JPS6329212B2 - - Google Patents

Info

Publication number
JPS6329212B2
JPS6329212B2 JP57191615A JP19161582A JPS6329212B2 JP S6329212 B2 JPS6329212 B2 JP S6329212B2 JP 57191615 A JP57191615 A JP 57191615A JP 19161582 A JP19161582 A JP 19161582A JP S6329212 B2 JPS6329212 B2 JP S6329212B2
Authority
JP
Japan
Prior art keywords
steel plate
rust
amount
chromate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57191615A
Other languages
Japanese (ja)
Other versions
JPS5981542A (en
Inventor
Tsuyoshi Nishijima
Tetsunori Kaneishi
Yoshe Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP19161582A priority Critical patent/JPS5981542A/en
Publication of JPS5981542A publication Critical patent/JPS5981542A/en
Publication of JPS6329212B2 publication Critical patent/JPS6329212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、亜鉛メツキを施した上にクロメート
被膜を形成している防錆鋼板の上記クロメート被
膜の発光分光分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for emission spectroscopic analysis of a chromate coating on a rust-preventing steel sheet that is galvanized and has a chromate coating formed thereon.

(従来の技術) 最近、自動車のボデーは、防錆の面から、特に
腐蝕しやすい部分(例えば下回り)に亜鉛メツキ
鋼板よりなる防錆鋼板を使用し、該防錆鋼板の亜
鉛メツキ層と、塗装によつて該防錆鋼板上に形成
される塗膜との相乗作用により、耐蝕性を向上さ
せるようにしている。
(Prior Art) Recently, from the viewpoint of rust prevention, a rust-proof steel plate made of a galvanized steel plate is used in the parts that are particularly prone to corrosion (for example, the underbody) in the body of an automobile, and the galvanized layer of the rust-proof steel plate is Corrosion resistance is improved by a synergistic effect with the coating film formed on the rust-proof steel plate by painting.

ところが、ホワイトボデー時に上記防錆鋼板
と、該防錆鋼板の周囲の他の鋼板とに対し同一条
件で同時に化成処理を施すと、防錆鋼板上に過剰
に化成被膜が形成されて脆くなり、その結果、後
工程である塗装工程において上記化成被膜上に形
成される塗膜が剥離するという問題があつた。
However, if the above-mentioned rust-proof steel plate and other steel plates around the rust-proof steel plate are subjected to chemical conversion treatment under the same conditions at the same time when producing a white body, an excessive chemical conversion film is formed on the rust-proof steel plate, making it brittle. As a result, there was a problem in that the coating film formed on the chemical conversion film peeled off in the subsequent painting process.

このため、予め防錆鋼板上にCr−Znの酸化被
膜を形成するクロメート処理を施し、後工程であ
る化成処理における化成被膜の形成を抑制するこ
とにより、化成処理後防錆鋼板上と該防錆鋼板の
周囲の他の鋼板上とに均一な厚さの化成被膜を同
時形成し、防錆鋼板上への過剰な化成被膜の形成
による塗装後の塗膜の剥離を防止することが行わ
れていた。
For this reason, by performing chromate treatment to form a Cr-Zn oxide film on the rust-preventing steel sheet in advance and suppressing the formation of the chemical conversion film in the subsequent chemical conversion treatment, it is possible to A chemical conversion film of uniform thickness is simultaneously formed on the surrounding steel plates of the rust-preventing steel plate to prevent peeling of the paint film after painting due to the formation of an excessive chemical conversion film on the rust-preventing steel plate. was.

(発明が解決しようとする問題点) しかるに、この方法では、上記化成被膜の形成
を抑制する作用を確保するためには、クロメート
処理により形成されるクロメート被膜中のCr量
を所定値(クロメート被膜の層厚にしてオングス
トロームのレベル)以上に管理する必要がある。
このため、従来、X線検査法を用いた連続分析に
よりCr量を検査していたが、操作が繁雑である
上、Cr量が極めて少ないため感度が悪く正確な
検査ができないという欠点があつた。
(Problems to be Solved by the Invention) However, in this method, in order to ensure the effect of suppressing the formation of the chemical conversion film, it is necessary to increase the amount of Cr in the chromate film formed by the chromate treatment to a predetermined value (the amount of Cr in the chromate film formed by the chromate treatment). It is necessary to control the layer thickness to a level of 100 nm (Angstroms) or higher.
For this reason, the amount of Cr has conventionally been tested by continuous analysis using X-ray inspection, but this method is complicated and has the drawbacks of poor sensitivity and inability to perform accurate tests because the amount of Cr is extremely small. .

一方、金属試料の定量分析方法として、金属試
料の表面と電極との間でアークを発光させ、この
アーク(発光)の分光分析を行う発光分光分析方
法は周知である。
On the other hand, as a quantitative analysis method for a metal sample, an optical emission spectrometry method is well known in which an arc is emitted between the surface of the metal sample and an electrode, and the arc (emission) is spectroscopically analyzed.

しかし、上記のようにして発光分光分析しよう
とする場合、試料、発光条件等により、発光面積
が一定しないという問題がある。
However, when performing emission spectroscopic analysis as described above, there is a problem that the emission area is not constant depending on the sample, emission conditions, etc.

これに対し、全体的に略均一組成の一般的な金
属試料の場合は、例えば、予め実験的に求めた分
析しようとする特定金属元素の含有量と、この試
料においてベースとなる金属元素のスペクトル強
度と分析しようとする上記特定金属元素のスペク
トル強度との比との相関図を用いて、単位面積当
りの上記特定金属元素について定量分光分析する
ようにすれば、発光面積が一定しなくとも精度良
く分析できるものであつた。
On the other hand, in the case of a general metal sample with an almost uniform composition overall, for example, the content of the specific metal element to be analyzed that has been experimentally determined in advance, and the spectrum of the base metal element in this sample. If quantitative spectroscopic analysis is performed for the specific metal element per unit area using a correlation diagram between the intensity and the spectral intensity of the specific metal element to be analyzed, the accuracy can be improved even if the emission area is not constant. It was something that could be well analyzed.

しかしながら、クロメート被膜中のCrについ
ては、試料の測定面に存在するのは実質的にCr
のみであり、上記のように、同時にスペクトル強
度を測定できCrのスペクトル強度との相対的な
比により単位面積当りのCr量を算定し得るよう
な元素が存在せず、上記一般的な金属試料と同様
な方法により上記Cr量を求めることが不可能で
あつた。
However, regarding Cr in the chromate film, the Cr present on the measurement surface of the sample is essentially Cr.
As mentioned above, there is no element whose spectral intensity can be measured simultaneously and the amount of Cr per unit area can be calculated from the relative ratio to the spectral intensity of Cr. It was impossible to determine the above Cr content using a method similar to that described above.

しかし、発明者らは種々実験している中で、上
記発光分光分析方法を用い、クロメート処理を施
した亜鉛メツキ鋼板よりなる防錆鋼板上に放電面
積を特定する措置をした後放電を行つて分光分析
すると、発光面積が一定となり、かつ第4図に示
す如くスペクトル強度とCr量とが高精度に相関
するという特性を知見し、この特性を利用してク
ロメート被膜中のCr量を簡単かつ迅速な操作に
より高感度で定量分析する分析方法を提供するこ
とを目的とするものである。
However, while conducting various experiments, the inventors conducted a discharge after taking steps to specify the discharge area on a rust-proof steel plate made of a chromate-treated galvanized steel plate using the above-mentioned emission spectroscopic analysis method. Through spectroscopic analysis, we found that the emission area is constant and that the spectral intensity and Cr content correlate with high accuracy as shown in Figure 4.Using this property, we can easily and easily determine the Cr content in the chromate coating. The purpose of this invention is to provide an analysis method that performs quantitative analysis with high sensitivity through rapid operation.

(問題点を解決するための手段) この目的を達成するため、本発明の分析方法の
構成は、亜鉛メツキを施した上にクロメート被膜
を形成している防錆鋼板の上記クロメート被膜の
発光分光分析方法であつて、クロメート被膜を施
している鋼板面を、放電面積を一定に保つ放電面
積規定手段を介して分光分析し、得られたスペク
トルの全積分強度から予め実験的に求めたCr付
着量との相関図を用いて上記鋼板面の単位面積当
りの付着Cr量を算定するようにしたもので、こ
れにより、クロメート被膜中のCr量の管理を簡
易かつ高精度に行い得るようにしたものである。
(Means for Solving the Problems) In order to achieve this object, the structure of the analysis method of the present invention is to analyze the luminescence spectroscopy of the chromate coating of a rust-preventing steel sheet that is galvanized and has a chromate coating formed thereon. This is an analysis method in which the surface of a steel plate coated with a chromate film is spectroscopically analyzed using a discharge area defining means that keeps the discharge area constant, and the Cr adhesion is experimentally determined in advance from the total integrated intensity of the obtained spectrum. The amount of Cr deposited per unit area of the steel sheet surface is calculated using the correlation diagram with the amount of chromate.This allows the amount of Cr in the chromate film to be managed easily and with high precision. It is something.

(実施例) 以下、本発明の実施例について詳細に説明す
る。
(Example) Examples of the present invention will be described in detail below.

先ず、第1図に示すように、亜鉛メツキを施し
た上にクロメート被膜を形成している防錆鋼板1
の鋼板面に、放電面積を一定に保つ放電面積規制
手段としての接着テープ2を貼付する。該接着テ
ープ2は、フツ素樹脂等の電気絶縁性および耐熱
性に優れた素材からなるものであり、央部に開口
された切抜き部2aにより防錆鋼板1の鋼板面に
放電面3を区画するとともに、該放電面3周囲の
鋼板面を電気的に絶縁するものである。
First, as shown in Fig. 1, a rust-proof steel plate 1 which is galvanized and has a chromate coating formed thereon.
An adhesive tape 2 is attached to the surface of the steel plate as a discharge area regulating means for keeping the discharge area constant. The adhesive tape 2 is made of a material with excellent electrical insulation and heat resistance, such as fluororesin, and has a cutout 2a opened in the center to define a discharge surface 3 on the steel plate surface of the rust-proof steel plate 1. At the same time, the steel plate surface around the discharge surface 3 is electrically insulated.

尚、上記放電面積規制手段としては、第2図に
示すように、防錆鋼板1の鋼板面の放電面3周囲
に、電気的に不導体であるセラミツク粉4等を塗
布してもよく、また、第3図に示すように、防錆
鋼板1の鋼板面の放電面3を、電気的に不導体で
あるセラミツクまたはベークライト等からなる円
筒状の絶縁チツプ5で覆うようにしてもよい。
In addition, as the discharge area regulating means, as shown in FIG. 2, ceramic powder 4 or the like, which is an electrically non-conductor, may be applied around the discharge surface 3 of the steel plate surface of the rust-preventing steel plate 1. Further, as shown in FIG. 3, the discharge surface 3 of the steel plate surface of the rust-proof steel plate 1 may be covered with a cylindrical insulating chip 5 made of electrically non-conducting material such as ceramic or Bakelite.

この場合、放電面3を他の鋼板面から区画した
のは、クロメート被膜中のCr量は、防錆鋼板の
単位面積当りに付着するCr量で表わされるので、
発光放電面積を一定とするためで、その面積内の
全Crを発光放電させる必要があるためである。
In this case, the reason why the discharge surface 3 was separated from other steel plate surfaces is because the amount of Cr in the chromate film is expressed as the amount of Cr attached per unit area of the rust-preventing steel plate.
This is to keep the light emitting discharge area constant, and it is necessary to cause all Cr within that area to undergo light emitting discharge.

しかる後、上記防錆鋼板1の放電面3上に電極
を対向して設け、該電極と放電面3との間に電圧
をかけて発光放電を行わせる。この発光放電によ
る光を分光分析し、得られたスペクトルの全積分
強度から、第4図に示す予め実験的に求めたスペ
クトル強度とCr付着量との相関図を用いて上記
防錆鋼板1の単位面積当りの付着Cr量を算定す
る。
Thereafter, electrodes are provided facing each other on the discharge surface 3 of the rust-proof steel plate 1, and a voltage is applied between the electrodes and the discharge surface 3 to cause a light-emitting discharge. The light generated by this luminescent discharge was spectroscopically analyzed, and from the total integrated intensity of the obtained spectrum, the correlation diagram between the spectral intensity and the amount of Cr deposited experimentally determined in advance as shown in FIG. Calculate the amount of Cr deposited per unit area.

ここで、上記スペクトル強度とCr付着量との
相関図は、次のようにして求める。まず。標準
Cr溶液として、CrO3(無水クロム酸)9.62gおよ
び硫酸1.5gを純水に溶解し、1の溶液とする。
そして、この溶液より2ml、10ml、20ml、80mlを
分取し、それぞれ100mlのメスフラスコに取り、
該各フラスコにエチルアルコール50mlを加えた
後、全量が100mlとなるように純水を加える。つ
ぎに、上記各フラスコの溶液からマイクロシリン
ジを用いてそれぞれ1μを取り、防錆鋼板上の
予め規定した放電面積範囲内に塗布する。ここで
塗布されたCr量はそれぞれ0.1μg、0.5μg、1.0μ
g、1.5μgに相当する。このようにして溶液を塗
布された防錆鋼板1を電極を用いて発光放電さ
せ、その光を分光分析して得られたスペクトルの
全積分強度を単位面積当りの付着量に換算した各
Cr量に対してグラフに表わすと相関図としての
第4図に示す検量線が求められる。
Here, the correlation diagram between the spectral intensity and the amount of Cr deposited is determined as follows. first. standard
As a Cr solution, 9.62 g of CrO 3 (chromic anhydride) and 1.5 g of sulfuric acid are dissolved in pure water to prepare a solution of 1.
Then, extract 2 ml, 10 ml, 20 ml, and 80 ml from this solution and place them in 100 ml volumetric flasks.
After adding 50 ml of ethyl alcohol to each flask, add pure water to make the total volume 100 ml. Next, use a microsyringe to take a 1 μm amount from each of the solutions in each flask and apply them within a predefined discharge area range on a rust-preventing steel plate. The amount of Cr applied here is 0.1 μg, 0.5 μg, and 1.0 μg, respectively.
g, corresponding to 1.5 μg. The rust-preventing steel plate 1 coated with the solution in this manner was subjected to a luminescent discharge using an electrode, and the total integrated intensity of the spectrum obtained by spectrally analyzing the light was converted into the amount of adhesion per unit area.
When expressed in a graph against the Cr content, a calibration curve shown in FIG. 4 as a correlation diagram is obtained.

このようにして算定された付着Cr量により、
クロメート被膜の形成状態の良否を判別する。こ
の良否の判別の基準値としてのCr量は15mg/m2
とし、この値以上であればクロメート被膜による
化成被膜の形成を抑制する作用が実用上充分であ
ると判断する。
Based on the amount of deposited Cr calculated in this way,
Determine the quality of the chromate film formation. The amount of Cr used as the standard value for determining whether this is good or bad is 15 mg/m 2
If it is above this value, it is judged that the effect of suppressing the formation of a chemical conversion film by a chromate film is practically sufficient.

(発明の効果) 以上述べたように、本発明の分析方法によれ
ば、亜鉛メツキを施した上にクロメート被膜を形
成している防錆鋼板の鋼板面を、放電面積を一定
に保つ放電面積規制手段を介して分光分析し、得
られたスペクトルの全積分強度から予め実験的に
求めたCr付着量との相関図を用いて上記鋼板面
の単位面積当りの付着Cr量を算定するものであ
るので、簡単かつ迅速に行なえる操作により、
Cr量が極めて少ないクロメート被膜であつても
高感度でその定量分析を行うことができるという
優れた効果を奏するものである。
(Effects of the Invention) As described above, according to the analysis method of the present invention, the surface of a rust-preventing steel plate that is galvanized and has a chromate film formed thereon can be used to maintain a constant discharge area. This method calculates the amount of deposited Cr per unit area of the steel plate surface using a correlation diagram with the amount of Cr deposited experimentally determined in advance from the total integrated intensity of the obtained spectrum by performing spectroscopic analysis through a regulating means. With easy and quick operations,
This method has the excellent effect of being able to perform quantitative analysis with high sensitivity even for chromate coatings with extremely low Cr content.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の方法におけ
る防錆鋼板の放電面形成方法の一例を示す説明
図、第4図は実験的に求められたCr付着量とス
ペクトル強度との相関図である。 1……防錆鋼板、2……接着テープ、3……放
電面、4……セラミツク粉、5……絶縁チツプ。
Figures 1 to 3 are explanatory diagrams showing an example of the method of forming a discharge surface of a rust-proof steel plate according to the method of the present invention, and Figure 4 is a correlation diagram between the experimentally determined Cr deposition amount and spectral intensity. be. 1... Rust-proof steel plate, 2... Adhesive tape, 3... Discharge surface, 4... Ceramic powder, 5... Insulating chip.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛メツキを施した上にクロメート被膜を形
成している防錆鋼板の上記クロメート被膜の発光
分光分析方法であつて、クロメート被膜を施して
いる鋼板面を、放電面積を一定に保つ放電面積規
制手段を介して分光分析し、得られたスペクトル
の全積分強度から予め実験的に求めたCr付着量
との相関図を用いて上記鋼板面の単位面積当りの
付着Cr量を算定するようにしたことを特徴とす
る防錆鋼板におけるクロメート被膜の発光分光分
析方法。
1. A method for emission spectroscopic analysis of a chromate film on a galvanized steel plate with a chromate film formed thereon, which method involves regulating the discharge area to keep the discharge area constant on the surface of the steel plate on which the chromate film is applied. The amount of deposited Cr per unit area of the steel sheet surface was calculated using a correlation diagram between the total integrated intensity of the obtained spectrum and the amount of Cr deposit determined experimentally in advance. A method for optical emission spectroscopic analysis of a chromate film on a rust-proof steel plate, characterized in that:
JP19161582A 1982-10-30 1982-10-30 Emission spectrochemical analyzing method of chromate- coated film in rust preventive steel sheet Granted JPS5981542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19161582A JPS5981542A (en) 1982-10-30 1982-10-30 Emission spectrochemical analyzing method of chromate- coated film in rust preventive steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19161582A JPS5981542A (en) 1982-10-30 1982-10-30 Emission spectrochemical analyzing method of chromate- coated film in rust preventive steel sheet

Publications (2)

Publication Number Publication Date
JPS5981542A JPS5981542A (en) 1984-05-11
JPS6329212B2 true JPS6329212B2 (en) 1988-06-13

Family

ID=16277576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19161582A Granted JPS5981542A (en) 1982-10-30 1982-10-30 Emission spectrochemical analyzing method of chromate- coated film in rust preventive steel sheet

Country Status (1)

Country Link
JP (1) JPS5981542A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118094A (en) * 1977-03-24 1978-10-16 Nippon Steel Corp Moving type emission spectroanalyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118094A (en) * 1977-03-24 1978-10-16 Nippon Steel Corp Moving type emission spectroanalyzer

Also Published As

Publication number Publication date
JPS5981542A (en) 1984-05-11

Similar Documents

Publication Publication Date Title
Zhang et al. Characterization of chromate conversion coatings on zinc using XPS and SKPFM
US20040023046A1 (en) Carrier substrate for Raman spectrometric analysis
Payling et al. Quantitative analysis with dc‐and rf‐glow discharge spectrometry
Litvinov et al. Development of pinhole-free amorphous aluminum oxide protective layers for biomedical device applications
Kern et al. Electrochemical impedance spectroscopy as a tool for investigating the quality and performance of coated food cans
JPS6329212B2 (en)
Muñiz et al. Evaluation of different strategies for quantitative depth profile analysis of Cu/NiCu layers and multilayers via pulsed glow discharge–time of flight mass spectrometry
US7646846B2 (en) Method for evaluating press-formability of galvanized steel sheet
CN106501120B (en) A kind of rapid detection method of hot-dip galvanized alloy steel plate dusting
Xhoffer et al. Application of glow discharge optical emission spectrometry in the steel industry
CN114324431A (en) Method for testing film weight of chromium-free passive film of color-coated plate
Peláez et al. Quantitative depth profile analysis by direct current glow discharge time of flight mass spectrometry
CN105627937B (en) Method for measuring single-layer film thickness of white paint plate paint film by glow discharge spectrometry
KR100348065B1 (en) Method of measuring plating amount and alloying degree using fluorescence X-ray
JP2803982B2 (en) Quantitative method of glow discharge emission spectrometry
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
CN110294993A (en) Mirror surface back coating constituent
Fernández et al. In-depth profile analysis of thin films deposited on non-conducting glasses by radiofrequency glow-discharge–optical emission spectrometry
CN117907562B (en) Method for simultaneously detecting contents of multiple elements in coating
Bengtson et al. Glow Discharge Optical Emission Spectrometry–Activities and Opportunities in the Field of Depth Profile Analysis
JPS60203838A (en) Analysis of plated surface by glow discharge emission spectroscopic analysis
KR19980044273A (en) Iron content measurement method of alloyed hot dip galvanized layer
JP2005351687A (en) Evaluation method for press workability of zinc base-plated steel iron
JP2672929B2 (en) Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry
JPS6227651A (en) Quantitative analysis method of double-layered type alloy plated plate