそれが一
定となるように砥石駆動モータを制御するので、砥石径
の減少につれて接線方向研削力が増大しそうになっても
それが一定に維持され研削性能に変動を来たない。また
、接線方向研削力が一定に制御されていても砥石径の減
少につれて砥石の周速の減少のため研削性能が低下する
傾向になって法線方向研削力が増加しそうになるが、法
線方向研削力も一定に維持されるので砥石軸の撓み角に
変動を来たさない。C action] In the method for controlling a grinding machine according to the present invention, the normal grinding force is detected and the cutting feed motor is controlled so that it becomes constant, and the tangential grinding force is detected and it becomes constant. Since the grinding wheel drive motor is controlled in this way, even if the tangential grinding force tends to increase as the grinding wheel diameter decreases, it is maintained constant and the grinding performance does not fluctuate. In addition, even if the tangential grinding force is controlled to be constant, as the diameter of the grinding wheel decreases, the grinding performance tends to decrease due to the decrease in the circumferential speed of the grinding wheel, and the grinding force in the normal direction is likely to increase. Since the directional grinding force is also maintained constant, the deflection angle of the grinding wheel shaft does not change.
本発明に係る研削盤の制御方法によれば、以上説明した
ように、研削に際して研削盤の研削性能及び砥石軸の撓
み角が夫々一定に維持されるので、研削面の粗さ及び円
筒度とともに格段に改善されることになる。According to the method for controlling a grinding machine according to the present invention, as explained above, the grinding performance of the grinding machine and the deflection angle of the grinding wheel shaft are each maintained constant during grinding, so that the roughness and cylindricity of the ground surface as well as the It will be significantly improved.
以下、本発明の実施例について図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
先ず、本発明を適用する研削盤1について第1図〜第3
図面の簡単な説明する。尚、第1図において−X方向を
左方、X方向を右方、−Y方向を前方、Y方向を後方と
定義する。First, FIGS. 1 to 3 regarding the grinding machine 1 to which the present invention is applied.
Provide a brief explanation of the drawing. In FIG. 1, the -X direction is defined as the left side, the X direction is defined as the right side, the -Y direction is defined as the front, and the Y direction is defined as the rear.
主軸4及び主軸モータ4aを支持する切込みテーブル2
は、切込みモータ5によりベッド6上のテーブル台IO
に対して前後方向へ進退駆動されるようになっており、
主軸4及び主軸モータ4aは切込みテーブル2上に載置
されたスイベルテーブル11上に固定され、スイベルテ
ーブル11は鉛直のスイベルピンlla回りに回動可能
で、上記スイベルテーブル11を回動させるため、スイ
ベルテーブル11の左端縁中央部には左方へ突出するア
ームllbが設けられ、アームllbのスクリュナツト
に螺合したスクリュ軸12が前後方向に向けて配設され
、上記スクリュ軸12は切込みテーブル2のブラケット
2a上に設けたスイベル駆動モータ13により駆動され
る。Cutting table 2 that supports the spindle 4 and spindle motor 4a
is the table stand IO on the bed 6 by the cutting motor 5.
It is designed to be driven forward and backward in the forward and backward directions relative to the
The main shaft 4 and the main shaft motor 4a are fixed on a swivel table 11 placed on the cutting table 2, and the swivel table 11 is rotatable around a vertical swivel pin lla. An arm llb protruding leftward is provided at the center of the left edge of the table 11, and a screw shaft 12 screwed into a screw nut of the arm llb is disposed facing forward and backward. It is driven by a swivel drive motor 13 provided on the bracket 2a.
ホイールヘッド7及び砥石駆動モータ7aを支持する砥
石テーブル8は砥石テーブル駆動モータ9によりベッド
6に対して左右方向へ進退駆動されるようになっている
。A grindstone table 8 supporting a wheel head 7 and a grindstone drive motor 7a is driven forward and backward relative to the bed 6 in the left and right directions by a grindstone table drive motor 9.
上記主軸4のチャック4bにはワークWが装着され、こ
のワークWの内周面がホイールヘッド7の砥石軸3aの
先端の砥石3で研削加工されるのであるが、この研削の
際には先ず砥石テーブル8を左方へ移動させて砥石3を
ワークWの軸孔内へ挿入してから、切込みテーブル2を
前方又は後方へ移動させることにより研削することにな
る。A workpiece W is attached to the chuck 4b of the main spindle 4, and the inner peripheral surface of the workpiece W is ground by the grindstone 3 at the tip of the grindstone shaft 3a of the wheel head 7. After the grindstone table 8 is moved to the left and the grindstone 3 is inserted into the shaft hole of the workpiece W, the cutting table 2 is moved forward or backward to perform grinding.
上記研削時、切込みモー7タ5により切込みテーブル2
を前方へ切込み送りすると、第4図・第5図に示すよう
に砥石3からワークWに対して切込み送り力の反力とし
ての法線方向研削力FMと砥石3の回転トルクに起因し
摩擦力を介して伝わる接線方向研削力Fアとが作用し、
上記法線方向研削力F、と接線方向研削力Ftとのベク
トル合力としての研削力Fが作用することになる。During the above grinding, the cutting table 2 is cut by the cutting motor 7 motor 5.
As shown in Figs. 4 and 5, when the grinding wheel 3 is fed forward into the cut, friction is caused from the grinding wheel 3 to the workpiece W due to the normal grinding force FM as a reaction force of the cutting feed force and the rotational torque of the grinding wheel 3. The tangential grinding force Fa transmitted through the force acts,
A grinding force F acts as a vector resultant force of the normal grinding force F and the tangential grinding force Ft.
上記法線方向研削力FMと接線方向研削力FTとにより
、砥石軸3aは第4図に示すように法線方向研削力F、
と反対方向(切込み送り方向)へ弾性変形するとともに
接線方向研削力FTと反対方向へも弾性変形する。Due to the normal grinding force FM and the tangential grinding force FT, the grinding wheel shaft 3a has a normal grinding force F, as shown in FIG.
It is elastically deformed in the opposite direction (cut feed direction) and also in the opposite direction to the tangential grinding force FT.
そこで、研削開始初期にスイベル駆動モータ13を駆動
してスイベルテーブル11をスイベルさせ、第4図のよ
うにワークWの軸心と砥石3の軸心とが平行になるよう
に所定のスイベル角θに調整して研削を行なう。Therefore, at the beginning of grinding, the swivel drive motor 13 is driven to swivel the swivel table 11, and a predetermined swivel angle θ is set so that the axial center of the workpiece W and the axial center of the grindstone 3 are parallel to each other as shown in FIG. Adjust and grind.
次に、上記研削盤lの制御方法について説明する。Next, a method of controlling the grinding machine I will be explained.
この研削盤1の制御方法は、上記法線方向研削力F、と
接線方向研削力Fアとを夫々検出し、法線方向研削力F
Nが一定となるように切込みモータ5を制御するととも
に、接線方向研削力Ftが一定となるように砥石駆動モ
ータ7aを制御するものであり、これにより研削面の粗
さ並びに円筒度を大幅に改善しようとするものである。The method of controlling this grinding machine 1 is to detect the normal grinding force F and the tangential grinding force F, respectively, and
The cutting motor 5 is controlled so that N is constant, and the grindstone drive motor 7a is controlled so that the tangential grinding force Ft is constant, thereby significantly reducing the roughness and cylindricity of the ground surface. It is something that we try to improve.
上記法線方向研削力F、と接線方向研削力FTとを夫々
検出するため、第6図・第7図に示すように、砥石軸3
aの外周面の前側に近接して臨むF8検出用磁気センサ
14a及び砥石軸3aの外周面の下側に近接して臨むF
T検出用磁気センサ14bとが設けられ、これら磁気セ
ンサ14a・14bからの検出信号はコントロールユニ
ット(図示路)へ出力されている。In order to detect the normal grinding force F and the tangential grinding force FT, as shown in FIGS. 6 and 7,
F8 detection magnetic sensor 14a facing close to the front side of the outer peripheral surface of a and F facing close to the lower side of the outer peripheral surface of the grindstone shaft 3a
A magnetic sensor 14b for T detection is provided, and detection signals from these magnetic sensors 14a and 14b are output to a control unit (path shown).
上記コントロールユニットには、第8図に示す切込みモ
ータ制御系と第9図に示す砥石駆動モータ制御系とが設
けられている。The control unit is provided with a cutting motor control system shown in FIG. 8 and a grindstone drive motor control system shown in FIG. 9.
第8図の制御系は、F、検出用磁気センサ14aで検出
された法線方向研削力FMが設定値となるように切込み
モータ5の回転速度を制御する制御系の一例を示すもの
で、法線方向研削力設定器16と、この設定器16の出
力信号からFN検出用磁気センサ14aの検出信号を減
算する減算器17と、ワークWの材料・形状・寸法及び
砥石3の種類に応じて切込みモータ5による切込み動作
を指令する切込み操作盤18と、切込み操作盤18から
の指令信号及び減算器17の出力信号を受けて切込みモ
ータ5へ駆動電力を出力する切込みモータ制御装置19
とを備えており、法線方向研削力FMの検出値が設定値
より小さいときには、減算器17から十の信号が出力さ
れ、切込みモータ制御装置19への入力信号が大きくな
り、切込みモータ5の回転数が増加するように制御され
るので、法線方向研削力F、が設定値に近づいてい法線
方向研削力F2の検出値が設定値より大きいときには上
記と反対に切込みモータ5の回転数が減少するように制
御されるので、法線方向研削力F、が設定値に近づいて
いく。The control system in FIG. 8 shows an example of a control system that controls the rotational speed of the cutting motor 5 so that the normal grinding force FM detected by the detection magnetic sensor 14a becomes a set value. A normal direction grinding force setter 16, a subtracter 17 that subtracts the detection signal of the FN detection magnetic sensor 14a from the output signal of this setter 16, and a a cutting operation panel 18 that commands the cutting operation by the cutting motor 5; and a cutting motor control device 19 that receives a command signal from the cutting operation panel 18 and the output signal of the subtracter 17 and outputs driving power to the cutting motor 5.
When the detected value of the normal grinding force FM is smaller than the set value, a signal of 10 is output from the subtractor 17, the input signal to the cutting motor control device 19 becomes large, and the cutting motor 5 is controlled. Since the rotation speed is controlled to increase, when the normal grinding force F approaches the set value and the detected value of the normal grinding force F2 is larger than the set value, the rotation speed of the cutting motor 5 increases, contrary to the above. Since the grinding force F is controlled to decrease, the normal grinding force F approaches the set value.
第9図の制御系は、FT検出用磁気センサ14bで検出
された接線方向研削力Fアが設定値となるように砥石駆
動モータ7aの回転速度を制御する制御系の一例を示す
もので、接線方向研削力設定器33と、F1検出用磁気
センサ14bの検出信号から設定器33の出力信号を減
算する減算器34と、ワークWの材料・形状・寸法及び
砥石3の種類に応じて砥石駆動モータ7aによる研削動
作を指令する砥石操作盤35と、砥石操作盤35からの
指令信号及び減算器34の出力信号を受けて砥石駆動モ
ータ7aへ駆動電力を出力する砥石駆動モータ制御装置
36とを備えており、接線方向研削力Fアの検出値が設
定値より大きいときには、減算器34から十の信号が出
力され、砥石駆動モータ制御装置36への入力信号が大
きくなり、砥石駆動モータ7aの回転数が増加するよう
に制御されるので、接線方向研削力F7が設定値に近づ
いていく。The control system in FIG. 9 shows an example of a control system that controls the rotational speed of the grindstone drive motor 7a so that the tangential grinding force Fa detected by the FT detection magnetic sensor 14b becomes a set value. A tangential grinding force setting device 33, a subtractor 34 that subtracts the output signal of the setting device 33 from the detection signal of the F1 detection magnetic sensor 14b, and a grinding wheel according to the material, shape, and dimensions of the workpiece W and the type of the grinding wheel 3. a grindstone operation panel 35 that commands the grinding operation by the drive motor 7a; a grindstone drive motor control device 36 that receives the command signal from the grindstone operation panel 35 and the output signal of the subtracter 34 and outputs driving power to the grindstone drive motor 7a; When the detected value of the tangential grinding force Fa is larger than the set value, the subtractor 34 outputs a signal of 10, the input signal to the grindstone drive motor control device 36 increases, and the grindstone drive motor 7a Since the rotation speed is controlled to increase, the tangential grinding force F7 approaches the set value.
接線方向研削力F、の検出値が設定値より小さいときに
は上記と反対に砥石駆動モータ7aの回転数が減少する
ように制御されるので、接線方向研削力Fアが設定値に
近づいていく。When the detected value of the tangential grinding force F is smaller than the set value, contrary to the above, the rotation speed of the grindstone drive motor 7a is controlled to decrease, so that the tangential grinding force F approaches the set value.
以上のようにして、法線方向研削力F、及び接線方向研
削力Fアが夫々一定(設定値)となるように制御される
ことになり、このように制御することの作用は次のよう
になる。In the above manner, the normal grinding force F and the tangential grinding force Fa are controlled to be constant (set values), and the effect of controlling in this way is as follows. become.
第10図において、上記のように制御する場合、研削の
進行とともに砥石径が減少しても、法線方向研削力FM
及び接線方向研削力F7が夫々一定に維持されるので、
砥石中心は研削初期の砥石中心0゜から砥石径の減少分
だけ移動するのみで、研削点は点P。の位置を保持し、
ワークWの加工半径は研削初期と同様に線分OwWoで
ある。In Fig. 10, when controlling as described above, even if the grinding wheel diameter decreases as the grinding progresses, the normal direction grinding force FM
and tangential grinding force F7 are each maintained constant, so
The center of the grinding wheel moves only by the amount by which the diameter of the grinding wheel decreases from the 0° center of the grinding wheel at the beginning of grinding, and the grinding point is point P. hold the position of
The machining radius of the workpiece W is the line segment OwWo as in the initial stage of grinding.
第10図から明らかなように、法線方向研削力FHを一
定に制御する従来技術の加工半径O,W、及び接線方向
研削力FTを一定に制御する従来技術の加工半径Ow
Wyと比較すれば、この研削制御が優れていることが判
る。As is clear from FIG. 10, the machining radii O, W of the conventional technology that controls the normal grinding force FH constant, and the machining radius Ow of the conventional technology that controls the tangential grinding force FT constant.
When compared with Wy, it can be seen that this grinding control is superior.
即ち、この研削制御のように、法線方向研削力F8及び
接線方向研削力F7を夫々一定に制御すれば、砥石径が
減少しても砥石軸3aの撓み角が研削の全期間に亙って
一定に保持されることから、研削開始初期のスイベル角
の設定の誤差以外に研削面がテーパ化する原因が解消す
る。こうして、研削面の円筒度が著しく改善され、テー
パ化することが殆どない。That is, if the normal grinding force F8 and the tangential grinding force F7 are controlled to be constant as in this grinding control, even if the grinding wheel diameter decreases, the deflection angle of the grinding wheel shaft 3a will remain constant throughout the entire grinding period. Since the swivel angle is held constant, causes other than errors in setting the swivel angle at the initial stage of grinding, which cause the grinding surface to become tapered, are eliminated. In this way, the cylindricity of the ground surface is significantly improved and there is almost no tapering.
しかも、砥石径の減少につれて接線方向研削力FTが増
加しそうになっても回転数を増加させて接線方向研削力
Ftが一定となるように制御するので、砥石3の研削性
能が一定に保持され、研削面の粗さも研削開始初期と同
様に良好に保持されることになる。Furthermore, even if the tangential grinding force FT is likely to increase as the grinding wheel diameter decreases, the rotation speed is increased and the tangential grinding force Ft is controlled to be constant, so the grinding performance of the grinding wheel 3 is maintained constant. , the roughness of the ground surface is maintained as well as at the initial stage of grinding.
そして、接線方向研削力FTを一定に制御していても、
砥石径の減少に応じて砥石3の周速の減少のため研削性
能が低下し法線方向研削力FHが増大する傾向になるけ
れども、法線方向研削力F、は一定に制御されるので、
法線方向研削力FMの変動は起らない。Even if the tangential grinding force FT is controlled constant,
As the grinding wheel diameter decreases, the circumferential speed of the grinding wheel 3 decreases, so the grinding performance decreases and the normal grinding force FH tends to increase, but the normal grinding force F is controlled to be constant.
No fluctuations in the normal grinding force FM occur.
次に、上記研削盤1の制御系並びに検出系の変形例につ
いて説明する。Next, a modification of the control system and detection system of the grinding machine 1 will be described.
(11第11図に示すように、コントロールユニット1
5は、F8検出用磁気センサ14aとF?検出用磁気セ
ンサ14bとからの検出信号を受けてそれらをA/D変
換するA/D変換器22と、研削の諸条件を入力設定す
る操作盤23とA/D変換器22からの信号を受ける入
出力インクフェイス24と、入出力インクフェイス24
にデータバス等で接続されたCPU25 (中央演算
装W)と、CPU25にデータバス等で夫々接続された
ROM26(リード・オンリ・メモリ)及びRAM27
(ランダム・アクセス・メモリ)とで構成され、入出力
インタフェイス24からは主軸モータ駆動回路28と切
込みモータ駆動回路29とスイベル駆動モータ駆動回路
30と砥石駆動モータ駆動回路31と砥石テーブル駆動
モータ駆動回路32とに夫々制御信号が出力されるよう
になっている。(11 As shown in Fig. 11, the control unit 1
5 is the F8 detection magnetic sensor 14a and F? An A/D converter 22 that receives detection signals from the detection magnetic sensor 14b and converts them into A/D; an operation panel 23 that inputs and sets grinding conditions; and signals from the A/D converter 22. Input/output ink face 24 that receives input/output ink face 24
A CPU 25 (central processing unit W) connected to the CPU 25 via a data bus etc., and a ROM 26 (read only memory) and a RAM 27 connected to the CPU 25 via a data bus etc.
(random access memory), and from the input/output interface 24, a spindle motor drive circuit 28, a cutting motor drive circuit 29, a swivel drive motor drive circuit 30, a grindstone drive motor drive circuit 31, and a grindstone table drive motor drive Control signals are output to the circuits 32 and 32, respectively.
上記ROM26には操作盤23からの設定信号に基いて
各モータ4a・5・7a・9・13を制御する制御プロ
グラム及びFM検出用磁気センサ14a及びFT検出用
磁気センサ14bからの検出信号を読込んで前記同様法
線方向研削力FMが設定値となるように切込みモータ5
を制御するとともに、接線方向研削力Fアが設定値とな
るように砥石駆動モータ7aを制御する制御プログラム
などが予め入力格納されている。The ROM 26 is loaded with a control program for controlling each motor 4a, 5, 7a, 9, 13 based on setting signals from the operation panel 23, and detection signals from the FM detection magnetic sensor 14a and the FT detection magnetic sensor 14b. Then, as above, the cutting motor 5 is adjusted so that the normal direction grinding force FM becomes the set value.
A control program for controlling the grindstone drive motor 7a so that the tangential grinding force Fa becomes a set value is stored in advance.
その制御ルーチンは極めて簡単なものなので詳しい説明
は省略する。Since the control routine is extremely simple, detailed explanation will be omitted.
(2)前記磁気センサ14a・14bに代えて、電気マ
イクロメータ、空気マイクロメータ、光学的測微器など
各種の検出装置を用いることが出来る。(2) Instead of the magnetic sensors 14a and 14b, various detection devices such as an electric micrometer, an air micrometer, and an optical micrometer can be used.
加えて、法線方向研削力F、4検出手段として、例えば
第12図や第13図のように構成してもよい。In addition, the normal direction grinding force F, 4 detection means may be configured as shown in FIG. 12 or FIG. 13, for example.
即ち、第12図のものは、切込みモータ5の回転数信号
(これは回転数センサで検出される)とインプロセスゲ
ージ32で計測した研削内周面の直径信号とに基いて砥
石軸3aの撓み量を求め、その撓み量から法線方向研削
力FMを求めるようにしである。また第13図のものは
、1対のインプロセスゲージ32によりワークWの研削
内周面の軸方向2個所の直径を検出し、その直径の差か
ら砥石軸3aの撓み角を求め、その撓み角から法線方向
研削力FMを求めるようにしである。尚、図中符号15
Bは第10図のものと同様のコントロールユニットであ
る。That is, in the case shown in FIG. 12, the rotation speed signal of the cutting motor 5 (detected by the rotation speed sensor) and the diameter signal of the grinding inner circumferential surface measured by the in-process gauge 32 are used to determine the rotation speed of the grinding wheel shaft 3a. The amount of deflection is determined, and the grinding force FM in the normal direction is determined from the amount of deflection. In addition, in the case shown in FIG. 13, the diameters of the grinding inner circumferential surface of the workpiece W at two locations in the axial direction are detected using a pair of in-process gauges 32, and the deflection angle of the grinding wheel shaft 3a is determined from the difference in diameter. The normal grinding force FM is determined from the corner. In addition, the reference numeral 15 in the figure
B is a control unit similar to that in FIG.
一方、接線方向研削力Fアは、砥石駆動モータ7aへ供
給される電力の電圧をポテンシャルトランスフォーマ−
でまた電流をカレントトランスフォーマ−で夫々検出す
るとともに砥石駆動モータ7aの回転数を回転数センサ
などで求め、上記検出電圧と検出電流と検出回転数とに
基いて接線方向研削力Fアを求めるようにしてもよい。On the other hand, the tangential grinding force Fa converts the voltage of the electric power supplied to the grindstone drive motor 7a into a potential transformer.
In addition, the current is detected by a current transformer, the rotation speed of the grindstone drive motor 7a is determined by a rotation speed sensor, etc., and the tangential grinding force Fa is determined based on the detected voltage, the detected current, and the detected rotation speed. You can also do this.
図面は本発明の実施例に係るもので、第1図は研削盤の
平面図、第2図は同正面図、第3図は同側面図、第4図
は砥石軸の撓み角とスイベル角とを示す横断平面図、第
5図は砥石からワークに作用する法線方向研削力と接線
方向研削力と研削力とを示す説明図、第6図はF0検出
用磁気センサとF7検出用磁気センサとを示す要部縦断
面図、第7図は同じく要部平面図、第8図は切込みモー
タの為の制御系の構成図、第9図は砥石駆動モータの為
の制御系の構成図、第10図は従来技術を含めて各制御
方式で制御するときの加工半径の説明図、第11図は研
削盤全体の制御系の一例の構成図、第12図・第13図
は夫々法線方向研削力検出手段の一例を示す構成図であ
る。
1・・研削盤、 3・・砥石、 5・・切込みモータ、
7a・・砥石駆動モータ、 F、 ・・法線方向研
削力、 Fア ・・接線方向研削力、 F・・研削力、
14a・・F、検出用磁気センサ、14b・・F7
検出用磁気センサ、 15・・コントロールユニット
、 16・・法線方向研削力設定器、 17・・減算
器、 19・・切込みモータ制御装置、 29・・切込
みモータ駆動回路、31・・砥石駆動モータ駆動回路、
33・・接線方向研削力設定器、 34・・減算器
、36・・砥石駆動モータ制御装置。
特 許 出 願 人 マツダ株式会社第1図
第2図
第4図
第5図
j
第7図
第10図The drawings relate to an embodiment of the present invention, and FIG. 1 is a plan view of the grinding machine, FIG. 2 is a front view of the same, FIG. 3 is a side view of the same, and FIG. 4 is a deflection angle and a swivel angle of the grinding wheel shaft. Fig. 5 is an explanatory diagram showing the normal grinding force, tangential grinding force, and grinding force acting on the workpiece from the grindstone, and Fig. 6 shows the magnetic sensor for F0 detection and the magnetic sensor for F7 detection. Fig. 7 is a plan view of the main parts, Fig. 8 is a block diagram of the control system for the cutting motor, and Fig. 9 is a block diagram of the control system for the grindstone drive motor. , Fig. 10 is an explanatory diagram of the machining radius when controlled by each control method including the conventional technology, Fig. 11 is a configuration diagram of an example of the control system of the entire grinding machine, and Figs. 12 and 13 are diagrams for each method. It is a block diagram which shows an example of a linear grinding force detection means. 1. Grinding machine, 3. Grinding wheel, 5. Cutting motor,
7a...Grinding wheel drive motor, F...Normal direction grinding force, Fa...Tangential direction grinding force, F...Grinding force,
14a...F, detection magnetic sensor, 14b...F7
Detection magnetic sensor, 15. Control unit, 16. Normal direction grinding force setter, 17. Subtractor, 19. Cut motor control device, 29. Cut motor drive circuit, 31. Grinding wheel drive motor. drive circuit,
33...Tangential grinding force setting device, 34...Subtractor, 36...Grinding wheel drive motor control device. Patent applicant: Mazda Motor Corporation Figure 1 Figure 2 Figure 4 Figure 5 j Figure 7 Figure 10
Claims (1)
研削力を検出し、この法線方向研削力が一定となるよう
に切込み送りモータを制御するとともに、研削力のうち
接線方向の研削力を検出し、この接線方向研削力が一定
となるように砥石軸駆動モータを制御することを特徴と
する研削盤の制御方法。(1) When grinding with a grinder, the grinding force in the normal direction of the grinding force is detected, the cutting feed motor is controlled so that this normal direction grinding force is constant, and the tangential direction of the grinding force is A method for controlling a grinding machine, comprising: detecting a grinding force in a direction, and controlling a grindstone shaft drive motor so that the grinding force in a tangential direction is constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12873787A JPS63295178A (en) | 1987-05-26 | 1987-05-26 | Grinder control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12873787A JPS63295178A (en) | 1987-05-26 | 1987-05-26 | Grinder control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63295178A true JPS63295178A (en) | 1988-12-01 |
Family
ID=14992209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12873787A Pending JPS63295178A (en) | 1987-05-26 | 1987-05-26 | Grinder control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63295178A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01252358A (en) * | 1987-12-01 | 1989-10-09 | Seiko Seiki Co Ltd | Control method of grinding process device furnishing spindle device with slack detecting device |
JP2013129047A (en) * | 2011-12-22 | 2013-07-04 | Jtekt Corp | Method and device for determining grinding state |
JP2018111152A (en) * | 2017-01-10 | 2018-07-19 | ミクロン精密株式会社 | Centerless grinding device and load measuring method |
JP2018111151A (en) * | 2017-01-10 | 2018-07-19 | ミクロン精密株式会社 | Grinding apparatus and grinding method |
WO2018131399A1 (en) * | 2017-01-10 | 2018-07-19 | ミクロン精密株式会社 | Grinding apparatus and grinding method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51143983A (en) * | 1975-06-06 | 1976-12-10 | Seiko Seiki Co Ltd | Control device for inside grinding |
JPS5577467A (en) * | 1978-12-05 | 1980-06-11 | Inoue Japax Res Inc | Grinding machine |
-
1987
- 1987-05-26 JP JP12873787A patent/JPS63295178A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51143983A (en) * | 1975-06-06 | 1976-12-10 | Seiko Seiki Co Ltd | Control device for inside grinding |
JPS5577467A (en) * | 1978-12-05 | 1980-06-11 | Inoue Japax Res Inc | Grinding machine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01252358A (en) * | 1987-12-01 | 1989-10-09 | Seiko Seiki Co Ltd | Control method of grinding process device furnishing spindle device with slack detecting device |
JP2013129047A (en) * | 2011-12-22 | 2013-07-04 | Jtekt Corp | Method and device for determining grinding state |
JP2018111152A (en) * | 2017-01-10 | 2018-07-19 | ミクロン精密株式会社 | Centerless grinding device and load measuring method |
JP2018111151A (en) * | 2017-01-10 | 2018-07-19 | ミクロン精密株式会社 | Grinding apparatus and grinding method |
WO2018131399A1 (en) * | 2017-01-10 | 2018-07-19 | ミクロン精密株式会社 | Grinding apparatus and grinding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2516382B2 (en) | Machining equipment with magnetic bearing as main shaft | |
JP2750499B2 (en) | Method for confirming dressing of superabrasive grindstone in NC grinder | |
US4551950A (en) | Truing apparatus for a grinding wheel with rounded corners | |
US5072550A (en) | Grinding method and grinding machine with controlled grinding force | |
JPS6258870B2 (en) | ||
JPS63295178A (en) | Grinder control method | |
CN111843622B (en) | Grinding method and grinding machine | |
JPH0584649A (en) | Method and device of circular grinding of cylindrical work | |
JP2003266295A (en) | Buff machining controller | |
JP2534500B2 (en) | Grinding machine control method | |
JPH03104561A (en) | Method for controlling polishing condition | |
JP2607948B2 (en) | Grinding method in surface grinder | |
JPH05104436A (en) | Tactile sensor integrated type polishing processing machine | |
JPH0288169A (en) | Numerical control grinder | |
JP2513342B2 (en) | Retraction grinding method and grinding device in grinding force control grinding | |
JPS63295176A (en) | Grinder control method | |
JP3510083B2 (en) | Grinding equipment | |
JP3385666B2 (en) | Grinding equipment | |
JP2741459B2 (en) | Grinding machine with thermal displacement compensator | |
JP2007260809A (en) | Grinding wheel truing method and device | |
JPH0557608A (en) | Dressing device for grinding machine | |
JPH0557609A (en) | Dressing device for grinding machine | |
JP3185464B2 (en) | Grinding equipment | |
JP3918896B2 (en) | Grinding equipment | |
JP3050712B2 (en) | Gear honing method |