JPS63292671A - Array type infrared-ray detector - Google Patents

Array type infrared-ray detector

Info

Publication number
JPS63292671A
JPS63292671A JP62126897A JP12689787A JPS63292671A JP S63292671 A JPS63292671 A JP S63292671A JP 62126897 A JP62126897 A JP 62126897A JP 12689787 A JP12689787 A JP 12689787A JP S63292671 A JPS63292671 A JP S63292671A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
type
substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62126897A
Other languages
Japanese (ja)
Other versions
JPH0563023B2 (en
Inventor
Yukihiko Maejima
前島 幸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62126897A priority Critical patent/JPS63292671A/en
Publication of JPS63292671A publication Critical patent/JPS63292671A/en
Publication of JPH0563023B2 publication Critical patent/JPH0563023B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To implement excellent resolution and simplicity in wiring, by arranging a plularity of elements, which are formed by sequentially and separately forming a first semiconductor layer that is doped at a high concentration and a second semiconductor layer having the same conductivity type as that of the first semiconductor layer, wherein an infrared-ray detecting part is formed, and providing an electrode to the first semiconductor layer by way of a through hole that is formed from the side of a substrate to the first semiconductor layer. CONSTITUTION:An electric connection to a p-type second semiconductor layer 3 is provided through a p<+> type first semiconductor layer 2 by way of a through hole, which is provided from the side of a CdTe substrate 1. The p<+> type layer 2 serves the role of a buffer layer for the p-type layer 3. lt is necessary to reduce the thickness of the p-type layer 3 sufficiently smaller than the diffusing length of excessive carriers and to reduce a surface recombination speed at the end of the p-type layer sufficiently, in order to reduce a diffusing current, which is one component of dark currents. Infrared rays are inputted from the upper side, i.e., the side where an n-type layer is located. Since each element is completely isolated at a part higher than the p<+> layer, a detector having excellent resolution is obtained. A p-side electrode 6 reaches the surface of a CdTe substrate 1 by way of the through hole. Since nothing other than a wiring is provided on the surface, connecting work to another element becomes remarkably easy.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、赤外線検知器に関し、特にエピタキシャル成
長した半導体を用いた配列型赤外線検知器の構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detector, and more particularly to the structure of an array type infrared detector using an epitaxially grown semiconductor.

[従来の技術] 従来より、半導体を使用した赤外線検知器においては、
特に”1−x CdxTeを用いたものが高感度である
ことが知られている。”1−x CdxTeを用いた赤
外線検知器において、エピタキシャル成長(気相、液相
、または分子線による)した”1−x CdxTe単結
晶を用いる場合には、基板としてCdTe単結晶が広く
用いられている。CdTeが用いられる理由としては、
例えばHgO,a Cdo、2 Teを成長させる場合
には格子定数の違いが0.3%程度であるため、比較的
整合性が良好で良質結晶が得られることや、抵抗率はH
(10,B Cdo、2T eが0.01Ω・cm程度
であるのに対して半絶縁性のCdTeは108Ω・cm
程度であるため、絶縁基板として扱えることなどが挙げ
られる。
[Conventional technology] Conventionally, infrared detectors using semiconductors,
In particular, "1-x CdxTe is known to have high sensitivity."Infrared detectors using 1-x CdxTe are grown epitaxially (by vapor phase, liquid phase, or molecular beam). When using 1-x CdxTe single crystal, CdTe single crystal is widely used as the substrate.The reason why CdTe is used is as follows.
For example, when growing HgO, aCdo, and 2Te, the difference in lattice constant is about 0.3%, so a high-quality crystal with relatively good consistency can be obtained, and the resistivity is lower than that of H.
(10, B Cdo, 2T e is about 0.01 Ω・cm, while semi-insulating CdTe is 108 Ω・cm
Because of its small size, it can be treated as an insulating substrate.

CdTe基板上にエピタキシャル成長した’01−x 
CdxTe結晶を利用したデバイス形態として特に重要
なものに配列型光起電力型検知器とシリコンCOD (
電化結合素子)またはMOSスイツチング索子を接続し
たハイブリット構成がある。
'01-x epitaxially grown on CdTe substrate
Particularly important device formats using CdxTe crystals are array-type photovoltaic detectors and silicon COD (
There are hybrid configurations in which MOS switching cables are connected.

その代表的な構成としては、例えば[ニス・ピー・アイ
・イーJ  (”S、 P、  1. E、 ” )、
120号、(1983年刊)、443頁の記事に発表さ
れたものがある。第2図はそのような構成の1例を示す
断面図である。第2図において、1はCdTe基板、3
はP型11g1. CdxTe層(P層)(X値は通常
0.2か0.3)、4はn型HIJI−XCdxTe層
(n層)、5はZnS等の表面保護絶縁膜、6はn側電
極、7はn側電極、8はシリコンのプロセッサ、すなわ
らCCDまたはMOSスイッチアレイである。
Typical configurations include, for example,
There is an article published in No. 120, (published in 1983), page 443. FIG. 2 is a sectional view showing an example of such a configuration. In FIG. 2, 1 is a CdTe substrate, 3
is P type 11g1. CdxTe layer (P layer) (X value is usually 0.2 or 0.3), 4 is n-type HIJI-XCdxTe layer (n layer), 5 is surface protection insulating film such as ZnS, 6 is n-side electrode, 7 is an n-side electrode, and 8 is a silicon processor, ie, a CCD or MOS switch array.

このような構成では、図中下方にCd Te基板1かあ
るため、下方側に電極は一切配設できず、n側は各素子
間で共通の基板として形成し、n側電極7を個々に配設
し、シリコンプロセッサ8に接続させている。また、こ
の場合に、素子単体はpn接合を利用したフォトダイオ
ードであり、n側電極6はp型層(Jl、 CdxTe
l13の一部分だけがらとり、赤外光は図中下方から入
射させることになる。
In such a configuration, since there is a Cd Te substrate 1 at the bottom in the figure, no electrodes can be provided on the lower side, and the n-side is formed as a common substrate between each element, and the n-side electrode 7 is formed individually. and is connected to the silicon processor 8. Further, in this case, the element itself is a photodiode using a pn junction, and the n-side electrode 6 is a p-type layer (Jl, CdxTe
Only a portion of l13 will be removed, and the infrared light will be incident from below in the figure.

[発明が解決しようとする問題点] 上記の如き従来の構造の配列型赤外線検知器の欠点とし
ては、[インフラレッド・フィジクス」(”Infra
red Physics” ) 、 21W (198
1年刊)。
[Problems to be Solved by the Invention] The disadvantages of the array-type infrared detector having the conventional structure as described above include the problem of "Infrared Physics"("InfraredPhysics").
red Physics”), 21W (198
1 year).

301頁に記載されているように解像度を向上できない
という問題点かある。これを簡単に説明すると、すなわ
ち、第2図に示されたCdTe基板1側から入射した赤
外光はp型Hg1−8CdxTe層3の比較的CdTe
基板1に近い側で吸収され、過剰キャリアが生成される
。この過剰キャリアがpn接合まで拡散して行って出力
に寄与する訳でおるか、このとき拡散は図中上下方向だ
けに起こるわけではなく、左右方向にも起こる。従って
、隣のpn接合まで拡散して行く場合があり、素子間ク
ロストークか生じて解像度が劣化する。例えばHg0.
8 cd。、2Teを用いた波長101J!n帯の赤外
線検知器を考えた場合、p型層では過剰キャリア拡散長
は数十〜100庫程度であり、素子間隔がこの長さ以下
の時にクロストークが生ずる。従って、第2図に示す如
き構造では素子間隔が小さく、解像度の良好な配列型検
知器は製作できないという欠点が生じる。このような欠
点を克服するためには、各素子かp型基板で完全に分離
していることが必要である。しかし、p型基板で各素子
が分離していると、n側だけでなくn側の電極も各素子
毎に配設しなければならず、配線の数が倍増する。これ
を同一の面、すなわちHQ 1−x Cdx 丁eのあ
る側の面で配設しようとすると、構成が極めて複雑にな
り、製作か困難になる。特に、2次元の配列型検知器を
考えた場合、この影響は極めて大きいものがある。
As described on page 301, there is a problem that the resolution cannot be improved. To explain this simply, infrared light incident from the CdTe substrate 1 side shown in FIG.
It is absorbed on the side closer to the substrate 1, and excess carriers are generated. This excess carrier diffuses to the pn junction and contributes to the output. At this time, diffusion occurs not only in the vertical direction in the figure, but also in the horizontal direction. Therefore, it may diffuse to the neighboring pn junction, causing inter-element crosstalk and deteriorating resolution. For example, Hg0.
8 cd. , wavelength 101J using 2Te! When considering an n-band infrared detector, the excess carrier diffusion length in the p-type layer is about several tens to 100 cells, and crosstalk occurs when the element spacing is less than this length. Therefore, the structure shown in FIG. 2 has the drawback that the element spacing is small and an array type detector with good resolution cannot be manufactured. In order to overcome these drawbacks, it is necessary that each element be completely separated by a p-type substrate. However, if each element is separated on a p-type substrate, not only an n-side electrode but also an n-side electrode must be provided for each element, which doubles the number of wiring lines. If this were to be arranged on the same surface, that is, on the side where the HQ 1-x Cdx and the other surfaces are located, the configuration would be extremely complicated and manufacturing would be difficult. In particular, when considering a two-dimensional array type detector, this influence is extremely large.

本発明は、CdTe等の基板の上にエピタキシャル成長
したH(]CdTeを用い、良好な解像度と配線の簡易
さを兼ね備えた配列型赤外線検知器を提供することを目
的とする。
An object of the present invention is to provide an array-type infrared detector that uses H(]CdTe epitaxially grown on a substrate such as CdTe and has good resolution and simple wiring.

U問題点を解決するための手段] 本発明は、絶縁性または半絶縁性の基板上に導電型の異
なる複数の半導体層と、それぞれの導電型に対応する複
数種類の電極とを備えた配列型赤外線検知器において、
高濃度にドープされた第1の半導体層と該第1の半導体
層と同一の導電型でかつ上面部に赤外線検知部が形成さ
れた第2の半導体層とが順次形成されてなる素子を基板
上に互いに分離して複数個配列し、前記各素子の基板側
から前記第1の半導体層まで穿孔された通孔に第1の半
導体層への電極を着設したことを特徴とする配列型赤外
線検知器である。
Means for Solving Problem U] The present invention provides an array comprising a plurality of semiconductor layers of different conductivity types and a plurality of types of electrodes corresponding to the respective conductivity types on an insulating or semi-insulating substrate. In the type infrared detector,
A substrate is a device in which a first semiconductor layer doped with a high concentration and a second semiconductor layer having the same conductivity type as the first semiconductor layer and having an infrared detection portion formed on the upper surface thereof are sequentially formed. An array type characterized in that a plurality of elements are arranged separately from each other on the top, and electrodes to the first semiconductor layer are attached to through holes drilled from the substrate side of each element to the first semiconductor layer. It is an infrared detector.

[作用] 本発明は、例えばCd Te基板のような絶縁性または
半絶縁性の基板上に、第1の半導体層として例えばアク
セプタ濃度の高いp型11g1−XCdxTe層(p層
層)が形成され、更にその上に検知部に適したアクセプ
タ濃度を有するp型Ha、、 CdxTe層(p層)お
よび導電型の異なる別な半導体層としてのn型層01−
x Cdx Te層(n層〉が順次形成され、各素子は
0層以上で分離されている。各素子においては、CdT
e基板側から穿孔された通孔を介して個々のn側電極が
配設され、n側の電極は共通に配設されている。これに
より、配線は両側の面で行われるために簡易であり、各
素子の分離も完全に行われることになる。
[Function] In the present invention, for example, a p-type 11g1-XCdxTe layer (p-layer layer) with a high acceptor concentration is formed as a first semiconductor layer on an insulating or semi-insulating substrate such as a CdTe substrate. , and further thereon, a p-type Ha layer (p layer) having an acceptor concentration suitable for the detection section, and an n-type layer 01- as another semiconductor layer with a different conductivity type.
x Cdx Te layers (n layer) are sequentially formed, and each element is separated by 0 or more layers.In each element, CdT
Individual n-side electrodes are provided through holes drilled from the e-substrate side, and the n-side electrodes are commonly provided. As a result, wiring is simple since it is performed on both sides, and each element is completely separated.

[実施例] 以下、図面に従って、本発明の実施例を詳細に説明する
。第1図は本発明の1実施例を示す断面図である。第1
図において、1はCdTe基板、2は第1の半導体層と
して高濃度のp型”’0.8 cdO,2Teのエピタ
キシャル層(以下、p層層と呼称する)3は第2の半導
体層として検知部に適した濃度のp型”’0.8 cd
、2Teのエピタキシャル層(以下、p層と呼称する)
、4は異なる導電型の別な半導体層としてエピタキシャ
ル成長あるいはイオン注入によって形成されたn型層!
:to、a Cdo、2Te層(以下、n層と呼称する
)、5はZnSなどの表面保護絶縁膜、6はn側電極、
7はn側電極で、波長10庫程度の赤外線を検知可能な
配列型赤外線検知器を構成している。一般に、0層3で
のアクセプタ濃度は1016cm−3程度(77K)が
適当であるために、p+層2での濃度は1017〜10
18cm−3程度にする。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing one embodiment of the present invention. 1st
In the figure, 1 is a CdTe substrate, 2 is a high concentration p-type 0.8 cdO, 2Te epitaxial layer (hereinafter referred to as p layer) as a first semiconductor layer, and 3 is a second semiconductor layer. P-type 0.8 cd with a concentration suitable for the detection part
, 2Te epitaxial layer (hereinafter referred to as p layer)
, 4 is an n-type layer formed by epitaxial growth or ion implantation as a separate semiconductor layer of a different conductivity type!
:to, a Cdo, 2Te layer (hereinafter referred to as n layer), 5 is a surface protection insulating film such as ZnS, 6 is an n-side electrode,
Reference numeral 7 denotes an n-side electrode, which constitutes an array-type infrared detector capable of detecting infrared rays of about 10 wavelengths. Generally, the appropriate acceptor concentration in the 0 layer 3 is about 1016 cm-3 (77K), so the concentration in the p+ layer 2 is 1017 to 10
Make it about 18cm-3.

また0層3の厚さはその過剰キャリア拡散長よりも充分
短く、10庫程度にし、p+層2の厚さは0層3よりも
充分厚く、藪十廊とするのが有効である。0層4につい
ては、そのドナー濃度、厚さ共に従来の構成と全く同様
でよい。CdTe基板1側からp+層2に達する穿孔お
よび素子分離は化学エツチングあるいはイオンミリング
等の方法によってなされる。
Furthermore, it is effective that the thickness of the 0 layer 3 is sufficiently shorter than the excess carrier diffusion length, about 10 layers, and the thickness of the p+ layer 2 is sufficiently thicker than that of the 0 layer 3, that is, a thick layer. The donor concentration and thickness of the 0 layer 4 may be exactly the same as the conventional structure. Holes reaching the p+ layer 2 from the CdTe substrate 1 side and element isolation are performed by chemical etching, ion milling, or the like.

本実施例におけるp+層2の作用を以下に説明する。本
実施例では、CdTe基板1側から穿孔した通孔よりp
+層2を介して0層3との電気的接続を行うことが大き
な特徴となっている。仮にp+層2が存在しないと、こ
の通孔を直接0層3に達するようにしなければ、p層と
の電気的接続が行えない。しかし、穿孔工程において、
例えばイオンミリング等の方法を用いれば、結晶に損傷
を与え、結晶欠陥を生ずることは周知の事実であって、
0層3に穿孔が達するとこの層に結晶欠陥が生ずること
になる。0層3は光起電力型素子においては活性部分で
あって、結晶欠陥は検知器の特性に悪影響を与える。従
ってp 層2は悪影響が直接0層3に及ばないための緩
衝層としての役割を果たしている。
The action of the p+ layer 2 in this example will be explained below. In this example, from the through hole drilled from the CdTe substrate 1 side,
A major feature is that electrical connection is made to the 0 layer 3 via the + layer 2. If the p+ layer 2 does not exist, electrical connection with the p layer cannot be established unless this through hole is made to directly reach the 0 layer 3. However, in the drilling process,
For example, it is a well-known fact that using methods such as ion milling damages crystals and causes crystal defects.
If the perforations reach layer 03, crystal defects will occur in this layer. The 0 layer 3 is an active part in a photovoltaic device, and crystal defects adversely affect the characteristics of the detector. Therefore, the p-layer 2 plays a role as a buffer layer to prevent the adverse effects from directly reaching the 0-layer 3.

また、光起電力型素子の暗電流の一成分である拡散電流
を減少させるには例えば、「セミコンダクターズ・アン
ド・セミメタルズJ (”Sem1−conducto
rs and Semimetals ” )第18巻
(1981年刊)に記載されているように、p型3の厚
さを過剰キャリア拡散長よりも充分小さくすると同時に
p層端での表面再結合速度を充分小さくすることが必要
である。p 層2が存在することにより、p層3中の過
剰キャリアは図中下方に示すこの層の端面まで達し難く
なるために、表面再結合速度を実効的に下げることにな
る。従って、0層3の厚さを10庫程度と充分に拡散長
よりも小さくすると共にD  I2が存在すれば、拡散
電流の小ざい光起電力型素子となる。
In addition, in order to reduce the diffusion current, which is a component of the dark current of photovoltaic elements, for example, "Semiconductors and Semimetals J ("Sem1-conductor
As described in Volume 18 (published in 1981) of "RS and Semimetals", the thickness of the p-type 3 is made sufficiently smaller than the excess carrier diffusion length, and at the same time, the surface recombination rate at the edge of the p-layer is made sufficiently small. Due to the existence of the p-layer 2, excess carriers in the p-layer 3 have difficulty reaching the end face of this layer shown at the bottom of the figure, which effectively reduces the surface recombination rate. Therefore, if the thickness of the 0 layer 3 is made sufficiently smaller than the diffusion length to about 10 mm, and DI2 is present, a photovoltaic element with a small diffusion current will be obtained.

更に、CdTe基板1からp 層2に達する通孔を穿孔
する際にはそのエツチングを適度に制御して通孔が0層
3に達しないようにすることが必要であるか、p 1!
2の厚さを1)113の厚さよりも充分大きく、数十声
程度にしておけば、この工程が容易になる。
Furthermore, when drilling a hole from the CdTe substrate 1 to the p layer 2, it is necessary to appropriately control the etching to prevent the hole from reaching the p layer 3, or the p1!
This process becomes easier if the thickness of 2) is sufficiently larger than the thickness of 113, about several tens of tones.

 9一 本発明では、従来の構造とは逆に赤外光は図中上方、即
ち0層4のある側から入射させることになる。また、n
側電極7を配列内の全素子間で共通にし、n側電極6を
別々にとることが可能であり、各素子はp 層2より上
方では完全に分離されているために解像度の良好な検知
器となる。また、n側電極6はCdTe基板1側より穿
孔された通孔を介してCdTe基板1の表面まで達して
いる。この面にはこの配線以外の何も存在しないため、
この配線を更に別の素子に接続する作業は著しく容易に
なる。従って、第1図中、下方からシリコンのプロセッ
サを接続したハイブリッド構成をとる場合にも、第2図
の従来例と比べて、その接続作業は著しく簡単になる。
91 In the present invention, contrary to the conventional structure, infrared light is made to enter from the upper side in the figure, that is, from the side where the 0 layer 4 is located. Also, n
The side electrode 7 can be made common to all elements in the array, and the n-side electrode 6 can be taken separately, and since each element is completely separated above the p-layer 2, detection with good resolution can be achieved. Become a vessel. Further, the n-side electrode 6 reaches the surface of the CdTe substrate 1 through a hole bored from the CdTe substrate 1 side. Since there is nothing on this surface other than this wiring,
The work of further connecting this wiring to another element becomes significantly easier. Therefore, even when adopting a hybrid configuration in which silicon processors are connected from the bottom in FIG. 1, the connection work is significantly easier than in the conventional example shown in FIG.

[発明の効果] 以上説明した通り、本発明によれば、絶縁性または半絶
縁性のエピタキシャル成長基板上に成長させた半導体を
用い、解像度を向上させ、かつ配線の複雑さを減少させ
る゛ことが可能で、シリコンのプロセッサとの接続も従
来に比へて容易であり、高性能かつ製作も比較的容易な
配列型赤外線検知器を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to improve the resolution and reduce the complexity of wiring by using a semiconductor grown on an insulating or semi-insulating epitaxial growth substrate. It is possible to provide an array-type infrared detector that is possible, is easier to connect to a silicon processor than before, and is high-performance and relatively easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の配列型赤外線検知器の1実施例の断面
図、第2図は従来の配列型赤外線検知器の1例を示す断
面図である。 1・・・CdTe基板 2・・・第1の半導体層(高濃度p+層)3・・・第2
の半導体層(0層) 4・・・導電体の異なる別な半導体層(n層)5・・・
保護絶縁膜 6・・・n側電極 7・・・n側電極 8・・・シリコンプロセッサ
FIG. 1 is a cross-sectional view of an embodiment of an array-type infrared detector according to the present invention, and FIG. 2 is a cross-sectional view of an example of a conventional array-type infrared detector. 1... CdTe substrate 2... First semiconductor layer (high concentration p+ layer) 3... Second
Semiconductor layer (0 layer) 4... Another semiconductor layer (n layer) with a different conductor 5...
Protective insulating film 6...n-side electrode 7...n-side electrode 8...silicon processor

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性または半絶縁性の基板上に導電型の異なる
複数の半導体層と、それぞれの導電型に対応する複数種
類の電極とを備えた配列型赤外線検知器において、高濃
度にドープされた第1の半導体層と該第1の半導体層と
同一の導電型でかつ上面部に赤外線検知部が形成された
第2の半導体層とが順次形成されてなる素子を基板上に
互いに分離して複数個配列し、前記各素子の基板側から
前記第1の半導体層まで穿孔された通孔に第1の半導体
層への電極を着設したことを特徴とする配列型赤外線検
知器。
(1) In an array-type infrared detector equipped with multiple semiconductor layers of different conductivity types on an insulating or semi-insulating substrate and multiple types of electrodes corresponding to each conductivity type, highly doped A device in which a first semiconductor layer and a second semiconductor layer having the same conductivity type as the first semiconductor layer and having an infrared detection portion formed on the upper surface are formed in sequence are separated from each other on a substrate. 1. An array type infrared detector characterized in that a plurality of infrared detectors are arranged, and electrodes connected to the first semiconductor layer are attached to through holes drilled from the substrate side of each element to the first semiconductor layer.
JP62126897A 1987-05-26 1987-05-26 Array type infrared-ray detector Granted JPS63292671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62126897A JPS63292671A (en) 1987-05-26 1987-05-26 Array type infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62126897A JPS63292671A (en) 1987-05-26 1987-05-26 Array type infrared-ray detector

Publications (2)

Publication Number Publication Date
JPS63292671A true JPS63292671A (en) 1988-11-29
JPH0563023B2 JPH0563023B2 (en) 1993-09-09

Family

ID=14946583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62126897A Granted JPS63292671A (en) 1987-05-26 1987-05-26 Array type infrared-ray detector

Country Status (1)

Country Link
JP (1) JPS63292671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213174A (en) * 1989-02-13 1990-08-24 Mitsubishi Electric Corp Infrared detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213174A (en) * 1989-02-13 1990-08-24 Mitsubishi Electric Corp Infrared detector

Also Published As

Publication number Publication date
JPH0563023B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
US6798034B2 (en) Technique for suppression of edge current in semiconductor devices
EP0518243A1 (en) Two-color radiation detector array and method of fabricating same
US4213138A (en) Demultiplexing photodetector
US7671341B2 (en) Multi colour photon detectors
US20150243825A1 (en) Simultaneous dual-band detector
KR100670828B1 (en) Photo-detector for image signal of infrared laser radar and method of manufacturing the same
JPH02135786A (en) Solar battery cell
JPH03503226A (en) Photodetector containing semiconductor multilayer structure
US4323911A (en) Demultiplexing photodetectors
US4646120A (en) Photodiode array
JPS61139061A (en) Semiconductor photodetector
JPS63292671A (en) Array type infrared-ray detector
US4914495A (en) Photodetector with player covered by N layer
JPS61214462A (en) Arrangement type infrared detector
JPH0955522A (en) Tunnel diode
JPH07105522B2 (en) Semiconductor device
JP2848345B2 (en) Infrared detector
JP2670553B2 (en) Semiconductor light receiving / amplifying device
US5004698A (en) Method of making photodetector with P layer covered by N layer
JPH01216581A (en) Semiconductor device
JPH0196968A (en) Infrared ray detector
JPH09232616A (en) Infrared detecting device
JPS6146071B2 (en)
JPH046876A (en) Semiconductor device and manufacture thereof
JPH02248077A (en) Array type infrared detector