JPS6329232A - Measuring instrument for corpuscle in liquid - Google Patents

Measuring instrument for corpuscle in liquid

Info

Publication number
JPS6329232A
JPS6329232A JP61171865A JP17186586A JPS6329232A JP S6329232 A JPS6329232 A JP S6329232A JP 61171865 A JP61171865 A JP 61171865A JP 17186586 A JP17186586 A JP 17186586A JP S6329232 A JPS6329232 A JP S6329232A
Authority
JP
Japan
Prior art keywords
liquid
particle
measurement
particles
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61171865A
Other languages
Japanese (ja)
Inventor
Muneharu Ishikawa
石川 宗晴
Takashi Sasaki
隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Shinko Pfaudler Co Ltd
Original Assignee
Kowa Co Ltd
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd, Shinko Pfaudler Co Ltd filed Critical Kowa Co Ltd
Priority to JP61171865A priority Critical patent/JPS6329232A/en
Publication of JPS6329232A publication Critical patent/JPS6329232A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve particle detection efficiency and to measure accurate particle characteristics by forming the circulation flow of measuring liquid in a corpuscle measurement area by an in-liquid corpuscle measuring instrument using laser beam. CONSTITUTION:Sample liquid 16 is supplied from a liquid intake 1 and rotated at constant speed by the rotation of a stirrer 2 placed at the internal cylinder bottom part of a measurement cell 20. In such case, laser luminous flux 3 is made incident from an incident window 4 so that it is converged on a point 3a between the center of the cylinder and the center of the cylinder side wall. Scattered light from the corpuscles 17 in liquid which pass the convergence point 3a is received by a light receiving window 5 to form an image on a mask 7 through a convergent lens 6, and the image is converted by a photoelectric converter 8 into an electric signal and the particle size is calculated by a crest value analyzer 9 from the intensity of the scattered light and displayed a particle size display device 10. Thus, the particle detection efficiency is improved to measure accurate particle characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は液中微粒子測定装置、さらに詳しくは流体液中
にレーザ光を照射し、液中に浮遊する微粒子からの散乱
光を検出して粒径や粒子数等、粒子の特性を測定する液
中微粒子測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an in-liquid particulate measurement device, more specifically, a device for measuring particles in liquid, which irradiates a laser beam into a fluid and detects scattered light from particulates suspended in the liquid. This invention relates to an in-liquid particle measuring device that measures particle characteristics such as particle size and number of particles.

[従来の技術] 従来より、測定領域内に光を入射させ、その透過光量や
散乱特性を測定することにより、同領域内における粒子
の粒径、数などの特性を1111定する技術が知られて
いる。
[Prior Art] Conventionally, a technique has been known in which the characteristics such as the particle size and number of particles in the measurement area can be determined by making light enter the measurement area and measuring the amount of transmitted light and scattering characteristics. ing.

例えば、純水中の不純物粒rの測定にも、この技術が用
いられているが、純水中の微粒子は径が小さく、またま
ばらにしか存在しないため、′A11定には困難が伴な
う。そのため、従来から微粒子からの散乱強度を増加さ
せるためにレーザ光源などからの入射光束を小さな領域
に集光させ、高輝度の測定領域を設け、この領域を通過
する粒r一からの散乱光を受光する方法が用いられてい
る。
For example, this technique is used to measure impurity particles r in pure water, but since the fine particles in pure water are small in diameter and exist only sparsely, it is difficult to determine 'A11. cormorant. Therefore, conventionally, in order to increase the scattering intensity from fine particles, the incident light beam from a laser light source is focused on a small area, a high-intensity measurement area is provided, and the scattered light from the particles passing through this area is collected. A method of receiving light is used.

粒子にレーザ光を照射し、その粒子からの散乱光を解析
する粒子計測器においては、粒−fを通過させる測定部
分をいかに形成するかが重要である。すなわち、気体中
の粒f−の場合、粒f−を含む気体をノズルから吹き出
し、その外側を清浄気体で包んで測定領域を形成するか
、液中の粒子測定の場合には、液体を保持し流す測定セ
ルが必要になる。
In a particle measuring instrument that irradiates particles with laser light and analyzes scattered light from the particles, it is important how to form a measurement portion that allows particles -f to pass through. In other words, in the case of particle f- in gas, the gas containing particle f- is blown out from the nozzle and the outside is wrapped with clean gas to form the measurement area, or in the case of particle measurement in liquid, the liquid is held. A measurement cell is required to drain the water.

この測定セルは、レーザ光を照射することから光束の入
射・出射面および散乱光の受光面は光学的に透明である
必要があり、照射光の入射光側と直交する側へ散乱され
る側方散乱光を受光する場合は4面透過セルが、照射光
の入射側と相対向する側へ散乱された前方散乱光を受光
する場合には2面透過セルが用いられている。
Since this measurement cell is irradiated with laser light, the incident and exit surfaces of the light beam and the receiving surface of the scattered light must be optically transparent, and the side that is scattered to the side perpendicular to the incident light side of the irradiated light must be optically transparent. A four-sided transmission cell is used to receive forward scattered light, and a two-sided transmission cell is used to receive forward scattered light that is scattered to the side opposite to the incident side of the irradiated light.

1111定セル中に形成される粒子検出領域は、粒子か
ら散乱される光の強度を強くするためにレーザ光束の集
光点近傍を用いることが多い。
The particle detection region formed in the 1111 constant cell is often located near the focal point of the laser beam in order to increase the intensity of the light scattered from the particles.

すなわち、第2図に図示したように、測定セル20にが
しれる液中の微粒子22から散乱光を測定するために、
レーザ光束23が集光されて入射される。その場合、粒
子検出領域にレーザ光束の集光点近傍23aが用いられ
、この領域からの散乱光か集光レンズ24により集光さ
れ、計測が行われる。
That is, as shown in FIG. 2, in order to measure the scattered light from the fine particles 22 in the liquid that fall into the measurement cell 20,
The laser beam 23 is focused and incident. In that case, the vicinity 23a of the convergence point of the laser beam is used as the particle detection region, and the scattered light from this region is condensed by the condenser lens 24 to perform measurement.

一方、第3図に図示したように、測だセル断面を通過す
るすべての粒子を検出する+1的で、セル断面全域にわ
たってシート状のレーザ光束23′を入射させて形成す
る方法もある。
On the other hand, as shown in FIG. 3, there is also a method of detecting all the particles passing through the cross section of the measured cell, in which a sheet-shaped laser beam 23' is made incident over the entire cross section of the cell.

[発明が解決しようとする問題点コ 後者の方式でより小さな微粒子−を工する場合には、シ
ート状に広がったレーザ光束の幅を制限せざるを得す、
その結果all+定セルの断面桔も小さくなって圧力損
失も大きくなり、液流4−の確保が困難になる傾向を持
つ。従って、検出すべき粒子径が小さくなるにつれ、検
出効イlを犠lにして前者の集光点を用いる方式が多用
されているものと考えられる。しかし、これらはいずれ
も測定セルを液が通過するときに1度だけ液中の粒子を
測定する方式で、測定後、液は捜出される。
[Problems to be solved by the invention: When producing smaller particles using the latter method, it is necessary to limit the width of the laser beam spread out in a sheet-like manner.
As a result, the cross-sectional area of the all+ constant cell becomes smaller, pressure loss increases, and it tends to become difficult to secure the liquid flow 4-. Therefore, as the particle diameter to be detected becomes smaller, it is thought that the former method of using a condensing point is increasingly used at the expense of detection efficiency. However, all of these methods measure particles in the liquid only once when the liquid passes through the measurement cell, and after the measurement, the liquid is searched out.

本発明の目的は、微細な粒子の検出を可能にするレーザ
光束を集光させる方式を取りながら、試料液流の一過性
を避けることにより、粒−f検出効率を高めることがで
きる液中微粒子測定装置な提供することにある。
An object of the present invention is to provide a method for condensing a laser beam that enables the detection of minute particles while avoiding the transient nature of the sample liquid flow, thereby increasing particle-f detection efficiency in a liquid. Our goal is to provide a particle measuring device.

[問題点を解決するための手段] 本発明によれば、この問題点を解決するために、微粒子
測定領域に測定液の循環流を形成する構成を採用した。
[Means for Solving the Problem] According to the present invention, in order to solve this problem, a configuration is adopted in which a circulating flow of the measurement liquid is formed in the particulate measurement region.

[fl  用] 本発明では、循環流を形成して微粒子測定領域を横切る
速度を一定に保つ円筒状の測定セルが設けられる。この
測定セル内には外部の駆動モータに取り伺けた磁石と磁
気的に結合し、モータの回転に伴って回転する撹拌子を
配置し、前記循環流を形成するようにしている。
[For fl] In the present invention, a cylindrical measuring cell is provided which forms a circulating flow to maintain a constant velocity across the particulate measurement area. Inside this measurement cell, a stirring element is arranged which is magnetically coupled to a magnet connected to an external drive motor and rotates as the motor rotates, thereby forming the circulating flow.

測定セルと攪拌子とを組み合わせて光散乱計測に使用し
た例はあるが、この場合には測定セルは試験管弯に測定
試料を入れて計測する際に、試験性等の壁面からの反射
光を弱めるために屈折率差を小さくする作用を果たす。
There is an example of using a measurement cell and a stirrer in combination for light scattering measurement. It acts to reduce the difference in refractive index in order to weaken the difference in refractive index.

液体を入れる容器として、さらにこの液体の温度を変化
させたときの熱拡散をよくするために、攪拌子を用いる
ことをIj的としており、本発明ように測定セル中に層
流状の循環流を形成して粒子を計測する[1的に使用し
た例は見られない。
In order to improve heat diffusion when the temperature of the liquid is changed, a stirrer is used as a container to hold the liquid, and as in the present invention, a laminar circulation flow is generated in the measurement cell. to measure particles by forming a

[実施例] 以下、図面に示す実施例に従い本発明の詳細な説明する
[Example] Hereinafter, the present invention will be described in detail according to an example shown in the drawings.

第1図には、液中に浮遊する微粒子を測定する装置が概
略図示されている。同図において符号20で示すものは
測定セルであり、例えば円筒形状に構成される。測定セ
ル20の」一部には、試料液16を測定セル20内に取
り入れるバルブ13を備えた液泡入口1、蓮びに測定セ
ル内から試料液を外部に排出させるバルブ14を備えた
液排出口15が取り付けられる。また、測定セル20の
下方部に、後述するように液を攪拌する攪拌子2が設け
られる。この攪拌子2は磁石から構成され、外部から磁
気的に駆動される。
FIG. 1 schematically shows an apparatus for measuring particulates suspended in a liquid. In the same figure, the reference numeral 20 indicates a measurement cell, which has a cylindrical shape, for example. A part of the measurement cell 20 includes a liquid bubble inlet 1 equipped with a valve 13 for introducing the sample liquid 16 into the measurement cell 20, and a liquid discharge port equipped with a valve 14 for discharging the sample liquid from inside the measurement cell to the outside. 15 is attached. Further, a stirring bar 2 for stirring the liquid is provided at the lower part of the measurement cell 20, as will be described later. This stirrer 2 is composed of a magnet and is magnetically driven from the outside.

さらに、測定セル20の円筒周面には、レーザ光源(図
示せず)からのレーザ光束3を受ける入射窓4、レーザ
光束を出射させる出射窓11、並びに微粒子からの散乱
光を受光する受光窓5が配置される。6窓は石英ガラス
窓で、入射光の波長に対して低反射特性を有するように
薄膜コーティングが表裏面に施される。
Further, on the cylindrical circumferential surface of the measurement cell 20, there is an entrance window 4 that receives a laser beam 3 from a laser light source (not shown), an output window 11 that outputs the laser beam, and a light receiving window that receives scattered light from fine particles. 5 is placed. The 6th window is a quartz glass window, and a thin film coating is applied to the front and back surfaces so that it has low reflection characteristics against the wavelength of incident light.

受光窓5の後方に、集光レンズ6、マスク7が配置され
、さらに散乱光を受光して電気信号に変換する光電変換
器8、並びにそれに接続された波高分析器9、粒径表示
器10が設けられる。
A condensing lens 6 and a mask 7 are arranged behind the light receiving window 5, and a photoelectric converter 8 that receives scattered light and converts it into an electrical signal, as well as a pulse height analyzer 9 and a particle size indicator 10 connected thereto. will be provided.

このような構成において、滴数入口lから試料液16を
取り込み、測定セル20の円筒底部に置いたJW拌壬子
2回転により一定速度で回転させる。この時、円筒中心
と円筒側壁との中間点3aに集光するように、レーザ光
束3を入射窓4から入用させる。レーザ光束3の集光点
3aを通過する液中の微粒子17からの散乱光を受光窓
5から受けて、集光レンズ6でマスク7上に結像させ、
光電変換器8で電気信号に変え、波高分析器9において
散乱光強度から粒子径を算出し、表示器10に表示する
。マスク7は粒子の通過を検出する光束中の測定部分の
大きさを制限するために設けられている。1度集光した
レーザ光束3は、発散しながら出射窓11から測定セル
20外に射出し、光トラップ12に吸収される。バルブ
13゜14は滴数入れ時に開き、円筒部分の液を滴数入
れ1−11から流入する液で置換し、液排出1115か
ら排出した後に閉じる。
In such a configuration, the sample liquid 16 is taken in from the droplet inlet 1 and rotated at a constant speed by two rotations of the JW stirrer placed at the cylindrical bottom of the measurement cell 20. At this time, the laser beam 3 is directed through the entrance window 4 so as to be focused at the midpoint 3a between the center of the cylinder and the side wall of the cylinder. Scattered light from fine particles 17 in the liquid passing through the condensing point 3a of the laser beam 3 is received through the light receiving window 5, and is imaged on the mask 7 by the condensing lens 6.
A photoelectric converter 8 converts the light into an electrical signal, a pulse height analyzer 9 calculates the particle diameter from the intensity of the scattered light, and displays it on a display 10. The mask 7 is provided to limit the size of the measuring portion in the light beam for detecting the passage of particles. The once focused laser beam 3 is emitted from the emission window 11 to the outside of the measurement cell 20 while diverging, and is absorbed by the optical trap 12. The valves 13 and 14 open when a droplet is added, replace the liquid in the cylindrical portion with the liquid flowing in from the droplet holder 1-11, and close after being discharged from the liquid outlet 1115.

本実施例では、撹拌子2は磁石より形成され、外部から
の磁気的な駆動により回転し、液に循環流を発生させる
。本発明では、この循環流の形成を、次のような条ヂ1
−で行う。
In this embodiment, the stirrer 2 is formed of a magnet, rotates by magnetic drive from the outside, and generates a circulating flow in the liquid. In the present invention, the formation of this circulating flow is achieved by the following condition 1.
Perform with -.

液体中にある微粒子17は、液体の分子一連動の作用で
グラ9ン連動をする。このブラウン連動に基づいて粒子
がt時間に動< qz均距#Lは、拡散係数をDとして
、 L=fl、  D=kT/3πηd となることが知られている。
The fine particles 17 in the liquid are interlocked with each other due to the action of the molecules of the liquid. Based on this Brownian interlock, it is known that the particle moves at time t<qz uniform distance #L, where L=fl and D=kT/3πηd, where D is the diffusion coefficient.

ここでkはポルツマン定数、Tは液体の温瓜、ηは液体
の粘性係数、dは微粒子−の粒径、πは円層率である。
Here, k is Portzmann's constant, T is the temperature of the liquid, η is the viscosity coefficient of the liquid, d is the particle size of the fine particles, and π is the circular layer ratio.

粒子検出領域3aにおいて、循環流によって生じる周速
度から算出した1周に要する時間を、前記の時間tとす
ると、1度粒子検出領域を通過した粒子は、1周後には
この領域からLだけ外れることになる。従って、粒子の
平均移動距離りを、第1図のマスク7で制限した検出領
域7aの太きさより大きくすれば、すなわち循環流速を
遅くして、1周する間に粒子が十分変位するように設定
すれば、1度検出領域を通過した粒子は、ブラウン運動
の作用だけを考えても、2度目にこの領域に帰ってくる
ことはないと考えられる。
In the particle detection area 3a, if the time required for one revolution calculated from the circumferential velocity caused by the circulating flow is the above-mentioned time t, a particle that has passed through the particle detection area once will deviate from this area by L after one revolution. It turns out. Therefore, if the average moving distance of the particles is made larger than the width of the detection area 7a limited by the mask 7 in FIG. If this setting is made, it is considered that particles that have passed through the detection area once will not return to this area a second time, considering only the effect of Brownian motion.

−・方、循環流速を早くすれば、測定セル内の流れが乱
流となり、乱流混合により液が混合され、新しい部分の
微粒子を検出できることになるが、粒子検出領域を通過
する粒子の速度ベクトルが一様でないと同じ粒子に対す
る散乱光が異なることになり、測定に適さなくなる。従
って、循環流は層流であることが望ましい。
- On the other hand, if the circulation flow rate is increased, the flow inside the measurement cell will become turbulent, the liquid will be mixed by turbulent mixing, and new parts of particles can be detected, but the speed of particles passing through the particle detection area If the vectors are not uniform, the scattered light for the same particle will be different, making it unsuitable for measurement. Therefore, it is desirable that the circulating flow be laminar.

−1−記の条件では、測定セル内の液は攪拌子による回
転遊動により適度に混合されて測定部分を通過する毎に
、新しい液部分の微粒子力\検出されることになり、測
定時間の経過に伴って得られる粒径・数W:I臭分布は
取り込まれ、円筒部分の液全体の浮遊微粒子の粒径・数
密度分布を正確に反映するようになる。
Under the conditions described in -1-, the liquid in the measurement cell is mixed appropriately by the rotational movement of the stirrer, and each time it passes through the measurement part, the particle force of a new liquid part is detected, which reduces the measurement time. The particle size/number W:I odor distribution obtained over time is incorporated and comes to accurately reflect the particle size/number density distribution of suspended fine particles in the entire liquid in the cylindrical portion.

以上の実施例においては、粒子からの散乱光強度を解析
して粒子径を求め1粒子の通過数と液体の通過流量から
粒子数密度を求める方V、に、i’711して発明の内
容を述べたが、本発明は光f−相関U、によって、粒子
径や粒子の分子早を求める方法においても利用できる。
In the above embodiments, the content of the invention is as follows: However, the present invention can also be used in a method for determining the particle diameter and molecular speed of particles using the optical f-correlation U.

本発明による装置は、例えば超純水中の微粒子−の光散
乱計測、塗料や顔料等に含まれる高分子粒子の光子相関
計測に利用することができる。
The apparatus according to the present invention can be used, for example, to measure light scattering of fine particles in ultrapure water, and to measure photon correlation of polymer particles contained in paints, pigments, and the like.

[効 果] 以上説明したように、本発明によれば、微粒子測定領域
にJllllll鞘液流を形成するようにしているので
、試料液疏の一過性を避けることにより、粒子検出効率
を高め、正確な粒子特+1の測定かり能になる。
[Effect] As explained above, according to the present invention, since a sheath liquid flow is formed in the particulate measurement area, particle detection efficiency is increased by avoiding the transient nature of the sample liquid. This results in an accurate measurement of particle characteristics +1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定装置の概略構成を/J\す構成因
、第2図及び第3図は異なる測定方法を説明する説明図
である。 3・・・レーザ光束   17・・・微粒子20・・・
測定セル 特許出願人 興 和 株式会社(他1名)ム
FIG. 1 is a schematic diagram showing the configuration of the measuring device of the present invention, and FIGS. 2 and 3 are explanatory diagrams explaining different measuring methods. 3...Laser beam 17...Fine particles 20...
Measuring cell patent applicant: Kowa Co., Ltd. (and 1 other person)

Claims (1)

【特許請求の範囲】 1)流体液中にレーザ光を照射し、液中に浮遊する微粒
子からの散乱光を検出して粒子特性を測定する液中微粒
子測定装置において、微粒子測定領域に測定液の循環流
を形成することを特徴とする液中微粒子測定装置。 2)前記循環流は層流状であることを特徴とする特許請
求の範囲第1項に記載の液中微粒子装置。 3)循環流速を遅くし、粒子が1循環する間に十分変位
するようにしたことを特徴とする特許請求の範囲第1項
または第2項に記載の液中微粒子測定装置。
[Scope of Claims] 1) In an in-liquid particulate measurement device that measures particle characteristics by irradiating a laser beam into a fluid and detecting scattered light from particulates suspended in the liquid, a measurement liquid is placed in a particulate measurement area. An in-liquid particle measuring device characterized by forming a circulating flow of. 2) The submerged microparticle device according to claim 1, wherein the circulating flow is laminar. 3) The in-liquid particulate measuring device according to claim 1 or 2, characterized in that the circulation flow rate is slowed down so that the particles are sufficiently displaced during one circulation.
JP61171865A 1986-07-23 1986-07-23 Measuring instrument for corpuscle in liquid Pending JPS6329232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171865A JPS6329232A (en) 1986-07-23 1986-07-23 Measuring instrument for corpuscle in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171865A JPS6329232A (en) 1986-07-23 1986-07-23 Measuring instrument for corpuscle in liquid

Publications (1)

Publication Number Publication Date
JPS6329232A true JPS6329232A (en) 1988-02-06

Family

ID=15931220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171865A Pending JPS6329232A (en) 1986-07-23 1986-07-23 Measuring instrument for corpuscle in liquid

Country Status (1)

Country Link
JP (1) JPS6329232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369182A (en) * 2000-11-15 2002-05-22 Rusteck Ltd Optical detection of particles in a liquid medium
JP2018004506A (en) * 2016-07-05 2018-01-11 オルガノ株式会社 Device and method for observing particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586444A (en) * 1981-07-04 1983-01-14 Takeda Giyomou Kk Counting type concentration detecting method
JPS6056258B2 (en) * 1978-01-26 1985-12-09 アイシン精機株式会社 Air fuel ratio control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056258B2 (en) * 1978-01-26 1985-12-09 アイシン精機株式会社 Air fuel ratio control device
JPS586444A (en) * 1981-07-04 1983-01-14 Takeda Giyomou Kk Counting type concentration detecting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369182A (en) * 2000-11-15 2002-05-22 Rusteck Ltd Optical detection of particles in a liquid medium
EP1364202A2 (en) * 2000-11-15 2003-11-26 Rusteck Ltd. Optical detection of particles in a liquid medium
GB2369182B (en) * 2000-11-15 2004-12-08 Rusteck Ltd Optical detection of particles in a liquid medium
US7209231B2 (en) 2000-11-15 2007-04-24 Rusteck Ltd. Optical detection of particles in a liquid medium
JP2018004506A (en) * 2016-07-05 2018-01-11 オルガノ株式会社 Device and method for observing particles

Similar Documents

Publication Publication Date Title
JP3335645B2 (en) Particle detection system using non-viscous flow generating nozzle
US3946239A (en) Ellipsoidal cell flow system
JPH0355781B2 (en)
CA2059394A1 (en) Apparatus for performing assays using evanescent waves
JP2001504936A (en) Microfabricated diffusion-based chemical sensors
JPH07507877A (en) Measuring chamber for flow cytometer
US5030843A (en) Apparatus for measuring particles in liquid having a laminar flow condition
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
JPS6329232A (en) Measuring instrument for corpuscle in liquid
JPS6395341A (en) Measuring apparatus for fine particle in liquid
Gray et al. A new method for cell volume measurement based on volume exclusion of a fluorescent dye
US3765771A (en) Liquid borne particle sensing method using aerosolizing techniques
JPS6318242A (en) Measuring apparatus for fine particle in liquid
US4226532A (en) Device for granulometric analysis of particles in fluids
Meyer et al. Point and planar LIF for velocity-concentration correlations in a jet in cross flow
JPS61221633A (en) Flow cell and flow sight meter equipped with flow cell
JPH01140044A (en) Measuring method and apparatus for particulate in liquid
JPH01232235A (en) Flow cell for fine-particle measuring instrument
JP3265361B2 (en) Apparatus and method for measuring particles in liquid
RU2801784C1 (en) Method for control of content of mechanical impurities in aerosols and liquids and device of optical cell for its implementation
RU2812314C1 (en) Method for determining parameters of drops in non-stationary aerosol flow
JPS6396538A (en) Measuring instrument for submerged fine grain
JPS63103941A (en) Detecting method for rotary motion of flow
JPS6318244A (en) Method and apparatus for measuring fine particle in liquid
JPS63314443A (en) Measuring apparatus for fine particle in liquid