JPS6329236Y2 - - Google Patents

Info

Publication number
JPS6329236Y2
JPS6329236Y2 JP1981167753U JP16775381U JPS6329236Y2 JP S6329236 Y2 JPS6329236 Y2 JP S6329236Y2 JP 1981167753 U JP1981167753 U JP 1981167753U JP 16775381 U JP16775381 U JP 16775381U JP S6329236 Y2 JPS6329236 Y2 JP S6329236Y2
Authority
JP
Japan
Prior art keywords
cylinder
plunger
liquid
light emitting
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981167753U
Other languages
Japanese (ja)
Other versions
JPS5872652U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16775381U priority Critical patent/JPS5872652U/en
Publication of JPS5872652U publication Critical patent/JPS5872652U/en
Application granted granted Critical
Publication of JPS6329236Y2 publication Critical patent/JPS6329236Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は反応セル装置に関し、更に詳述すれば
複数の液体の所望量を正確に計量して混合し、必
要により反応を起こさせた後、これら混合液又は
反応液の透過率を測定する等の操作を全て行ない
得る反応セル装置に関する。
[Detailed Description of the Invention] The present invention relates to a reaction cell device, and more specifically, the present invention relates to a reaction cell device, in which a desired amount of a plurality of liquids is accurately measured and mixed, a reaction is caused if necessary, and then the mixed liquid or reaction liquid is The present invention relates to a reaction cell device that can perform all operations such as measuring the transmittance of a cell.

分析分野においては用手法による場合はもとよ
り、自動分析装置においても複数の液体を計量し
て混合、反応させる混合、分注、反応操作は重要
なものである。特に自動分析装置による比色分析
の場合には、上記操作により試料溶液を発色さ
せ、次いでこの発色液をセルに導き、ここでその
透過率を測定することが一般に行なわれている
が、これら操作を行なわせるための装置は複雑な
ものとなつている。例えば、試料溶液に2種類の
試薬を所定量ずつ混合して試料を発色させ、次い
で発色した試料をセルに導き、ここで透過率を測
定する混合には、3台のポンプを用いて試料溶液
と試薬とをそれぞれ所定量ずつ混合槽に送り、混
合槽でこれら三者を混合して反応させることによ
り発色させた後、発色液を更に別のポンプを用い
てセルに送り、ここでその透過率を測定すのが一
般的であり、この場合にはポンプが4台、混合
槽、セル及びこれらを制御する制御部等が必要と
なり、構成が複雑なものとなる。このように、自
動分析装置においては、数多くの構成ユニツトを
要することから、混合、分注等の誤差が問題とな
ることが多く、更に反応、検知部等への移送など
の複雑な各種操作による誤差が加算され、分析精
度を低下させる原因となつているため、上記操作
を精度良く行なうこと及び構成ユニツトの簡素化
が強く望まれていた。
In the field of analysis, mixing, dispensing, and reaction operations, in which multiple liquids are measured, mixed, and reacted, are important not only in manual methods, but also in automatic analyzers. Particularly in the case of colorimetric analysis using an automatic analyzer, it is common practice to develop a color in the sample solution by the above procedure, and then introduce this coloring solution into a cell, where its transmittance is measured. The equipment used to do this has become complex. For example, three pumps are used to mix the sample solution with predetermined amounts of two types of reagents to cause the sample to develop color, and then introduce the colored sample into a cell where the transmittance is measured. A predetermined amount of the liquid and reagent are sent to a mixing tank, and the three components are mixed and reacted in the mixing tank to develop a color.The coloring solution is then sent to a cell using another pump, where its permeation is carried out. Generally, the ratio is measured, and in this case, four pumps, a mixing tank, a cell, a control unit for controlling these, etc. are required, resulting in a complicated configuration. As described above, since automatic analyzers require a large number of component units, errors in mixing, dispensing, etc. often become a problem, and furthermore, errors due to various complicated operations such as reaction and transfer to the detection section, etc. Since errors are added and cause a decrease in analysis accuracy, it has been strongly desired to perform the above operations with high precision and to simplify the constituent units.

本考案は上記事情に鑑みなされたもので、特殊
な反応セル装置を用いて、これに多くの機能を持
たせることにより、構成ユニツト数を減少させて
精度低下要因を最小とすると共に、動作の安定性
及び保守性を向上した反応セル装置を提供するこ
とを目的とする。
The present invention was developed in view of the above circumstances, and by using a special reaction cell device and equipping it with many functions, it reduces the number of constituent units, minimizes the factors that degrade accuracy, and improves operation. The purpose of the present invention is to provide a reaction cell device with improved stability and maintainability.

以下、本考案の一実施例につき図面を参照して
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図面は本考案反応セル装置の一実施例を示すも
ので、図中1はシリンダである。このシリンダ1
の底壁ほぼ中央部にはフオトダイオ−ド等からな
る受光部2がその受光面をシリンダ1の底壁上面
と一致させて埋め込まれており、この受光部2で
発生する信号はこれに接続された信号引出線3か
ら取り出される。また、シリンダ1の側壁所定高
さには、第2図に示すように互に90度づつ円周方
向に離間して、液体が流入する第1〜第3吸入部
4a〜4c及び吐出部5が順次形成されている。
前記第1〜第3吸入部4a〜4cにはそれぞれ第
1〜第3液体吸入管6a〜6cの一端が連結され
ていると共に、他端側は第1〜第3液体槽7a〜
7c内の第1〜第3液体8a〜8c中に浸漬され
ている。また同様に、吐出部5には吐出管9の一
端が連結されていると共に、その他端側は受器1
0内に挿入されている。
The drawing shows an embodiment of the reaction cell device of the present invention, and in the drawing, 1 is a cylinder. This cylinder 1
A light receiving section 2 consisting of a photodiode or the like is embedded in approximately the center of the bottom wall of the cylinder 1, with its light receiving surface aligned with the top surface of the bottom wall of the cylinder 1, and the signals generated by this light receiving section 2 are connected to this. The signal is taken out from the signal leader line 3. Further, at a predetermined height of the side wall of the cylinder 1, as shown in FIG. are formed sequentially.
One end of the first to third liquid suction pipes 6a to 6c is connected to the first to third suction parts 4a to 4c, respectively, and the other end is connected to the first to third liquid tanks 7a to 7a.
It is immersed in the first to third liquids 8a to 8c in 7c. Similarly, one end of the discharge pipe 9 is connected to the discharge part 5, and the other end is connected to the receiver 1.
It is inserted within 0.

前記シリンダ1内には円柱状のプランジヤ11
の下部側が液密かつ摺動及び回転自在に挿入され
ている。このプランジヤ11の下部側には、その
表面の一部に所定高さから下端面に達する切欠溝
12が形成されていると共に、プランジヤ11の
下端ほぼ中央部には前記受光部2の受光面と対向
してタングステンランプ等の発光部13がその発
光面をプランジヤ下端面と一致させて埋め込まれ
ており、この発光部13の発する光が前記受光部
で検出されるものである。なお、14は前記発光
部13に接続されたリ−ド線で、プランジヤ11
内を通り所定箇所から外部に引出されており、こ
のリ−ド線14を介して発光部13に電力を送給
して発光部13を発光させるものである。また、
前記プランジヤ11の長さ方向中間部には、周方
向に沿つて全周に亘り複数の歯溝が形成されて、
丸ラツク15をなしている。
Inside the cylinder 1 is a cylindrical plunger 11.
The lower side of the holder is inserted in a liquid-tight manner so that it can slide and rotate freely. A notched groove 12 reaching from a predetermined height to the lower end face is formed in a part of the surface of the lower part of the plunger 11, and a light receiving surface of the light receiving part 2 is formed approximately in the center of the lower end of the plunger 11. A light emitting section 13 such as a tungsten lamp is embedded opposite to the plunger with its light emitting surface aligned with the lower end surface of the plunger, and the light emitted by the light emitting section 13 is detected by the light receiving section. Note that 14 is a lead wire connected to the light emitting section 13, and is connected to the plunger 11.
The lead wire 14 passes through the inside and is drawn out to the outside from a predetermined location, and power is sent to the light emitting section 13 via this lead wire 14 to cause the light emitting section 13 to emit light. Also,
A plurality of tooth grooves are formed along the entire circumference in the circumferential direction in the longitudinally intermediate portion of the plunger 11,
There are 15 round racks.

16は制御部17の送出するパルス信号によ
り、その回転軸の回転方向及び回転角度が制御さ
れるパルスモ−タで、このモ−タ16の回転軸に
取付けられたピニオン18が前記丸ラツク15と
噛合して、モ−タ16の回転運動を直線運動に変
換してプランジヤ11に伝達するが、この場合ラ
ツクの歯溝は全周に亘り形成されているため、プ
ランジヤ11がその軸周りに回転しても、常に噛
合状態が保たれている。
Reference numeral 16 denotes a pulse motor whose rotating direction and angle of rotation are controlled by pulse signals sent from a control section 17. A pinion 18 attached to the rotating shaft of this motor 16 is connected to the round rack 15. When engaged, the rotational motion of the motor 16 is converted into linear motion and transmitted to the plunger 11. In this case, since tooth grooves on the rack are formed over the entire circumference, the plunger 11 rotates around its axis. However, the state of engagement is always maintained.

前記プランジヤ11の上方には、制御部17の
送出するパルスにより回転方向及び回転角度が制
御されるプランジヤ回転用パルスモ−タ19が配
設されており、このモ−タ19の回転軸はスプラ
イン等の連結構造(図示せず)により前記プラン
ジヤ11と連結され、これによりプランジヤ11
がその軸の周りに回転せしめられる。
A plunger rotation pulse motor 19 whose rotation direction and rotation angle are controlled by pulses sent out from the control section 17 is disposed above the plunger 11, and the rotation axis of this motor 19 is formed by a spline or the like. is connected to the plunger 11 by a connecting structure (not shown), whereby the plunger 11
is rotated around its axis.

次に、上記反応セル装置を用いて試料を発色さ
せて比色分析法により試料中の目的成分を定量す
る場合につき説明すると、まずプランジヤ11が
シリンダ1内に最大限挿入され、シリンダ1の底
壁にプランジヤ11の下端面が当接した状態で、
制御部17に試料及び試薬の吸入量、反応時間等
をセツトする。また、第1液体槽7aに試料溶液
を、第2及び第3液体槽にそれぞれPH緩衝液及び
発色試薬を満す。次いで、制御部17の分析開始
スイツチを押すと、モ−タ19が作動してプラン
ジヤ11が回転され、プランジヤ11の切欠溝1
2が第1吸入部4aと対向する位置になるとモ−
タ19が、従つてこれと連動するプランジヤ11
の回転が停止する。この状態でモ−タ16が作動
し、プランジヤ11が所定距離上昇せしめられ、
これにより第1液体槽7a内の試料の所定量が第
1液体吸入管6a、第1吸入部4a、切欠溝12
を順次通過してシリンダ1内に正確に吸入され
る。次いで、モ−タ19が作動してプランジヤ1
1がその軸の周りに90度回転せしめられ、プラン
ジヤ11の切欠溝12が第2吸入部4bと対向せ
しめられた後、モ−タ16が作動してプランジヤ
11が所定距離上昇せしめられ、これにより第2
液体槽7b中のPH緩衝液の所定量が上記と同様に
してシリンダ1内に吸入され、吸入時におけるPH
緩衝液の流入運動エネルギ−及び拡散現象によ
り、シリンダ1内の試料と新たに吸入されたPH緩
衝液とが自然に混合されて均一化される。更に、
同様にして第3液体槽7c中の発色試薬の所定量
が正確にシリンダ1内に吸入され、混合され、こ
れにより発色反応がシリンダ1内で開始される。
必要により、反応が進行して透過率が安定化する
まで放置後、モ−タ19が作動してプランジヤ1
1が90度回転せしめられて切欠溝12が吐出部5
と対向せしめられ、次いでこの状態においてモ−
タ16が作動してプランジヤ11が下降せしめら
れる。これにより透過率測定に最適な距離となる
ように、プランジヤ11の下端とシリンダ1底壁
との間の距離が調節される。その後、発光部13
の放射する光はシリンダ11内の発色した試料溶
液を透過して受光部2に至る。そしてここでその
透過光量に比例して電気信号に変換され、この電
気信号は信号引出線3から記録計(図示せず)に
送られ記録される。このようにして、透過光量が
測定された後、モ−タ16が作動してプランジヤ
11が下降せしめられ、これによりシリンダ1内
の発色した試料溶液は切欠溝12、吐出部5、吐
出管9を順次通過して受器10に排出される。次
いでモ−タ19が作動してプランジヤ11が90度
回転され、切欠溝12が第1吸入部4aに対向せ
しめられる。これにより、反応セル装置は最初の
状態に復帰し、以下同様の操作が繰返えされるも
のであるが、上記操作は全て制御部17の送出す
るパルス信号により、自動的に行なわれるもので
ある。
Next, to explain the case where the sample is colored using the reaction cell device and the target component in the sample is quantified by colorimetric analysis, first, the plunger 11 is inserted into the cylinder 1 to the maximum extent, and the bottom of the cylinder 1 is With the lower end of the plunger 11 in contact with the wall,
The amount of sample and reagent to be inhaled, reaction time, etc. are set in the control unit 17. Further, the first liquid tank 7a is filled with a sample solution, and the second and third liquid tanks are filled with a PH buffer and a coloring reagent, respectively. Next, when the analysis start switch of the control unit 17 is pressed, the motor 19 is activated and the plunger 11 is rotated, and the notch groove 1 of the plunger 11 is rotated.
2 is in a position facing the first suction part 4a, the motor
The plunger 19 is connected to the plunger 11.
rotation stops. In this state, the motor 16 is operated and the plunger 11 is raised a predetermined distance.
As a result, a predetermined amount of the sample in the first liquid tank 7a is transferred to the first liquid suction pipe 6a, the first suction part 4a, and the notch groove 12.
are drawn into the cylinder 1 in sequence. Next, the motor 19 operates to move the plunger 1.
1 is rotated 90 degrees around its axis so that the cutout groove 12 of the plunger 11 faces the second suction part 4b, and then the motor 16 is operated to raise the plunger 11 a predetermined distance. The second
A predetermined amount of the PH buffer in the liquid tank 7b is sucked into the cylinder 1 in the same manner as above, and the PH at the time of suction is
Due to the inflow kinetic energy of the buffer solution and the diffusion phenomenon, the sample in the cylinder 1 and the newly drawn PH buffer solution are naturally mixed and homogenized. Furthermore,
Similarly, a predetermined amount of the coloring reagent in the third liquid tank 7c is accurately sucked into the cylinder 1 and mixed, whereby a coloring reaction is started within the cylinder 1.
If necessary, after leaving it until the reaction progresses and the transmittance becomes stable, the motor 19 is activated to move the plunger 1.
1 is rotated 90 degrees, and the notch groove 12 becomes the discharge part 5.
Then, in this state, the motor
The plunger 16 is activated and the plunger 11 is lowered. Thereby, the distance between the lower end of the plunger 11 and the bottom wall of the cylinder 1 is adjusted so as to be the optimum distance for transmittance measurement. After that, the light emitting section 13
The emitted light passes through the colored sample solution in the cylinder 11 and reaches the light receiving section 2. Here, it is converted into an electrical signal in proportion to the amount of transmitted light, and this electrical signal is sent from the signal lead line 3 to a recorder (not shown) and recorded. After the amount of transmitted light has been measured in this way, the motor 16 is operated to lower the plunger 11, and the colored sample solution in the cylinder 1 is thereby transferred to the notch 12, the discharge part 5, and the discharge pipe 9. and is discharged into the receiver 10. Next, the motor 19 is operated to rotate the plunger 11 by 90 degrees, so that the cutout groove 12 is opposed to the first suction portion 4a. As a result, the reaction cell device returns to its initial state, and the same operations are repeated thereafter, but all of the above operations are automatically performed by pulse signals sent from the control unit 17. .

本実施例においては、第1〜第3液体を正確に
各所定量づつ混合するのに、第1〜第3吸入部を
有するシリンダ及びプランジヤを用いて行なつて
いるため、従来法のように複数のポンプを用いて
混合、分注を行なう場合と比較して構成ユニツト
が少なく、このため動作精度の安定性、保守性が
良好な上、装置の製造コストも比較的低いもので
ある。また、プランジヤの上昇、下降運動をパル
スモ−タを用いて行なつているため、プランジヤ
の移動距離の制御は容易で、従つて各液体の吸入
量は極めて正確なものであり、分析精度は高いも
のである。更に、シリンダ底壁及びプランジヤ下
端面には受光部及び発光部が形成してあるため、
試料の吸入、試薬の混合、測定、排出が本装置で
全て行ない得るもので、しかも透過光の測定時に
おいて、プランジヤの位置を適当に調節すること
により光路長を任意に可変でき、最適条件で測定
し得るものである。
In this embodiment, since the cylinder and plunger having the first to third suction parts are used to accurately mix the first to third liquids in predetermined amounts, multiple suction parts are mixed, unlike the conventional method. Compared to the case where mixing and dispensing are performed using a pump, the number of constituent units is small, and therefore the stability of operation accuracy and maintainability are good, and the manufacturing cost of the device is also relatively low. In addition, since the plunger moves up and down using a pulse motor, it is easy to control the moving distance of the plunger, and the suction amount of each liquid is extremely accurate, resulting in high analysis accuracy. It is something. Furthermore, since a light receiving part and a light emitting part are formed on the bottom wall of the cylinder and the lower end surface of the plunger,
Inhaling the sample, mixing the reagent, measuring, and discharging can all be performed with this device. Furthermore, when measuring transmitted light, the optical path length can be arbitrarily varied by appropriately adjusting the position of the plunger, making it possible to perform measurements under optimal conditions. It is something that can be measured.

なお、本実施例においてはシリンダ1に吸入部
4a〜4c及び吐出部5をそれぞれ90度ずつシリ
ンダ1の周方向に離間して形成したがこれに限ら
れず、任意の数及び角度にこれらを形成しても良
く、また発光部13及び受光部2もタングステン
ランプ及びフオトダイオ−ドに限られない。更
に、プランジヤ11の駆動手段も上記方法に限ら
れず、また更にシリンダ1に加熱、冷却手段等を
設けてシリンダ1内に吸入した試料、試薬等の反
応の促進、調節を行なえるようにしても良く、そ
の他本考案の要旨を逸脱しない範囲で種々変形し
て差支えない。
In this embodiment, the intake sections 4a-4c and the discharge section 5 are formed on the cylinder 1 at 90° intervals in the circumferential direction of the cylinder 1, but this is not limited to this and they may be formed in any number and at any angle, and the light emitting section 13 and the light receiving section 2 are not limited to a tungsten lamp and a photodiode. Furthermore, the driving means for the plunger 11 is not limited to the above method, and heating and cooling means may be provided on the cylinder 1 to promote and adjust the reaction of the sample, reagent, etc. drawn into the cylinder 1, and various other modifications may be made without departing from the scope of the present invention.

而して、本考案は側壁に吐出部及び複数の液体
吸入部が形成された有底筒状のシリンダと、上記
シリンダ内に下部側が液密かつ回転及び進退自在
に挿入され、かつ外周面に下端部から軸方向に沿
つて所定長さに形成されていると共に上記シリン
ダの吐出部及び液体吸入部と連通可能な切欠溝を
有するプランジヤと、上記プランジヤを所定位置
に回転及び進退させる駆動機構と、上記シリンダ
の底壁部及びプランジヤの下端部に相対向してそ
れぞれ設けられた受光部及び発光部を有し、上記
発光部の発光を受光部で測定することによりシリ
ンダ底壁とプランジヤ下端との間に存する液体の
透過率を測定する透過率測定機構とを具備するこ
とにより、液体試料の吸入、反応、透過率測定が
同一シリンダ内で行ない得、このため構成ユニツ
ト数を低減でき、動作精度の安定性、保守性が向
上する上、操作精度低下要因を最小とすることが
でき、分析精度の向上が著しいものである。
The present invention includes a bottomed cylindrical cylinder in which a discharge part and a plurality of liquid suction parts are formed on the side wall, and a lower part of the cylinder is inserted into the cylinder in a liquid-tight manner so that it can rotate and move forward and backward. a plunger having a predetermined length along the axial direction from the lower end and having a notched groove that can communicate with the discharge part and the liquid suction part of the cylinder; and a drive mechanism that rotates the plunger to a predetermined position and advances and retreats the plunger. , a light receiving part and a light emitting part are provided opposite to each other on the bottom wall of the cylinder and the bottom end of the plunger, and the cylinder bottom wall and the bottom end of the plunger are measured by measuring the light emitted from the light emitting part with the light receiving part. By equipping the cylinder with a transmittance measuring mechanism that measures the transmittance of the liquid present between the cylinders, suction of the liquid sample, reaction, and transmittance measurement can be performed within the same cylinder, which reduces the number of constituent units and reduces operational efficiency. In addition to improving accuracy stability and maintainability, factors that reduce operational accuracy can be minimized, and analysis accuracy is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す部分断面側面
図、第2図は同例の−線に沿つた拡大断面平
面図である。 1……シリンダ、2……受光部、3……信号引
出線、4a〜4c……第1〜第3吸入部、5……
吐出部、6a〜6c……第1〜第3液体吸入管、
7a〜7c……第1〜第3液体槽、8a〜8c…
…第1〜第3液体、9……吐出管、10……受
器、11……プランジヤ、12……切欠溝、13
……発光部、14……リ−ド線、15……丸ラツ
ク、16……パルスモ−タ、17……制御部、1
8……ピニオン、19……パルスモ−タ。
FIG. 1 is a partially sectional side view showing an embodiment of the present invention, and FIG. 2 is an enlarged sectional plan view taken along the - line of the same embodiment. DESCRIPTION OF SYMBOLS 1...Cylinder, 2...Light receiving part, 3...Signal leader line, 4a-4c...1st to 3rd suction part, 5...
Discharge part, 6a to 6c...first to third liquid suction pipes,
7a to 7c...first to third liquid tanks, 8a to 8c...
...First to third liquids, 9...Discharge pipe, 10...Receiver, 11...Plunger, 12...Notch groove, 13
...Light emitting section, 14 ... Lead wire, 15 ... Round rack, 16 ... Pulse motor, 17 ... Control section, 1
8...Pinion, 19...Pulse motor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 側壁に吐出部及び複数の液体吸入部が形成され
た有底筒状のシリンダと、上記シリンダ内に下部
側が液密かつ回転及び進退自在に挿入され、かつ
外周面に下端部から軸方向に沿つて所定長さに形
成されていると共に上記シリンダの吐出部及び液
体吸入部と連通可能な切欠溝を有するプランジヤ
と、上記プランジヤを所定位置に回転及び進退さ
せる駆動機構と、上記シリンダの底壁部及びプラ
ンジヤの下端部に相対向してそれぞれ設けられた
受光部及び発光部を有し、上記発光部の発光を受
光部で測定することによりシリンダ底壁とプラン
ジヤ下端との間に存する液体の透過率を測定する
透過率測定機構とを具備することを特徴とする反
応セル装置。
A bottomed cylindrical cylinder in which a discharge part and a plurality of liquid suction parts are formed on the side wall, and a lower part of the cylinder is inserted into the cylinder in a liquid-tight manner so as to be freely rotatable and retractable, and a cylinder is formed on the outer circumferential surface along the axial direction from the lower end. a plunger having a predetermined length and a notched groove that can communicate with the discharge portion and liquid suction portion of the cylinder; a drive mechanism that rotates the plunger to a predetermined position and advances and retreats; a bottom wall portion of the cylinder; and a light receiving part and a light emitting part respectively provided opposite to each other at the lower end of the plunger, and by measuring the light emitted from the light emitting part with the light receiving part, the transmission of the liquid existing between the cylinder bottom wall and the lower end of the plunger is detected. 1. A reaction cell device comprising a transmittance measuring mechanism for measuring a transmittance.
JP16775381U 1981-11-11 1981-11-11 reaction cell equipment Granted JPS5872652U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16775381U JPS5872652U (en) 1981-11-11 1981-11-11 reaction cell equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16775381U JPS5872652U (en) 1981-11-11 1981-11-11 reaction cell equipment

Publications (2)

Publication Number Publication Date
JPS5872652U JPS5872652U (en) 1983-05-17
JPS6329236Y2 true JPS6329236Y2 (en) 1988-08-05

Family

ID=29959822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16775381U Granted JPS5872652U (en) 1981-11-11 1981-11-11 reaction cell equipment

Country Status (1)

Country Link
JP (1) JPS5872652U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069024A (en) * 2007-09-13 2009-04-02 Okayama Prefecture Industrial Promotion Foundation Chemiluminescence measuring method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3446756C1 (en) * 1984-12-21 1985-10-31 Betz, Michael, Dr., 2300 Molfsee Photometer for analyzing liquid media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536620B2 (en) * 1977-01-31 1980-09-22
JPS5629522B2 (en) * 1976-06-04 1981-07-09

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926654Y2 (en) * 1978-08-28 1984-08-02 松下電器産業株式会社 automatic volume adjustment device
JPS5629522U (en) * 1979-08-10 1981-03-20
JPS56128720U (en) * 1980-02-28 1981-09-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629522B2 (en) * 1976-06-04 1981-07-09
JPS5536620B2 (en) * 1977-01-31 1980-09-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069024A (en) * 2007-09-13 2009-04-02 Okayama Prefecture Industrial Promotion Foundation Chemiluminescence measuring method and device

Also Published As

Publication number Publication date
JPS5872652U (en) 1983-05-17

Similar Documents

Publication Publication Date Title
US4961906A (en) Liquid handling
US4228831A (en) Probe and syringe drive apparatus
US4761268A (en) Liquid handling
AU736838C (en) Automatic chemistry analyzer with improved heated reaction cup assembly
SU795518A3 (en) Device for mixing and dosing several given reagents
US4647432A (en) Automatic analysis apparatus
US5141871A (en) Fluid dispensing system with optical locator
US4399711A (en) Method and apparatus ensuring full volume pickup in an automated pipette
US4834944A (en) Automatic analytical apparatus
US4323537A (en) Analysis system
CN105004687A (en) Constant-volume liquid feeding metering method and device for COD detection
JPS6329236Y2 (en)
US4522493A (en) Partial injection apparatus
US4476095A (en) Fluorometric titrator
US3817425A (en) Chemical dispenser
US4873877A (en) Precision liquid handling apparatus
US4294127A (en) Automatic sample feeder for flameless atomic absorption spectrometer
JPS5881435A (en) Mixing and distributing method
CN212432888U (en) Blood rheology tester
CN114295853A (en) Full-automatic chemiluminescence immunoassay analyzer and application method thereof
CN107907532B (en) Body fluid detection device and body fluid detection method
JPS63131066A (en) Automatic analyzer
JPS604128Y2 (en) Structure of reaction disk of automatic analyzer
CN114088648B (en) Gas-liquid dual isolation method for sampling micro-reagent of multi-way valve
US11306716B2 (en) Pump