JPS63295176A - Grinder control method - Google Patents

Grinder control method

Info

Publication number
JPS63295176A
JPS63295176A JP62128735A JP12873587A JPS63295176A JP S63295176 A JPS63295176 A JP S63295176A JP 62128735 A JP62128735 A JP 62128735A JP 12873587 A JP12873587 A JP 12873587A JP S63295176 A JPS63295176 A JP S63295176A
Authority
JP
Japan
Prior art keywords
grinding
grinding force
force
normal
tangential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62128735A
Other languages
Japanese (ja)
Inventor
Hiromichi Seo
瀬尾 弘道
Genzo Kosaka
高坂 源造
Keiji Kawaguchi
川口 桂司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62128735A priority Critical patent/JPS63295176A/en
Priority to KR1019880005918A priority patent/KR880013657A/en
Publication of JPS63295176A publication Critical patent/JPS63295176A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation

Abstract

PURPOSE:To enhance cylindricity of the surface to be ground by sensing the grinding forces in the normal and tangential directions, determining the grinding force as the vector resultant of the two first named grinding forces, and by controlling so that this resultant grinding force becomes constant. CONSTITUTION:When a grinder 1 performs grinding, the grinding force in the normal direction FN and that in the tangential direction FT are sensed by magnetic sensors 14a, 14b, respectively. Then the grinding force F as the vector resultant of these two, FN and FT, is calculated, and control is performed so that this value F becomes constant. Thereby the angle of deflection of the grinding wheel spindle 3a is kept constant even though the deflecting direction of this shaft varies a little, which decreases as a result the degree of taper very much to lead to enhancement of the cylindricity of the surface ground. Because the grinding force F as the resultant is controlled constant, the grinding force FN in the normal direction decreases with increasing grinding force FT in the tangential direction, and accordingly the roughness of the ground surface is held in satisfactory condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は研削盤の制御方法に関し、砥石軸の撓みに起因
する円筒度誤差を大幅に改善し得る制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for a grinding machine, and more particularly, to a control method that can significantly improve cylindricity errors caused by deflection of a grindstone shaft.

〔従来技術〕[Prior art]

一般に、研削盤は、切込みモータで切込み送りされる切
込みテーブルと、切込みテーブル上に鉛直軸回りに回動
可能に設けられスイベルモータでスイベル駆動されるス
イベルテーブルと、スイベルテーブル上に設けられたワ
ーク取付の為のチャックを有する主軸及び主軸駆動モー
タと、砥石テーブルと、砥石テーブル上に設けられたホ
イールヘッドと、ホイールヘッドに取付けられた砥石と
、ホイールヘッドを駆動する砥石駆動モータと、砥石ド
レッサなどを備えている。
In general, a grinding machine consists of a cutting table whose cutting is fed by a cutting motor, a swivel table which is rotatably mounted on the cutting table so as to be rotatable around a vertical axis and which is swivel-driven by a swivel motor, and a workpiece which is mounted on the swivel table. A main shaft and a main shaft drive motor having a chuck for mounting, a grindstone table, a wheel head provided on the grindstone table, a grindstone attached to the wheel head, a grindstone drive motor that drives the wheel head, and a grindstone dresser. It is equipped with such things as

研削盤でワークを研削する場合、ワーク及び砥石を回転
させるとともに、砥石軸の撓み角に相当する角度だけス
イベルテーブルを回動させることによりワークの軸心と
砥石の軸心とを平行に保持した状態で切込みテーブルを
切込み送りさせながら研削する。
When grinding a workpiece with a grinding machine, the workpiece and grindstone are rotated, and the swivel table is rotated by an angle corresponding to the deflection angle of the grindstone shaft, thereby keeping the axis of the workpiece parallel to the axis of the grindstone. Grind while feeding the cutting table in this state.

この研削時、実施例に係る第5図に示すように砥石3か
らワークWに対して切込み送り力の反力として発生する
水平な法線方向の研削力Fs  (以下、法線方向研削
力FMという)と主に砥石駆動モータのトルクに起因し
摩擦力を介してワークWに伝わる接線方向の研削力Ft
  (以下、接線方向研削力FTという)とが作用し、
この法線方向研削力FMと接線方向研削力Fアのペルト
ル合力である研削力FがワークWに作用する。
During this grinding, as shown in FIG. 5 according to the embodiment, a horizontal normal grinding force Fs (hereinafter, normal grinding force FM ) and the tangential grinding force Ft that is mainly caused by the torque of the grindstone drive motor and is transmitted to the workpiece W via frictional force.
(hereinafter referred to as tangential grinding force FT) acts,
A grinding force F, which is a Peltor resultant force of the normal grinding force FM and the tangential grinding force FA, acts on the workpiece W.

研削時、砥石が摩耗するためまた研削途中で何回も砥石
をドレスするため研削の進行につれて砥石の直径が減少
していくが、通常は砥石駆動モータヘ一定の電力を供給
しその回転数とトルクとを略一定に保持して研削するの
で、砥石径の減少に応じて接線方向研削力FTは大きく
なり、その接線方向研削力FTの増大により研削性能が
向上することから法線方向研削力FNは小さくなる。
During grinding, the diameter of the grinding wheel decreases as grinding progresses as the grinding wheel wears out and the grinding wheel is dressed many times during grinding. Normally, a constant amount of power is supplied to the grinding wheel drive motor to control its rotation speed and torque. Since grinding is carried out while holding approximately constant, the tangential grinding force FT increases as the grinding wheel diameter decreases, and the increase in the tangential grinding force FT improves grinding performance, so the normal grinding force FN increases. becomes smaller.

上記接線方向研削力F7は研削性能を支配するものなの
で、接線方向研削力Fアが大きくなると研削面の表面粗
さが大きくなる。また上記法線方向研削力FMは砥石軸
の撓み角を大きく左右するものなので、法線方向研削力
FMが変動すると研削面がテーバ化して研削面の円筒度
が悪化し研削の精度が低下することになる。但し、砥石
軸は法線方向研削力FMによって切込みテーブルの送り
方向に弾性変形するのと同時に、接線方向研削力Fアの
反力によっても弾性変形する。
Since the tangential grinding force F7 controls the grinding performance, as the tangential grinding force Fa increases, the surface roughness of the ground surface increases. In addition, the normal grinding force FM greatly affects the deflection angle of the grinding wheel shaft, so if the normal grinding force FM fluctuates, the grinding surface becomes taberous, the cylindricity of the grinding surface worsens, and the grinding accuracy decreases. It turns out. However, the grindstone shaft is elastically deformed in the feed direction of the cutting table by the normal grinding force FM, and at the same time, it is also elastically deformed by the reaction force of the tangential grinding force FA.

従来より、研削面の粗さや円筒度を向上させる高程々の
研削盤の制御方法が提案されて来た。
BACKGROUND ART Conventionally, methods for controlling grinding machines have been proposed to improve the roughness and cylindricity of the ground surface.

例えば、特開昭51−143983号公報には、砥石軸
の撓みを検出し、その撓みが一定となるように、切込み
モータを介して切込み速度を制御する技術が記載されて
いる。これは、法線方向研削力FNを一定に保持して研
削面の円筒度の精度を高めようとするものである。
For example, Japanese Patent Application Laid-Open No. 51-143983 describes a technique for detecting the deflection of a grindstone shaft and controlling the cutting speed via a cutting motor so that the deflection becomes constant. This is intended to maintain the normal grinding force FN constant and improve the accuracy of the cylindricity of the ground surface.

また、特公昭53−34036号公報には、砥石駆動モ
ータへの供給電力を検出し、その電力が設定値となるよ
うに切込み送り速度を制御する技術が記載されている。
Furthermore, Japanese Patent Publication No. 53-34036 describes a technique for detecting the power supplied to a grindstone drive motor and controlling the cutting feed rate so that the power becomes a set value.

これは、接線方向研削力Fアを一定に保持して研削面の
粗さを向上させようとするものである。
This is intended to improve the roughness of the ground surface by keeping the tangential grinding force F constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように接線方向研削力FTを一定に保持して研削
する技術と、法線方向研削力F、を一定に保持して研削
する技術について実施例に係る第9図により検討を加え
てみる。
As mentioned above, the technique of grinding while keeping the tangential grinding force FT constant and the technique of grinding while keeping the normal grinding force F constant will be examined using FIG. 9 according to the embodiment. .

図中、点0は無負荷時の砥石中心、点08はワークの中
心、点O0は研削開始初期の砥石中心、点0アは接線研
削力Fアを一定に制御して研削し砥石径が小さくなった
ときの砥石中心、点ONは法線方向研削力FMを一定に
制御して研削し砥石径が小さくなったときの砥石中心で
ある。
In the figure, point 0 is the center of the grinding wheel when no load is applied, point 08 is the center of the workpiece, point O0 is the center of the grinding wheel at the initial stage of grinding, and point 0a is the center of the grinding wheel when the tangential grinding force Fa is controlled constant. The center of the grindstone when the diameter becomes smaller, the point ON, is the center of the grindstone when the diameter of the grindstone becomes smaller by controlling the normal grinding force FM to be constant.

研削開始後、切込み送りによる法線方向研削力F、と砥
石のトルクによる接線方向研削力F、とが作用し、F、
とFアのペルトル合力である研削力Fが作用するので、
砥石中心はOoとなり、このときの研削点がPoとなり
、ワークの加工半径は線分0゜Woとなる。
After the start of grinding, a normal grinding force F due to the cutting feed and a tangential grinding force F due to the torque of the grinding wheel act, F,
Since the grinding force F, which is the Peltor resultant force of F and F, acts,
The center of the grinding wheel is Oo, the grinding point at this time is Po, and the machining radius of the workpiece is a line segment 0°Wo.

研削開始時上記法線方向研削力FMで水平方向に撓んだ
砥石軸の撓み角に相当する角度だけスイベルテーブルを
介して主軸をスイベルさせることにより砥石軸軸心と主
軸軸心(ワーク軸心)とが平行となるように調整して研
削してい(のが一般的である。
At the start of grinding, the spindle is swiveled via the swivel table by an angle corresponding to the deflection angle of the grindstone spindle deflected in the horizontal direction by the normal grinding force FM. ) is generally adjusted and ground so that they are parallel to each other.

研削の進行につれて砥石径が小さくなり、既述の如(接
線方向研削力FTと法線方向研削力F8の大きさが変動
するが、上記前者の公報のように法線方向研削力FNが
一定となるように制御する場合に2よ、砥石中心がO8
からONへ移行し、研削点がPsとなり、ワークの加工
半径は線分0,4WHとなる。この場合、法線方向研削
力FHが一定に保持されるが、接線方向研削力Fアが大
きくなることから砥石軸の撓み角は増大側へ変動し、そ
の結果研削点がPMとなる。そして、接線方向研削力F
アが著しく増大するので、研削性能が大きくなり研削面
の粗さが悪化する。
As the grinding progresses, the diameter of the grinding wheel becomes smaller, and as mentioned above (the magnitudes of the tangential grinding force FT and the normal grinding force F8 fluctuate, but as in the former publication mentioned above, the normal grinding force FN remains constant). When controlling so that 2, the center of the grinding wheel is O8
The state shifts to ON, the grinding point becomes Ps, and the machining radius of the workpiece becomes line segment 0.4WH. In this case, the normal grinding force FH is kept constant, but since the tangential grinding force FA increases, the deflection angle of the grindstone shaft changes toward the increasing side, and as a result, the grinding point becomes PM. And the tangential grinding force F
Since the a is significantly increased, the grinding performance increases and the roughness of the ground surface deteriorates.

これに対して、上記後者の公報のように、接線方向研削
力FTが一定となるように制御する場合には、砥石中心
が0゜からOFへ移行し、研削点がPTとなり、ワーク
の加工半径は線分Ow WTとなる。この場合、接線方
向研削力Fア一定の制御なので、研削性能は一定に保持
され研削面の粗さは小さくなる。しかし、図示のように
法線方向研削力F、が小さくなり研削力Fが小さくなる
ので砥石軸の撓み角が小さくなって、研削面のテーパ化
の度合が大きくなり研削面の円筒度が低下し、このとき
の研削点は点P7となる。
On the other hand, when the tangential grinding force FT is controlled to be constant as in the latter publication, the center of the grinding wheel shifts from 0° to OF, the grinding point becomes PT, and the workpiece is machined. The radius becomes the line segment Ow WT. In this case, since the tangential grinding force F is controlled to be constant, the grinding performance is kept constant and the roughness of the ground surface is reduced. However, as shown in the figure, the normal direction grinding force F becomes smaller and the grinding force F becomes smaller, so the deflection angle of the grinding wheel shaft becomes smaller, the degree of taper of the ground surface increases, and the cylindricity of the ground surface decreases. However, the grinding point at this time is point P7.

以上のように法線方向研削力F8を一定に制御する場合
には、研削面の粗さが改善されず、研削面の円筒度があ
る程度改善されるのみである。また、接線方向研削力F
アを一定に制御する場合には研削面の粗さが改善される
が研削面の円筒度の面で問題が残っている。
When the normal grinding force F8 is controlled to be constant as described above, the roughness of the ground surface is not improved, and the cylindricity of the ground surface is only improved to some extent. Also, the tangential grinding force F
When A is controlled to be constant, the roughness of the ground surface is improved, but there remains a problem with the cylindricity of the ground surface.

〔問題点を解決するための手段〕[Means for solving problems]

本願第1発明に係る研削盤の制御方法は、研削盤で研削
する際に法線方向の研削力と接線方向の研削力とを夫々
検出し、上記法線方向研削力と接線方向研削力とのベク
トル合力である研削力を求め、この研削力が一定となる
ように制御するものである。
A method for controlling a grinding machine according to the first invention of the present application includes detecting a normal grinding force and a tangential grinding force when grinding with a grinding machine, and detecting the normal grinding force and the tangential grinding force. The grinding force, which is the vector resultant force, is determined and controlled so that this grinding force is constant.

本願第2発明に係る研削盤の制御方法は、研削盤で研削
する際に法線方向の研削力と接線方向の研削力とを夫々
検出し、上記法線方向研削力と接線方向研削力とのベク
トル合方である研削力を求め、このベクトル合力である
研削力が一定となるように砥石とワーク間の切込み速度
を制御するものである。
A method for controlling a grinding machine according to a second invention of the present application includes detecting a normal grinding force and a tangential grinding force when grinding with a grinding machine, and detecting the normal grinding force and the tangential grinding force. The grinding force, which is the vector resultant force, is determined, and the cutting speed between the grindstone and the workpiece is controlled so that the grinding force, which is the vector resultant force, is constant.

〔作用〕[Effect]

本発明に係る研削盤の制御方法においては、研削盤で研
削する際に法線方向研削力と接線方向研削力とを夫々検
出し、上記法線方向研削力と接線方向研削力とのベクト
ル合力である研削力を求め、その研削力が一定となるよ
うに制御するので、砥石軸の撓みの方向は若干変動する
ものの砥石軸の撓み角が一定に保持され、その結果研削
面のテーパ化の度合が非常に小さくなり研削面の円筒度
が格段に向上する。
In the method for controlling a grinding machine according to the present invention, when grinding with the grinding machine, a normal grinding force and a tangential grinding force are respectively detected, and a vector resultant of the normal grinding force and the tangential grinding force is generated. Since the grinding force is determined and controlled so that the grinding force is constant, the deflection angle of the grindstone spindle is kept constant, although the direction of deflection of the grindstone spindle changes slightly, and as a result, the taper of the grinding surface is reduced. The degree of cylindricity becomes very small, and the cylindricity of the ground surface is greatly improved.

更に、合力としての研削力を一定に制御するので、接線
方向研削力の増大に応じて法線方向研削力が減少するこ
とから、研削面の粗さも略良好に保持される。
Further, since the grinding force as a resultant force is controlled to be constant, the normal grinding force decreases as the tangential grinding force increases, so that the roughness of the ground surface is maintained at a substantially good level.

〔発明の効果〕〔Effect of the invention〕

本発明に係る研削盤の制御方法によれば、以上説明した
ように法線方向研削力と接線方向研削力とのベクトル合
力である研削力が一定となるように制御して、研削中の
砥石軸の撓み角を一定に保持することにより、研削面が
テーパ化するのを防ぎ研削面の円筒度を格段に向上させ
ることが出来る。
According to the method for controlling a grinding machine according to the present invention, as explained above, the grinding force, which is the vector resultant of the normal grinding force and the tangential grinding force, is controlled to be constant, and the grinding machine is By keeping the deflection angle of the shaft constant, the grinding surface can be prevented from becoming tapered and the cylindricity of the grinding surface can be significantly improved.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明を適用する研削盤1について第1図〜第3
図面の簡単な説明する。尚、第1図において−X方向を
左方、X方向を右方、−Y方向を前方、Y方向を後方と
定義する。
First, FIGS. 1 to 3 regarding the grinding machine 1 to which the present invention is applied.
Provide a brief explanation of the drawing. In FIG. 1, the -X direction is defined as the left side, the X direction is defined as the right side, the -Y direction is defined as the front, and the Y direction is defined as the rear.

主軸4及び主軸モータ4aを支持する切込みテーブル2
は、切込みモータ5によりベッド6上のテーブル台10
に対して前後方向へ進退駆動されるようになっており、
主軸4及び主軸モータ4aは切込みテーブル2上に載置
されたスイベルテーブルII上に固定され、スイベルテ
ーブル11は鉛直のスイベルビンlla回りに回動可能
で、上記スイベルテーブル11を回動させるため、スイ
ベルテーブル11の左端縁中央部には左方へ突出するア
ームllbが設けられ、アームllbのスクリュナツト
に螺合したスクリュ軸12が前後方向に向けて配設され
、上記スクリュ軸12は切込みテーブル2のブラケット
2a上に設けたスイベル駆動モータ13により駆動され
る。
Cutting table 2 that supports the spindle 4 and spindle motor 4a
The table base 10 on the bed 6 is cut by the cutting motor 5.
It is designed to be driven forward and backward in the forward and backward directions relative to the
The main shaft 4 and the main shaft motor 4a are fixed on a swivel table II placed on the cutting table 2, and the swivel table 11 is rotatable around a vertical swivel bin lla. An arm llb protruding leftward is provided at the center of the left edge of the table 11, and a screw shaft 12 screwed into a screw nut of the arm llb is disposed facing forward and backward. It is driven by a swivel drive motor 13 provided on the bracket 2a.

ホイールヘッド7及び砥石駆動モ〜り7aを支持する砥
石テーブル8は砥石テーブル駆動モータ9によりベッド
6に対して左右方向へ進退駆動されるようになっている
A grindstone table 8 supporting a wheel head 7 and a grindstone drive motor 7a is driven forward and backward relative to the bed 6 in the left-right direction by a grindstone table drive motor 9.

上記主軸4のチャック4bにはワークWが装着され、こ
のワークWの内周面がホイールヘッド7の砥石軸3aの
先端の砥石3で研削加工されるのであるが、この研削の
際には先ず砥石テーブル8を左方へ移動させて砥石3を
ワークWの軸孔内へ挿入してから、切込みテーブル2を
前方又は後方へ移動させることにより研削することにな
る。
A workpiece W is attached to the chuck 4b of the main spindle 4, and the inner peripheral surface of the workpiece W is ground by the grindstone 3 at the tip of the grindstone shaft 3a of the wheel head 7. After the grindstone table 8 is moved to the left and the grindstone 3 is inserted into the shaft hole of the workpiece W, the cutting table 2 is moved forward or backward to perform grinding.

上記研削時、切込みモータ5により切込みテーブル2を
前方へ切込み送りすると、第4図・第5図に示すように
砥石3からワークWに対して切込み送り力の反力として
の法線方向研削力F、と砥石3の回転トルクに起因し摩
擦力を介して伝わる接線方向研削力F7とが作用し、上
記法線方向研削力FMと接線方向研削力F7とのベクト
ル合力としての研削力Fが作用することになる。
During the above-mentioned grinding, when the cutting table 2 is fed forward by the cutting motor 5, a grinding force in the normal direction is generated from the grinding wheel 3 to the workpiece W as a reaction force of the feeding force as shown in FIGS. 4 and 5. F, and the tangential grinding force F7 caused by the rotational torque of the grindstone 3 and transmitted through the frictional force act, and the grinding force F as a vector resultant of the normal grinding force FM and the tangential grinding force F7 is It will work.

上記法線方向研削力FMと接線方向研削力FTとにより
、砥石軸3aは第4図に示すように法線方向研削力F、
と反対方向(切込み送り方向)へ弾性変形するとともに
接線方向研削力Fyと反対方向へも弾性変形する。
Due to the normal grinding force FM and the tangential grinding force FT, the grinding wheel shaft 3a has a normal grinding force F, as shown in FIG.
It is elastically deformed in the opposite direction (cut feed direction) and also in the opposite direction to the tangential grinding force Fy.

そこで、研削開始初期にスイベル駆動モータ13を駆動
してスイベルテーブル11をスイベルさせ、第4図のよ
うにワークWの軸心と砥石3の軸心とが平行になるよう
に所定のスイベル角θに調整して研削を行なう。
Therefore, at the beginning of grinding, the swivel drive motor 13 is driven to swivel the swivel table 11, and a predetermined swivel angle θ is set so that the axial center of the workpiece W and the axial center of the grindstone 3 are parallel to each other as shown in FIG. Adjust and grind.

次に、上記研削盤1の制御方法について説明する。Next, a method of controlling the grinding machine 1 will be explained.

この研削盤1の制御方法は、上記法線方向研削力FMと
接線方向研削力Ftとを夫々検出し、法線方向研削力F
sと接線方向研削力F7とのペルトル合力である研削力
Fが一定となるように切込みモータ5を制御するもので
あり、これにより研削面の粗さを悪化させることなく研
削面がテーバ状になるのを極力抑制して研削面の円筒度
を著しく向上させようとするものである。
The method of controlling this grinding machine 1 is to detect the normal grinding force FM and the tangential grinding force Ft, respectively, and to detect the normal grinding force F
The cutting motor 5 is controlled so that the grinding force F, which is the Peltor resultant force of s and the tangential grinding force F7, is constant, and as a result, the grinding surface becomes tapered without worsening the roughness of the grinding surface. The aim is to significantly improve the cylindricity of the ground surface by suppressing this as much as possible.

上記法線方向研削力Fsと接線方向研削力Fyとを夫々
検出するため、第6図・第7図に示すように、砥石軸3
aの外周面の前側に近接して臨むF、検出用磁気センサ
14a及び砥石軸3aの外周面の下側に近接して臨むF
7検出用磁気センサ14bとが設けられ、これら磁気セ
ンサ14a・14bからの検出信号はコントロールユニ
ット15へ出力される。
In order to detect the normal grinding force Fs and the tangential grinding force Fy, as shown in FIGS.
F facing close to the front side of the outer peripheral surface of a, F facing close to the lower side of the outer peripheral surface of the detection magnetic sensor 14a and the grindstone shaft 3a
7 detection magnetic sensors 14b are provided, and detection signals from these magnetic sensors 14a and 14b are output to the control unit 15.

本実施例では、検出された法線方向研削力FMと接線方
向研削力Ftとに基いてそれらのベクトル合力である研
削力FがワークW毎に設定される設定値となるように切
込み速度を制御する関係上、切込みモータ5の為の制御
系は例えば第8図に示すように構成されている。
In this embodiment, the cutting speed is adjusted based on the detected normal grinding force FM and tangential grinding force Ft so that the grinding force F, which is the vector resultant of these forces, becomes a set value set for each workpiece W. In terms of control, the control system for the cutting motor 5 is constructed as shown in FIG. 8, for example.

即ち、コントロールユニット15は、研削力Fの目標値
を設定する研削力設定器16と、ワークWの材質・形状
・寸法などに応じて切込み速度の目標値を設定する切込
み速度設定器17と、FM検出用磁気センサ14aとF
T検出用磁気センサ14bとから夫々検出信号を受け、 F = [(FN )”+ (F7 )”] ”” (
D演算演算研削力Fを演算する演算回路18と、研削力
設定器16の出力信号から演算回路18の出力信号を減
算する減算器19と、減算器19の出力信号に所定の係
数を乗する係数器20と、切込み速度設定器17の出力
信号と係数器20の出力信号とを加算する加算器21と
を備えており、上記加算器21の出力信号は駆動回路5
aで増幅され、この駆動回路5aから制御された電流・
電圧の電力が切込みモータ5へ供給される。
That is, the control unit 15 includes a grinding force setting device 16 that sets the target value of the grinding force F, and a cutting speed setting device 17 that sets the target value of the cutting speed according to the material, shape, dimensions, etc. of the workpiece W. FM detection magnetic sensor 14a and F
Detection signals are received from the T detection magnetic sensor 14b, respectively, and F = [(FN)"+ (F7)"] "" (
D calculation calculation A calculation circuit 18 that calculates the grinding force F, a subtracter 19 that subtracts the output signal of the calculation circuit 18 from the output signal of the grinding force setter 16, and a predetermined coefficient multiplied by the output signal of the subtractor 19. It is equipped with a coefficient multiplier 20 and an adder 21 that adds the output signal of the cutting speed setting device 17 and the output signal of the coefficient multiplier 20, and the output signal of the adder 21 is sent to the drive circuit 5.
The current is amplified by the drive circuit 5a and controlled by the drive circuit 5a.
Voltage power is supplied to the cutting motor 5.

従って、法線方向研削力F sの検出値と接線方向研削
力F7の検出値とから得られる実際の研削力Fが研削力
設定値より小さいときには、減算器19の出力信号は十
の信号となり、それに比例する信号が加算器21により
切込み速度設定器17の出力信号に加算されるので切込
み速度増加側へ補正され、切込み速度が増大して法線方
向研削力F8が大きくなり、実際の研削力Fが研削力設
定値に近づいていく。
Therefore, when the actual grinding force F obtained from the detected value of the normal grinding force Fs and the detected value of the tangential grinding force F7 is smaller than the grinding force set value, the output signal of the subtractor 19 becomes a signal of 10. , a signal proportional thereto is added to the output signal of the cutting speed setting device 17 by the adder 21, so the cutting speed is corrected to increase, the cutting speed increases, the normal grinding force F8 increases, and the actual grinding The force F approaches the grinding force setting value.

実際の研削力Fが研削力設定値よりも大きいときには上
記とは反対に切込み速度が減少側へ補正される。
When the actual grinding force F is larger than the grinding force setting value, the cutting speed is corrected to the decreasing side, contrary to the above.

以上のように実際の研削力Fが設定値となるように切込
み速度を制御する場合の作用について説明すると、第9
図において、点OFは上記のように研削力Fが一定とな
るように制御しながら研削し砥石径が減少したときの砥
石中心であり、この時の研削点はPFとなり、ワークW
の加工半径は線分O,W、となる。これに対して、既述
の如く法線方向研削力F、が一定となるように制御する
場合のワークWの加工半径は線分0゜W、4であり、接
線方向研削力Fアが一定となるように制御する場合のワ
ークWの加工半径は線分01Wtとなる。
To explain the operation when controlling the cutting speed so that the actual grinding force F becomes the set value as described above, the 9th
In the figure, the point OF is the center of the grinding wheel when the grinding wheel diameter is reduced by controlling the grinding force F to be constant as described above, and the grinding point at this time is PF, and the workpiece W
The machining radius of is the line segments O and W. On the other hand, when the normal grinding force F is controlled to be constant as described above, the machining radius of the workpiece W is the line segment 0°W, 4, and the tangential grinding force F is constant. The machining radius of the workpiece W when controlled so as to become the line segment 01Wt.

第9図からも明らかなように研削力Fが一定となるよう
に制御する場合のワークWの加工半径0゜WFが最も小
さくなっている。これは、研削開始初期のワークWの加
工半径が線分OwWoであるから、研削力Fを一定に制
御する場合に研削面のテーパ化の度合が最も小さくなる
ことつまり研削面の円筒度が最も高いことを示している
As is clear from FIG. 9, when the grinding force F is controlled to be constant, the machining radius 0° WF of the workpiece W is the smallest. This is because the machining radius of the workpiece W at the initial stage of grinding is the line segment OwWo, so when the grinding force F is controlled constant, the degree of taper of the grinding surface is the smallest, that is, the cylindricity of the grinding surface is the most. It shows that it is high.

砥石軸3aの撓み角は研削力Fの大きさに左右されるの
で研削力Fが一定となるように制御することにより、砥
石軸3aの撓み角を一定に保持することが出来る。もっ
とも、研削力Fを一定に制御しても法線方向研削力F、
は多少減少するので、その法線方向研削力FMの減少分
だけ砥石軸3aの水平面内での撓み角(第4図のθ)は
減少し、研削面が僅かにテーパ化することは避けられな
い。
Since the deflection angle of the grindstone shaft 3a depends on the magnitude of the grinding force F, by controlling the grinding force F to be constant, the deflection angle of the grindstone shaft 3a can be kept constant. However, even if the grinding force F is controlled constant, the normal direction grinding force F,
decreases to some extent, so the deflection angle (θ in Fig. 4) of the grinding wheel shaft 3a in the horizontal plane decreases by the decrease in the normal grinding force FM, and a slight taper of the grinding surface can be avoided. do not have.

法線方向研削力F9を一定に制御する従来技術の場合、
法線方向研削力FNは一定に保持されるものの、砥石径
の減少に応じて接線方向研削力F□が増大して砥石軸3
aの撓み角が増大し、その結果研削面のテーパ化の度合
が大きくなる。
In the case of the conventional technology that controls the normal direction grinding force F9 to be constant,
Although the normal grinding force FN is kept constant, the tangential grinding force F□ increases as the grinding wheel diameter decreases, causing the grinding wheel shaft 3
The deflection angle of a increases, and as a result, the degree of taper of the ground surface increases.

接線方向研削力Ftを一定に制御する従来技術の場合、
砥石径の減少に応じて法線方向研削力F、が減少し研削
力Fが小さくなって、砥石軸3aの撓み角が研削開始時
の撓み角と比較して大幅に減少し、ワークWの軸心と砥
石3の軸心との平行性が崩れ、これにより研削面がテー
パ化する。
In the case of the conventional technology that controls the tangential grinding force Ft constant,
As the grinding wheel diameter decreases, the normal direction grinding force F decreases, and the grinding force F becomes smaller, and the deflection angle of the grindstone shaft 3a decreases significantly compared to the deflection angle at the start of grinding, and the workpiece W. The parallelism between the axial center and the axial center of the grindstone 3 is disrupted, and as a result, the grinding surface becomes tapered.

このように研削力Fが一定となるように制御すると、砥
石軸3aの撓み角が一定に保持され、研削面のテーパ化
の度合が極端に小さくなり研削面の円筒度が著しく改善
されることになる。
When the grinding force F is controlled to be constant in this way, the deflection angle of the grindstone shaft 3a is kept constant, the degree of taper of the grinding surface is extremely reduced, and the cylindricity of the grinding surface is significantly improved. become.

更に、研削力Fが一定となるように切込み速度を制御す
ることの作用について説明する。
Furthermore, the effect of controlling the cutting speed so that the grinding force F is constant will be explained.

砥石駆動モータ7aは設定回転数及び設定電力で駆動さ
れていることを前提とすると、砥石径の減少につれて接
線研削力Fアが増大して研削性能が向上する。その結果
、法線方向研削力F、は減少する傾向になるが、仮に法
線方向研削力FHを減少させずに研削すると、研削能率
は向上するが研削面の粗さが悪化することになる。
Assuming that the grindstone drive motor 7a is driven at a set rotation speed and a set power, as the grindstone diameter decreases, the tangential grinding force Fa increases and the grinding performance improves. As a result, the normal grinding force F tends to decrease, but if grinding is performed without reducing the normal grinding force FH, the grinding efficiency will improve but the roughness of the ground surface will deteriorate. .

しかし、本実施例の場合、法線方向研削力F2と接線方
向研削力FTのベクトル合力としての研削力F一定とな
るように切込み速度を制御するので、砥石径の減少につ
れて接線方向研削力F7が増大したときに切込み速度を
低下させることにより法線方向研削力FMを減少させる
ことになる。
However, in the case of this embodiment, since the cutting speed is controlled so that the grinding force F as a vector resultant of the normal grinding force F2 and the tangential grinding force FT is constant, as the grinding wheel diameter decreases, the tangential grinding force F7 When the cutting speed increases, the normal grinding force FM is reduced by lowering the cutting speed.

その結果、研削面の粗さが略良好に保持されることにな
る。
As a result, the roughness of the ground surface is maintained substantially well.

次に、上記研削盤1の制御系並びに検出系の変形例につ
いて説明する。
Next, a modification of the control system and detection system of the grinding machine 1 will be described.

(11第10図に示すように、コントロールユニット1
5Aは、FH検出用磁気センサ14aとFT検出用磁気
センサ14bとからの検出信号を受けてそれらをA/D
変換するA/D変換器22と、研削の諸条件を入力設定
する操作盤23とA/D変換器22からの信号を受ける
入出力インクフェイス24と、入出力インクフェイス2
4にデータバス等で接続されたCPU25 (中央演算
装置)と、CPU25にデータバス等で夫々接続された
ROM26(リード・オンリ・メモリ)及びRAM27
 (ランダム・アクセス・メモリ)とで構成され、入出
力インクフェイス24からは主軸モータ駆動回路28と
切込みモータ駆動回路29とスイベル駆動モータ駆動回
路30と砥石駆動モータ駆動回路31と砥石テーブル駆
動モータ駆動回路32とに夫々制御信号が出力されるよ
うになっている。
(11 As shown in Fig. 10, the control unit 1
5A receives detection signals from the FH detection magnetic sensor 14a and the FT detection magnetic sensor 14b and converts them into A/D.
An A/D converter 22 for conversion, an operation panel 23 for inputting and setting grinding conditions, an input/output ink face 24 for receiving signals from the A/D converter 22, and an input/output ink face 2.
A CPU 25 (central processing unit) connected to the CPU 25 via a data bus or the like, and a ROM 26 (read-only memory) and a RAM 27 connected to the CPU 25 via a data bus or the like, respectively.
(random access memory), and from the input/output ink face 24 are a main shaft motor drive circuit 28, a cutting motor drive circuit 29, a swivel drive motor drive circuit 30, a grindstone drive motor drive circuit 31, and a grindstone table drive motor drive. Control signals are output to the circuits 32 and 32, respectively.

上記ROM26には操作盤23からの設定信号に基いて
各モータ4a・5・7a・9・13を制御する制御プロ
グラム及びF、検出用磁気センサ14a及びFt検出用
磁気センサ14bからの検出信号を読込んで前記同様ベ
クトル合力としての研削力Fを演算し研削力Fが一定と
なるように切込みモータ5を制御する制御プログラムな
どが予め入力格納されている。
The ROM 26 stores control programs for controlling each motor 4a, 5, 7a, 9, and 13 based on setting signals from the operation panel 23, as well as detection signals from the F, detection magnetic sensor 14a, and Ft detection magnetic sensor 14b. A control program for reading and calculating the grinding force F as a vector resultant force as described above and controlling the cutting motor 5 so that the grinding force F becomes constant is stored in advance.

その制御ルーチンは検出信号の読込み、研削力Fの演算
、切込みモータ駆動回路29への制御信号の出力などの
ステップからなる。
The control routine consists of steps such as reading a detection signal, calculating the grinding force F, and outputting a control signal to the cutting motor drive circuit 29.

尚、上記研削力Fが一定となるように切込みモータ5及
び砥石駆動モータ7aの両方を制御することも有り得る
It is also possible to control both the cutting motor 5 and the grindstone drive motor 7a so that the grinding force F is constant.

その場合、研削の進行につれて砥石径が減少しても、法
線方向研削力FN及び接線方向研削力FTを夫々研削初
期と略同じ値に保持し、理想的な研削を行なうことが可
能となる。
In that case, even if the grinding wheel diameter decreases as grinding progresses, it is possible to maintain the normal grinding force FN and tangential grinding force FT at substantially the same values as in the initial stage of grinding, and to perform ideal grinding. .

また、砥石駆動モータ7aを上記のように制御しない場
合でも、法線方向研削力F8の減少に対応してスイベル
テーブル11のスイベル角を制御することも考えられる
Further, even if the grindstone drive motor 7a is not controlled as described above, it is also possible to control the swivel angle of the swivel table 11 in response to the decrease in the normal grinding force F8.

(2)前記磁気センサ14a・14bに代えて、電気マ
イクロメータ、空気マイクロメータ、光学的測微器など
各種の検出装置を用いることが出来る。
(2) Instead of the magnetic sensors 14a and 14b, various detection devices such as an electric micrometer, an air micrometer, and an optical micrometer can be used.

加えて、法線方向研削力FM検出手段として、例えば第
11図や第12図のように構成してもよい。
In addition, the normal direction grinding force FM detection means may be configured as shown in FIG. 11 or FIG. 12, for example.

即ち、第11図のものは、切込みモータ5の回転数信号
(これは、回転数センサで検出される)とインプロセス
ゲージ32で計測した研削内周面の直径信号とに基いて
砥石軸3aの撓み量を求め、その撓み量から法線方向研
削力FMを求めるようにしである。また第12図のもの
は、1対のインプロセスゲージ32によりワークWの研
削内周面の軸方向2個所の直径を検出し、その直径の差
から砥石軸3aの撓み角を求め、その撓み角から法線方
向研削力F、を求めるようにしである。尚、図中符号1
5Bは第10図のものと同様のコントロールユニットで
ある。
That is, in the case shown in FIG. 11, the grinding wheel shaft 3a is adjusted based on the rotational speed signal of the cutting motor 5 (detected by the rotational speed sensor) and the diameter signal of the grinding inner peripheral surface measured by the in-process gauge 32. The amount of deflection is determined, and the grinding force FM in the normal direction is determined from the amount of deflection. In addition, the one shown in FIG. 12 detects the diameters of the grinding inner peripheral surface of the workpiece W at two locations in the axial direction using a pair of in-process gauges 32, determines the deflection angle of the grindstone shaft 3a from the difference in diameter, and calculates the deflection angle of the grindstone shaft 3a. The normal direction grinding force F is determined from the corner. In addition, code 1 in the figure
5B is a control unit similar to that shown in FIG.

一方、接線方向研削力Fアは、砥石駆動モータ7aへ供
給される電力の電圧をポテンシャルトランスフォーマ−
でまた電流をカレントトランスフォーマ−で夫々検出す
るとともに砥石駆動モータ7aの回転数を回転数センサ
などで求め、上記検出電圧と検出電流と検出回転数とに
基いて接線方向研削力Fyを求めるようにしてもよい。
On the other hand, the tangential grinding force Fa converts the voltage of the electric power supplied to the grindstone drive motor 7a into a potential transformer.
In addition, the current is detected by a current transformer, the rotation speed of the grindstone drive motor 7a is determined by a rotation speed sensor, etc., and the tangential grinding force Fy is determined based on the detected voltage, the detected current, and the detected rotation speed. It's okay.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例に係るもので、第1図は研削盤の
平面図、第2図は同正面図、第3図は同側面図、第4図
は砥石軸の撓み角とワークのスイベル角とを示す横断平
面図、第5図は砥石からワークに作用する法線方向研削
力と接線方向研削力と研削力とを示す説明図、第6図は
F、検出用磁気センサとF7検出用磁気センサとを示す
要部縦断面図、第7図は同じく要部平面図、第8図は切
込みモータの為の制御系の構成図、第9図は従来技術を
含めて各制御方式で制御するときの加工半径の説明図、
第10図は研削盤全体の制御系の一例の構成図、第11
図・第12図は夫々法線方向研削力検出手段の一例を示
す構成図である。 1・・研削盤、 3・・砥石、 5・・切込みモータ、
 F8 ・・法線方向研削力、 F、・・接線方向研削
力、 F・・研削力、   14a・・2M検出用磁気
センサ、  14b・・Ft検出用磁気センサ、 15
・15A−15B・・コントロールユニット、  I6
・・研削力設定器、32・・インプロセスゲージ、 W
・・ワーク。 特 許 出 願 人  マツダ株式会社第1図 第4図 第5図 第9図
The drawings relate to an embodiment of the present invention, and FIG. 1 is a plan view of the grinding machine, FIG. 2 is a front view of the same, FIG. 3 is a side view of the same, and FIG. 5 is an explanatory diagram showing the normal grinding force, tangential grinding force, and grinding force acting on the workpiece from the grindstone; FIG. 6 is F, the magnetic sensor for detection, and F7. Fig. 7 is a plan view of the main parts, Fig. 8 is a configuration diagram of the control system for the cutting motor, and Fig. 9 shows each control system including the conventional technology. An explanatory diagram of the machining radius when controlling with
Figure 10 is a configuration diagram of an example of the control system of the entire grinding machine, Figure 11
FIG. 12 is a configuration diagram showing an example of a normal direction grinding force detection means. 1. Grinding machine, 3. Grinding wheel, 5. Cutting motor,
F8...Normal direction grinding force, F...Tangential direction grinding force, F...Grinding force, 14a...Magnetic sensor for 2M detection, 14b...Magnetic sensor for Ft detection, 15
・15A-15B...Control unit, I6
...Grinding force setting device, 32...In-process gauge, W
··work. Patent applicant Mazda Motor Corporation Figure 1 Figure 4 Figure 5 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)研削盤で研削する際に法線方向の研削力と接線方
向の研削力とを夫々検出し、上記法線方向研削力と接線
方向研削力とのベクトル合力である研削力を求め、この
研削力が一定となるように制御することを特徴とする研
削盤の制御方法。
(1) When grinding with a grinder, detect the grinding force in the normal direction and the grinding force in the tangential direction, and find the grinding force that is the vector resultant of the normal grinding force and the tangential grinding force, A method for controlling a grinding machine characterized by controlling the grinding force so that it is constant.
(2)研削盤で研削する際に法線方向の研削力と接線方
向の研削力とを夫々検出し、上記法線方向研削力と接線
方向研削力とのベクトル合力である研削力を求め、この
ベクトル合力である研削力が一定となるように砥石とワ
ーク間の切込み速度を制御することを特徴とする研削盤
の制御方法。
(2) When grinding with a grinder, detect the grinding force in the normal direction and the grinding force in the tangential direction, and calculate the grinding force that is the vector resultant of the normal grinding force and the tangential grinding force, A method for controlling a grinding machine characterized by controlling the cutting speed between a grindstone and a workpiece so that the grinding force, which is the vector resultant force, is constant.
JP62128735A 1987-05-26 1987-05-26 Grinder control method Pending JPS63295176A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62128735A JPS63295176A (en) 1987-05-26 1987-05-26 Grinder control method
KR1019880005918A KR880013657A (en) 1987-05-26 1988-05-20 Grinding Control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128735A JPS63295176A (en) 1987-05-26 1987-05-26 Grinder control method

Publications (1)

Publication Number Publication Date
JPS63295176A true JPS63295176A (en) 1988-12-01

Family

ID=14992157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128735A Pending JPS63295176A (en) 1987-05-26 1987-05-26 Grinder control method

Country Status (2)

Country Link
JP (1) JPS63295176A (en)
KR (1) KR880013657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252358A (en) * 1987-12-01 1989-10-09 Seiko Seiki Co Ltd Control method of grinding process device furnishing spindle device with slack detecting device
JP2001150343A (en) * 1999-11-26 2001-06-05 Shigiya Machinery Works Ltd Grinding method for substrate peripheral edge for hard disk

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496264A (en) * 1972-05-10 1974-01-19
JPS5326715A (en) * 1976-08-26 1978-03-13 Nippon Steel Corp Sub-material for refining molten iron alloy
JPS6179549A (en) * 1984-09-28 1986-04-23 Takaaki Nagao Curved surface working device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496264A (en) * 1972-05-10 1974-01-19
JPS5326715A (en) * 1976-08-26 1978-03-13 Nippon Steel Corp Sub-material for refining molten iron alloy
JPS6179549A (en) * 1984-09-28 1986-04-23 Takaaki Nagao Curved surface working device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252358A (en) * 1987-12-01 1989-10-09 Seiko Seiki Co Ltd Control method of grinding process device furnishing spindle device with slack detecting device
JP2001150343A (en) * 1999-11-26 2001-06-05 Shigiya Machinery Works Ltd Grinding method for substrate peripheral edge for hard disk

Also Published As

Publication number Publication date
KR880013657A (en) 1988-12-21

Similar Documents

Publication Publication Date Title
JP2516382B2 (en) Machining equipment with magnetic bearing as main shaft
US4551950A (en) Truing apparatus for a grinding wheel with rounded corners
JPH0241872A (en) Numerical control grinder
US5072550A (en) Grinding method and grinding machine with controlled grinding force
JPS63295176A (en) Grinder control method
JP2534500B2 (en) Grinding machine control method
US5571040A (en) Method and device for detecting blade flexure and blade flexure control device for use with a slicing machine
JP2008023683A (en) Machine tool
JPS63295178A (en) Grinder control method
JPH05104436A (en) Tactile sensor integrated type polishing processing machine
JP2513342B2 (en) Retraction grinding method and grinding device in grinding force control grinding
JP3344064B2 (en) Grinding equipment
JP2602965B2 (en) Automatic cylindrical grinding machine
JPH03228570A (en) Processing device having magnetic bearing on spindle
JP2552537B2 (en) Control method for grinding machine equipped with spindle device with bending detection means
JP3385666B2 (en) Grinding equipment
JP4923813B2 (en) Machine Tools
JPH0347990B2 (en)
JP2863689B2 (en) Processing machine
JPH106182A (en) Machining method and device
JPH0557609A (en) Dressing device for grinding machine
JPH0760640A (en) Cylindrical grinder
JPS61173857A (en) Feed control device in grinding machine
JPH068137A (en) Grinder with thermal displacement correction device
JPS61252064A (en) Device for controlling grinding