JPS63293892A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63293892A
JPS63293892A JP12812087A JP12812087A JPS63293892A JP S63293892 A JPS63293892 A JP S63293892A JP 12812087 A JP12812087 A JP 12812087A JP 12812087 A JP12812087 A JP 12812087A JP S63293892 A JPS63293892 A JP S63293892A
Authority
JP
Japan
Prior art keywords
semiconductor laser
diffraction grating
mode fiber
single mode
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12812087A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
伸二 辻
Shinji Sakano
伸治 坂野
Makoto Okai
誠 岡井
Kazuhisa Uomi
魚見 和久
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12812087A priority Critical patent/JPS63293892A/en
Publication of JPS63293892A publication Critical patent/JPS63293892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser with narrow spectrum line width by connecting both ends of the gain region with a waveguide having lower loss and optically connecting the conducted light to a sector form diffraction lattice provided on the outside at one part of the waveguide. CONSTITUTION:After a non-reflecting film on both ends of a semiconductor laser 1, it is optically connected with a single mode fiber 2. A lens made of Si with high refractive index is used for connection. A part of the flood of the single mode fiber 2 is etched, a sector form diffraction lattice 4 is pressed on that part to optically connect the single mode fiber 2 to the diffraction lattice 4. By doing so, it is possible to vary the oscillating wavelength as the width of the spectrum line is narrowed, thereby obtaining a semiconductor laser with narrow width of the spectrum line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信用光源に係り、特に噴−波長動作に好適
な素子構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source for optical communication, and particularly to an element structure suitable for emission wavelength operation.

〔従来の技術〕[Conventional technology]

従来の装置は、第10回アイ・イー・イー・イー国際半
導体レーザ会議、ポストデッドライン論文予稿第10頁
から第11頁(10thIP、[EEIntemato
nal  Sem1conductor  1aser
  conferenceProgram  and 
 abstruct  of  post−deadl
ine  papers(1986)pplo−11)
において論じられている。
The conventional device was published in the 10th IEE International Semiconductor Laser Conference, Post-Deadline Paper Proceedings, pages 10 to 11 (10thIP, [EEIntemato
nal Sem1conductor 1aser
conference program and
abstract of post-deadl
ine papers (1986) pplo-11)
It is discussed in

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、回折格子が形成された発光領域が二分
されており、各々独立に励起することによって単一波長
動作を実現すると共に、波長と可変とする機能を実現し
たものである。ところが。
In the above-mentioned conventional technology, the light emitting region in which the diffraction grating is formed is divided into two parts, and each part is independently excited to realize a single wavelength operation and also to realize a wavelength variable function. However.

上記従来技術においてはキャリア注入による屈折率変化
を利用するため波長の可変幅が20人程度に制限されて
しまうという問題があった。また、共振器長が200μ
m程度と短いために共振器内に閉じ込められる光子数に
制限が生じること、及び活性導波路中に回折格子が設け
られているために、スペクトル線幅が10 M Hz以
上に大きくなるという問題も生じた。
The conventional technique described above has a problem in that the wavelength variable range is limited to about 20 wavelengths because it utilizes the change in refractive index caused by carrier injection. Also, the resonator length is 200μ
There is also the problem that the number of photons that can be confined within the resonator is limited due to the short length of about m, and that the spectral linewidth becomes larger than 10 MHz due to the presence of a diffraction grating in the active waveguide. occured.

本発明の目的は、先ずスペクトル線幅の狭い半導体レー
ザを得ることであり、またこの波長を可変とすることで
ある。
The object of the present invention is first to obtain a semiconductor laser with a narrow spectral linewidth, and also to make this wavelength variable.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、利得領域の両端を低損失な導波路で結合し
、かつ導波路の一部において伝搬する光が外部に設けた
扉状の回折格子と光学的に結合することにより達成され
る。
The above object is achieved by coupling both ends of the gain region with a low-loss waveguide, and by optically coupling light propagating in a part of the waveguide with a door-shaped diffraction grating provided outside.

〔作用〕[Effect]

共振器構造をループ化したことにより、共振器内に閉じ
込められる光子数を増大することができる。また、低損
失導波路部において回折格子と結合させるため、波長選
択部においてはキャリア密度変動に伴う屈折率変化が生
じなくなり、スペクトル線幅の増大が生じなくなり、ス
ペクトル線幅の狭帯化が実現でき□る。回折格子をん1
形にしておくと、場所により回折格子の周期が異なるこ
とになる。回折格子と導波路の結合する場所と空間的に
変化させることにより、波長可変性が実現できる。
By looping the resonator structure, it is possible to increase the number of photons confined within the resonator. In addition, since it is coupled to the diffraction grating in the low-loss waveguide section, changes in the refractive index due to carrier density fluctuations do not occur in the wavelength selection section, and no increase in spectral linewidth occurs, resulting in a narrower spectral linewidth. I can do it. Diffraction grating 1
If the shape is changed, the period of the diffraction grating will differ depending on the location. Wavelength tunability can be achieved by spatially changing the coupling location between the diffraction grating and the waveguide.

〔実施例〕〔Example〕

以下1本発明の一実施例の第1図により説明する。利得
ピークが波長1.55μmである半導体レーザ1の両端
面に無反射膜を形成した後、長さ5〜20mの単一モー
ドファイバ2を用いて光学的に結合した。結合にはSi
製の高屈折率レンズ3を用いた。単一モードファイバの
2フラツドの一部をエツチングし、この部分に扇形状の
回折格子4を押しあて、マツチングオイルを用いて+B
 −モードファイバ2と回折格子4を光学的に結合させ
た。単一モードファイバの他の一部に光カプラ5を形成
し、出力光は光カプラ5から取り出し、素子の評価を行
った。
An embodiment of the present invention will be explained below with reference to FIG. After forming antireflection films on both end faces of a semiconductor laser 1 whose gain peak has a wavelength of 1.55 μm, optical coupling was performed using a single mode fiber 2 with a length of 5 to 20 m. Si for bonding
A high refractive index lens 3 manufactured by Co., Ltd. was used. A part of the 2 flat of the single mode fiber is etched, a fan-shaped diffraction grating 4 is pressed against this part, and +B is applied using matching oil.
- The mode fiber 2 and the diffraction grating 4 are optically coupled. An optical coupler 5 was formed on the other part of the single mode fiber, and output light was taken out from the optical coupler 5 to evaluate the device.

本装置はしきい値20 m Aで発振し、回折格子4の
周期で定まる特定の発振波長でm−モード発振が生じた
。スペクトル線幅は光出力1mW時に100KHzであ
り、通常のDFBレーザと比較すると1/100〜1/
1000の値に狭帯化していることがわかった。回折格
子4は電子ビーム描画法でガラス表面に作製し、図に示
すような扇状とした。このため場所に応じて回折格子の
周期が異なる。扇状回折格子を第1図の矢印方向に移動
させることにより発振波長をなめらかに変化させること
ができた。同調可能な波長範囲は、半導体レーザ1の利
得幅で定まり±50への範囲の同調が可能であった。
The device oscillated at a threshold of 20 mA, and m-mode oscillation occurred at a specific oscillation wavelength determined by the period of the diffraction grating 4. The spectral linewidth is 100KHz at an optical output of 1mW, which is 1/100 to 1/1/2 when compared to a normal DFB laser.
It was found that the band was narrowed to a value of 1000. The diffraction grating 4 was fabricated on the glass surface by electron beam lithography, and was fan-shaped as shown in the figure. Therefore, the period of the diffraction grating differs depending on the location. By moving the fan-shaped diffraction grating in the direction of the arrow in FIG. 1, the oscillation wavelength could be smoothly changed. The tunable wavelength range was determined by the gain width of the semiconductor laser 1, and tuning within a range of ±50 was possible.

なお、m−モードファイバ2の代りに偏波面保存ファイ
バを用いたところ、ファイバの曲り、よじれ等に基づく
偏波面の回転を防ぐことができ、回折格子4を移動させ
た時も安定な狭帯化が′4′、現できた。
Note that by using a polarization-maintaining fiber instead of the m-mode fiber 2, rotation of the polarization plane due to bending, twisting, etc. of the fiber can be prevented, and a stable narrow band can be maintained even when the diffraction grating 4 is moved. The transformation was '4'.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スペクトル線幅が狭帯化されたままで
発振波長が可変にできるため、コヒーレント通信におけ
ろ局発光源等として用いて好適な半導体レーザ装置を得
ることができる。
According to the present invention, since the oscillation wavelength can be made variable while the spectral linewidth remains narrow, a semiconductor laser device suitable for use as a local light source in coherent communication can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体レーザ装置″′″V
WtlA″Q 、′6−        、、+−]゛
s、。
FIG. 1 shows a semiconductor laser device "''"V of an embodiment of the present invention.
WtlA″Q ,′6−,,+−]゛s,.

Claims (1)

【特許請求の範囲】 1、帯状の利得領域とその両端を接続する低損失な領域
によつてループをなす構造であつて少なくともそのルー
プの一部光学的な結合した回折格子を有することを特徴
とする半導体レーザ装置。 2、回折格子が扇状をなしており、回折格子とループの
一部との位置が相対的に可変なることを特徴とする上記
第一項記載の半導体レーザ装置。
[Claims] 1. It has a structure in which a band-shaped gain region and a low-loss region connecting both ends thereof form a loop, and at least a portion of the loop has a diffraction grating that is optically coupled. Semiconductor laser device. 2. The semiconductor laser device according to item 1 above, wherein the diffraction grating has a fan shape, and the positions of the diffraction grating and a portion of the loop are relatively variable.
JP12812087A 1987-05-27 1987-05-27 Semiconductor laser Pending JPS63293892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12812087A JPS63293892A (en) 1987-05-27 1987-05-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12812087A JPS63293892A (en) 1987-05-27 1987-05-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63293892A true JPS63293892A (en) 1988-11-30

Family

ID=14976877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12812087A Pending JPS63293892A (en) 1987-05-27 1987-05-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63293892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533475A2 (en) * 1991-09-17 1993-03-24 Fujitsu Limited Optical semiconductor device, method of producing the optical semiconductor device, and laser device using optical semiconductor devices
JP2006332137A (en) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533475A2 (en) * 1991-09-17 1993-03-24 Fujitsu Limited Optical semiconductor device, method of producing the optical semiconductor device, and laser device using optical semiconductor devices
US5347533A (en) * 1991-09-17 1994-09-13 Fujitsu Limited Optical semiconductor device, method of producing the optical semiconductor device, and laser device using optical semiconductor devices
JP2006332137A (en) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Light-emitting device

Similar Documents

Publication Publication Date Title
US3868589A (en) Thin film devices and lasers
US7149381B2 (en) Optical filtering device and method
JPS60145685A (en) Distributed feedback type semiconductor device
JP3198338B2 (en) Semiconductor light emitting device
US6426965B1 (en) Optical fiber cascaded Raman laser scheme
JPH05249526A (en) Optical oscillator
JPH01293683A (en) Variable wavelength semiconductor laser
JPS63293892A (en) Semiconductor laser
KR20060094224A (en) Widely tunable coupled-ring reflector laser diode
JPH02184827A (en) Optical modulating wave demodulating device
JPH0720359A (en) Optical device
JPH02185085A (en) Semiconductor laser
WO2020145173A1 (en) Tunable laser
JPS63299291A (en) Semiconductor laser
JP2019091780A (en) Semiconductor optical device
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPH0373583A (en) Semiconductor laser light source device
WO2024009337A1 (en) Multimode laser
JPH084179B2 (en) Semiconductor laser
JPS6295886A (en) Distribution feedback construction semiconductor laser
KR102096596B1 (en) Tunable laser module
JPS61107781A (en) Single axial-mode semiconductor laser device
JP2875537B2 (en) Frequency multiplexing optical communication detector
WO2020145174A1 (en) Tunable laser
JPS6164182A (en) Optical feedback type semiconductor laser device