JP2803982B2 - Quantitative method of glow discharge emission spectrometry - Google Patents

Quantitative method of glow discharge emission spectrometry

Info

Publication number
JP2803982B2
JP2803982B2 JP24553293A JP24553293A JP2803982B2 JP 2803982 B2 JP2803982 B2 JP 2803982B2 JP 24553293 A JP24553293 A JP 24553293A JP 24553293 A JP24553293 A JP 24553293A JP 2803982 B2 JP2803982 B2 JP 2803982B2
Authority
JP
Japan
Prior art keywords
emission
mol
discharge
atomic fraction
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24553293A
Other languages
Japanese (ja)
Other versions
JPH07103898A (en
Inventor
鈴木  茂
修一 山崎
堅市 鈴木
薫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24553293A priority Critical patent/JP2803982B2/en
Publication of JPH07103898A publication Critical patent/JPH07103898A/en
Application granted granted Critical
Publication of JP2803982B2 publication Critical patent/JP2803982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多元系の元素からなる
材料の組成分析および表面からの深さ方向分析を行うた
めのグロー放電発光分光分析の定量方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitative analysis of glow discharge emission spectroscopy for analyzing the composition of a material composed of multi-elements and analyzing the depth direction from the surface.

【0002】[0002]

【従来の技術】グロー放電発光分光分析は、比較的平滑
な材料表面から深さ方向への元素の分布について調べる
方法である。工業的には、種々の鋼板などの合金の表層
における元素の深さ方向への分析など、金属性の薄い板
の評価に対するこの分析方法の応用範囲はきわめて広
い。
2. Description of the Related Art Glow discharge optical emission spectroscopy is a method for examining the distribution of elements in a depth direction from a relatively smooth material surface. Industrially, this analysis method has a very wide application range for evaluating thin metallic plates, such as analysis of elements in the depth direction of the surface layer of alloys such as various steel plates.

【0003】グロー放電発光分光分析では、通常試料を
陰極とし放電管の中の電極を陽極とし、放電管を真空に
排気後、その中に数Torrの不活性ガスを導入し陰極と陽
極間に高電圧を加え、生じるグロー放電で発生する光を
分光器で検出する。その際、グロー放電の時間に対し
て、いくつかの元素からの特定波長の光の強度を測定
し、データとする。放電を起こさせるときの電極間の電
圧の加え方によって、通常定電圧法(電圧一定)および
定電流法(電流一定)がある。
In glow discharge emission spectroscopy, usually, a sample is used as a cathode, an electrode in a discharge tube is used as an anode, and the discharge tube is evacuated to a vacuum. A high voltage is applied, and light generated by the generated glow discharge is detected by a spectroscope. At this time, the intensity of light of a specific wavelength from several elements is measured with respect to the time of the glow discharge and used as data. There are usually a constant voltage method (constant voltage) and a constant current method (constant current) depending on how to apply a voltage between electrodes when causing discharge.

【0004】さらに、これらのデータから定量的な組成
を算出する方法としてはいくつかの方法が提案されてい
る。たとえば、ある元素の波長mの発光強度Im を次の
式で表す。 Im =km ・cA ・CQM・i2 ・(U−Uo x 〔7〕 ここで、km は装置などに関する因子、cA は元素Aの
濃度、CQMはマトリックスに関係した定数、iは電流、
o はスパッタリングのしきい値電圧、Xは実験的に求
める指数である。この関係における定数をいくつかの元
素に対し求め、それらの定数を用いて未知の組成を有す
る試料の濃度を求める方法がある。これらの方法は、た
とえば Spectrochimica, Acta, 40B巻,1985年, 631頁
に書かれている。
Further, several methods have been proposed for calculating a quantitative composition from these data. For example, representative of the emission intensity I m wavelength m of a certain element by the following equation. I m = k m · c A · C QM · i 2 · (U-U o) x [7] Here, k m is the concentration of the factors for such devices, c A the element A, C QM is related to the matrix Constant, i is the current,
Uo is a threshold voltage of sputtering, and X is an index obtained experimentally. There is a method in which a constant in this relationship is obtained for some elements, and the concentration of a sample having an unknown composition is obtained using those constants. These methods are described, for example, in Spectrochimica, Acta, Volume 40B, 1985, p. 631.

【0005】一方、定電圧のグロー放電の条件下でのス
パッター速度をv(g・s-1)、ある元素の発光強度を
m 、濃度をci (重量分率)としたとき、標準試料を
用いて有効な発光収率Ri を Ri =Im /ci i 〔8〕 のように求め、未知の組成の試料のある時間にスパッタ
ーされる重量Wi をIi/Ri なる関係から求め、濃度
i
On the other hand, the sputter rate under conditions glow discharge constant voltage v (g · s -1), when the emission intensity of a certain element I m, the concentration of c i (weight fraction), a standard Using the sample, the effective luminescence yield R i is obtained as R i = I m / c i v i [8], and the weight W i sputtered at a certain time of the sample having the unknown composition is I i / R i made determined from the relationship, the concentration c i

【数7】 から求める方法もある。これらの方法は、たとえば鉄と
鋼73巻,1987年,565頁などに示されている。
(Equation 7) There is also a method to obtain from. These methods are described in, for example, Vol. 73 of Iron and Steel, 1987, p.565.

【0006】[0006]

【発明が解決しようとする課題】従来のグロー放電発光
分光分析の定量方法においては、必ずしもグロー放電の
基本的な特性を考慮して、定量が行われていない。その
ため、定量化に曖昧な点があり、定量性が必ずしも優れ
ていない。
In the conventional quantification method for glow discharge emission spectroscopy, quantification is not always performed in consideration of the basic characteristics of glow discharge. Therefore, there is an ambiguous point in the quantification, and the quantification is not always excellent.

【0007】たとえば、式〔7〕に基づく定量方法で
は、それぞれのパラメーターを一定の測定条件下で求め
なければならず、求めたパラメーターの内容は必ずしも
明らかでない。そのため、いろいろな組成の試料に対し
て、この方法を適用するには問題があり、この方法は汎
用性に乏しい。一方、式
For example, in the quantification method based on the formula [7], each parameter must be determined under certain measurement conditions, and the content of the determined parameter is not always clear. Therefore, there is a problem in applying this method to samples having various compositions, and this method is poor in versatility. On the other hand, the expression

〔9〕の有効な発光収率に基づ
く方法では、発光強度を濃度とスパッター速度で規格化
しているが、定電圧での放電中の電流の変化などの補正
が行われていない。したがって、この定量方法において
も不明瞭な点がある。
In the method based on the effective luminous yield of [9], the luminous intensity is normalized by the concentration and the sputter rate, but the correction of the change in the current during the discharge at a constant voltage is not performed. Therefore, there is an unclear point in this quantification method.

【0008】本発明は、これらのグロー放電発光分光分
析の定量方法において、合金のバルク濃度および合金の
表面からの深さ方向への濃度分布の定量性に優れた定量
方法を提供することを目的としている。
It is an object of the present invention to provide a method for determining the bulk concentration of an alloy and the concentration distribution in the depth direction from the surface of the alloy in these methods for glow discharge emission spectrometry. And

【0009】[0009]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、グロー放電発光分光分析において、原
子分率fS i の元素i(i=1〜n)を有する標準試料
Sを定電流モードでスパッターし、前記元素iのスペク
トル線mの発光強度がImS i 、スパッター速度がv(mol
・s-1)であるとき、前記元素iの有効な発光収率Rm
i (s・ mol-1)をImS i /vfS i で与え、前記スパ
ッター条件下での前記元素iの固体純物質の放電電圧を
S i (V)とし、次に測定試料Xを前記スパッター条
件下でスパッターするときの前記元素iの発光強度がI
mX i であるとき、前記測定試料中の前記元素iの原子分
率fx i を〔1〕式から求めることを特徴とするグロー
放電発光分光分析の定量方法、
Means for Solving the Problems The present invention, in order to solve the above problems, in the glow discharge emission spectroscopic analysis, the standard sample S including the element i (i = 1~n) atomic fraction f S i Is sputtered in a constant current mode, the emission intensity of the spectral line m of the element i is ImS i , and the sputtering speed is v (mol
· S -1 ), the effective luminescence yield R m of the element i
i a (s · mol -1) given by I mS i / vf S i, the discharge voltage of a solid pure substance of the element i in the sputtering conditions and V S i (V), then the measurement sample X The emission intensity of the element i when sputtering under the sputtering conditions is I
When a mX i, quantitative method of glow discharge optical emission spectrometry and obtains the atomic fraction f x i of the element i of the measurement sample from (1) formula,

【数8】 (Equation 8)

【0010】および、グロー放電発光分光分析におい
て、原子分率fS i の元素i(i=1〜n)を有する標
準試料Sを定電流モードでスパッターし、前記元素iの
スペクトル線mの発光強度がImS i 、スパッター速度が
v(mol・s-1)であるとき、前記元素iの有効な発光収
率Rm i (s・ mol-1)をImS i /vfS i で与え、前
記スパッター条件下での前記元素iの固体純物質の放電
電圧をVS i (V)とし、次に測定試料Xを前記スパッ
ター条件下で時間Δtk (s)(k=1〜p)ずつスパ
ッターするときの前記元素iの発光強度がImXk i
電電圧がVXk(V)であるとき、前記測定試料中の前記
元素iの原子分率fxk i を〔2〕式から求め、さらに前
記元素iの純物質の固体状態での密度をρi (g・
-3)、原子量をMi (g・ mol-1)、放電面積をA
(m2 )とするとき、前記時間Δtk (s)でのスパッ
ター深さΔdk (m)を〔3〕式から求めることによっ
て、前記測定試料の表面からの深さ
[0010] and, in a glow discharge emission spectroscopic analysis, the standard sample S having an atomic fraction f S i of the elements i (i = 1 to n) is sputtered in a constant current mode, the emission spectral lines m of the element i intensity I mS i, when sputtering speed is v (mol · s -1), the effective light emission yield of elements i R m i a (s · mol -1) given by I mS i / vf S i the discharge voltage of the solid pure substance of the element i in the sputtering conditions and V S i (V), then at the sputtering conditions of a measurement sample X time Δt k (s) (k = 1~p) When the emission intensity of the element i and the discharge voltage at the time of sputtering are I mXk i and V Xk (V), respectively, the atomic fraction f xk i of the element i in the measurement sample is obtained from the equation (2). Ρ i (g · g)
m −3 ), atomic weight M i (g · mol −1 ), discharge area A
(M 2 ), the sputter depth Δd k (m) at the time Δt k (s) is obtained from the equation [3] to obtain the depth from the surface of the measurement sample.

【数9】 における原子分率fxp i を求めることを特徴とするグロ
ー放電発光分光分析の定量方法、
(Equation 9) Determination method of glow discharge optical emission spectrometry and obtains the atomic fraction f xp i in,

【数10】 (Equation 10)

【0011】および、グロー放電発光分光分析におい
て、原子分率fS i の元素i(i=1〜n)を有する標
準試料Sを定電圧モードでスパッターし、前記元素iの
スペクトル線mの発光強度がImS i 、スパッター速度が
v(mol・s-1)であるとき、前記元素iの有効な発光収
率Rm i (s・ mol-1)をImS i /vfS i で与え、前
記スパッター条件下での前記元素iの固体純物質の放電
電流をiS i (A)とし、前記有効発光収率の放電電流
依存性をaiS i +b(aとbは定数)で表し、次に測
定試料Xを前記スパッター条件下でスパッターするとき
の発光強度がImX i あるとき、前記測定試料中の元素
iの原子分率fx i を〔4〕式から求めることを特徴と
するグロー放電発光分光分析の定量方法、
[0011] and, in a glow discharge emission spectroscopic analysis, the standard sample S having an atomic fraction f S i of the elements i (i = 1 to n) is sputtered at a constant voltage mode, the emission spectral lines m of the element i intensity I mS i, when sputtering speed is v (mol · s -1), the effective light emission yield of elements i R m i a (s · mol -1) given by I mS i / vf S i , a discharge current of a solid pure substance of the element i in the sputtering conditions as i S i (a), the discharge current dependence of the effective emission yield ai S i + b (a and b are constants) expressed in the next time the emission intensity at the time of sputtering the sample X in the sputtering conditions are I mX i, wherein the determination of the atomic fraction f x i of the elements i of the measurement sample from [4] formula Glow discharge emission spectrometry quantitative method,

【数11】 [Equation 11]

【0012】および、グロー放電発光分光分析におい
て、原子分率fS i の元素i(i=1〜n)を有する標
準試料Sを定電圧モードでスパッターし、前記元素iの
スペクトル線mの発光強度がImS i 、スパッター速度が
v(mol・s-1)であるとき、前記元素iの有効な発光収
率Rm i (s・ mol-1)をImS i /vfS i で与え、前
記スパッター条件下での前記元素iの固体純物質の放電
電流をiS i (A)とし、前記有効発光収率の放電電流
依存性をai S i +bi (ai とbi は定数)で表
し、次に測定試料Xを前記スパッター条件下で時間Δt
k (s)(k=1〜p)ずつスパッターするときの前記
元素iの発光強度がImXk i 、放電電流がiXk(A)で
あるとき、前記測定試料中の前記元素iの原子分率fxk
i を〔5〕式から求め、さらに前記元素iの純物質の固
体状態での密度をρi (g・m-3)、原子量をMi (g
・ mol-1)、放電面積をA(m2 )とするとき、前記時
間Δtk(s)でのスパッター深さΔdk (m)を
〔6〕式から求めることによって、前記測定試料の表面
からの深さ
In the glow discharge emission spectroscopy, a standard sample S having an element i (i = 1 to n) having an atomic fraction f S i is sputtered in a constant voltage mode to emit light of a spectrum line m of the element i. intensity I mS i, when sputtering speed is v (mol · s -1), the effective light emission yield of elements i R m i a (s · mol -1) given by I mS i / vf S i , a discharge current of a solid pure substance of the element i in the sputtering conditions as i S i (a), the discharge current dependence of the effective emission yield a i i S i + b i (a i and b i Is a constant), and then the measurement sample X is subjected to the time Δt under the sputtering conditions.
k (s) (k = 1~p ) emission intensity of the element i at the time of sputtering by the I MXK i, when the discharge current is i Xk (A), atomic content of the element i of the measurement sample Rate f xk
i is obtained from the equation [5], and the density of the pure substance of the element i in the solid state is ρ i (g · m −3 ), and the atomic weight is M i (g
Mol −1 ) and the discharge area is A (m 2 ), the sputter depth Δd k (m) at the time Δt k (s) is obtained from the equation [6], thereby obtaining the surface of the measurement sample. Depth from

【数12】 における原子分率fxp i を求めることを特徴とするグロ
ー放電発光分光分析の定量方法、
(Equation 12) Determination method of glow discharge optical emission spectrometry and obtains the atomic fraction f xp i in,

【数13】 を提供する。(Equation 13) I will provide a.

【0013】[0013]

【作用】本発明の定量方法の作用について説明する。ま
ず、定電流モードでスパッターする場合について述べ
る。標準試料Sがn種類の元素からなっており、各元素
i(i=1〜n)の原子分率をfS i とする。標準試料
に含まれる元素の種類はnより少なくても良く、そのと
きは複数の標準試料に含まれるそれぞれの元素に注目し
て測定すれば良い。ガス圧などの測定条件を一定にし
て、標準試料Sを定電流でスパッターしたとき、各元素
iのスペクトル線mの発光強度がImS i 、そしてスパッ
ター速度がv(mol・s-1)であるとする。また、元素i
の固体純物質の放電電圧がVS i (V)であるとする。
固体純物質が得られないときは、標準試料の放電電圧の
組成依存性から固体純物質に放電電圧を外押して、見か
けの放電電圧を求めても良い。スパッター速度vは試料
の組成に依存するが、次のような元素iの有効な発光収
率Rm i (s・ mol-1)を用いると、その効果は有効な
発光収率に含めることができる。 Rm i =ImS i /vi S i 〔10〕 で与える。
The operation of the quantification method of the present invention will be described. First, the case of sputtering in the constant current mode will be described. Standard sample S are made of n kinds of elements, the atomic fraction of each element i (i = 1~n) and f S i. The number of types of elements included in the standard sample may be less than n, and in that case, the measurement may be performed by focusing on each element included in the plurality of standard samples. When the standard sample S is sputtered at a constant current with the measurement conditions such as the gas pressure kept constant, the emission intensity of the spectral line m of each element i is ImS i , and the sputtering speed is v (mol · s −1 ). Suppose there is. Element i
Is assumed to be V S i (V).
When a solid solid substance cannot be obtained, the apparent discharge voltage may be obtained by externally applying the discharge voltage to the solid pure substance from the composition dependency of the discharge voltage of the standard sample. Sputter velocity v depends on the composition of the sample, but the use of effective emission yields R m i (s · mol -1 ) of the element i as follows, that the effect is to include in the active emission yield it can. Given by R m i = I mS i / v i f S i [10].

【0014】次にn種類の元素よりなる測定試料Xを定
電流モードでスパッターしたときの元素iの発光強度が
mX i 、放電電圧がVX (V)であったとき、本発明で
は測定試料中の元素iの原子分率fx i
In the present invention, when the emission intensity of the element i is I mX i and the discharge voltage is V X (V) when the measurement sample X composed of n kinds of elements is sputtered in the constant current mode, the measurement is carried out in the present invention. the atomic fraction f x i of the element i in the sample

【数14】 のような関係から求める。定電流モードでは有効な発光
収率は電圧依存性を示し、そのための補正が必要である
が、〔1〕式を用いることによってその補正がなされ
る。
[Equation 14] Find from such a relationship. In the constant current mode, the effective light emission yield shows voltage dependence, and a correction for that is necessary. The correction is made by using the equation (1).

【0015】さらに、深さ方向への定量すなわち各スパ
ッター段階での組成と深さは次のようにして行う。測定
試料Xを定電流モードでスパッターしたときの時間Δt
k (s)(k=1〜p)ずつスパッターしたときの前記
元素iの発光強度がImXk i、放電電圧がVxk(V)で
あるとする。各スパッター段階での元素iの原子分率f
Xk i
Further, the quantitative determination in the depth direction, that is, the composition and the depth at each sputtering stage is performed as follows. Time Δt when measuring sample X was sputtered in constant current mode
k (s) (k = 1~p ) by the emission intensity of the element i at the time of spatter I MXK i, the discharge voltage is assumed to be V xk (V). Atomic fraction f of element i at each sputtering stage
The Xk i

【数15】 なる値から求め、組成を決定することができる。さらに
元素iの純物質の固体状態での密度をρi (g・
-3)、原子量をMi (g・ mol-1)、放電面積をA
(m2 )としたとき、時間Δtk (s)でのスパッター
深さΔdk (m)を
(Equation 15) The composition can be determined from the following values. Further, the density of the pure substance of element i in the solid state is ρ i (g ·
m −3 ), atomic weight M i (g · mol −1 ), discharge area A
(M 2 ), the sputtering depth Δd k (m) at time Δt k (s) is

【数16】 なる値から求め、スパッターによる有効な深さを求め
る。これらの手順によって、測定試料の表面からの深さ
と組成(原子分率)の関係を求めることができる。
(Equation 16) From this value, an effective depth by sputtering is obtained. According to these procedures, the relationship between the depth from the surface of the measurement sample and the composition (atomic fraction) can be obtained.

【0016】一方、定電圧モードでスパッターする場合
について述べる。標準試料Sが定電流の場合と同様に種
類の元素からなっており、各元素i(i=1〜n)の原
子分率をfS i とする。ガス圧などの測定条件を一定に
して、標準試料Sを定電圧でスパッターしたとき、各元
素iのスペクトル線mの発光強度がIms i 、そしてスパ
ッター速度がv(mol・s-1)であるとする。元素iの放
電電流iS i (A)は標準試料の組成に依存するので、
各元素の固体純物質相当の放電電流iS i を固体純物質
の放電電流から求めるか、放電電流の組成依存性から固
体純物質の放電電流を外挿して求める。元素iの有効な
発光収率Rm i (s・ mol-1)を、定電流モードの場合
と同様に、次のようにして求める。 Rm i =ImS i /vi S i 〔10〕 さらに、この有効発光収率の放電電流に伴う変化を僅か
にガス圧を変えることによって求め、有効発光収率の放
電電流依存性を次のように表す。 Rm i =ai S i +bi 〔11〕 ここで、ai とbi は定数である。
On the other hand, the case of sputtering in the constant voltage mode will be described. If the standard sample S is a constant current and has become a kind of element in the same manner, the atomic fraction of each element i (i = 1~n) and f S i. And constant measurement conditions such as gas pressure, when the sputter a standard sample S at a constant voltage, the emission intensity of the spectral line m is I ms i of each element i, and sputter rate v (mol · s -1) Suppose there is. Since the discharge current i S i (A) of element i depends on the composition of the standard sample,
The discharge current i S i of solid pure substance equivalent of each element or determined from the discharge current of a solid pure substance is obtained by extrapolating the discharge current of a solid pure substance from the composition dependency of the discharge current. Effective emission yields R m i (s · mol -1 ) of the element i, as in the constant current mode is determined as follows. R m i = I mS i / v i f S i [10] Further, the change of the effective emission yield with the discharge current is determined by slightly changing the gas pressure, and the dependence of the effective emission yield on the discharge current is determined. It is expressed as follows. R m i = a i i S i + b i [11] Here, a i and b i are constants.

【0017】次に測定試料Xを定電圧モードでスパッタ
ーとしたときの発光強度がImX i 、放電電圧がV
X (V)であったとき、本発明では測定試料中の元素i
の原子分率fx i
Next, when the measurement sample X is sputtered in the constant voltage mode, the emission intensity is Im x i , and the discharge voltage is V
When X (V), the present invention uses the element i in the measurement sample.
The atomic fraction f x i of

【数17】 のような関係から求める。定電圧モードでは有効な発光
収率は電流依存性を示し、そのための補正が必要である
が〔10〕式を用いることによってその補正がなされ
る。
[Equation 17] Find from such a relationship. In the constant voltage mode, the effective light emission yield shows current dependence, and a correction for that is necessary, but the correction is made by using equation [10].

【0018】さらに、深さ方向への定量すなわち各スパ
ッター段階での組成と深さは次のようにして行う。測定
試料Xを定電圧モードでスパッターしたときの時間
Further, the quantitative determination in the depth direction, that is, the composition and the depth at each sputtering stage is performed as follows. Time when sample X was sputtered in constant voltage mode

【数18】 ずつ連続的にスパッターしたときの発光強度が
mXk i 、放電電流がiXk(A)、測定試料中の元素i
の原子分率fxk i
(Equation 18) The emission intensity when continuously sputtered at a time was I mXk i , the discharge current was i Xk (A), and the element i in the measurement sample was
The atomic fraction f xk i of

【数19】 なる関係から求める。さらに、元素iの純物質の固体状
態での密度をρi (kg・m-3)、原子量をM(g・ mol
-1)、放電面積をA(m2 )としたとき、時間Δt
k (s)でのスパッター深さΔdi (m)を
[Equation 19] Find from the relationship. Further, the density in the solid state of the pure substance of element i is ρ i (kg · m −3 ), and the atomic weight is M (g · mol
-1 ), and when the discharge area is A (m 2 ), the time Δt
The sputter depth Δd i (m) at k (s)

【数20】 の関係から求めることができる。これによって、測定試
料の表面からの深さと組成の関係を求めることができ
る。
(Equation 20) From the relationship. Thereby, the relationship between the depth from the surface of the measurement sample and the composition can be obtained.

【0019】[0019]

【実施例】本発明のグロー放電発光分光分析の定量方法
により定量分析を行った例を示す。6種類の組成を有す
るFe−Cr合金のグロー放電発光分光分析を、アルゴ
ンガス圧8Torr、30mAの定電流モードで行った。図1
はそれらの試料のCr原子分率を化学分析で求めた値
(Cr原子分率(化学分析))と本発明の請求項1によ
る定電流による定量方法で求めた値(Cr原子分率(G
DS))の関係を示す。この関係の直線性は良く、本発
明の定量方法が優れていることがわかる。
EXAMPLE An example in which quantitative analysis was performed by the glow discharge optical emission spectrometry of the present invention will be described. Glow discharge optical emission spectroscopy of Fe—Cr alloys having six types of compositions was performed in a constant current mode with an argon gas pressure of 8 Torr and 30 mA. FIG.
Are the values obtained by chemical analysis of the Cr atomic fraction of these samples (Cr atomic fraction (chemical analysis)) and the values obtained by the quantitative method using a constant current according to claim 1 of the present invention (Cr atomic fraction (G
DS)). The linearity of this relationship is good, indicating that the quantification method of the present invention is excellent.

【0020】Znを約1.8μmの厚さにめっきした薄
鋼板のグロー放電発光分光分析を、アルゴンガス圧10
Torr、40mAの定電流モードで行った。図2は表面から
の深さ方向の濃度分布を本発明の請求項2による定電流
による深さ方向定量方法で分析を行った結果を示す。こ
の図から、各スパッター深さでの組成だけでなく、深さ
の定量も行うことができることがわかる。
Glow discharge emission spectroscopy analysis of a thin steel sheet plated with Zn to a thickness of about 1.8 μm was performed at an argon gas pressure of 10
The test was performed in a constant current mode of Torr and 40 mA. FIG. 2 shows the result of analyzing the concentration distribution in the depth direction from the surface by the constant-current depth direction determination method according to claim 2 of the present invention. From this figure, it is understood that not only the composition at each sputtering depth but also the depth can be quantified.

【0021】5種類の組成を有するFe−Ni合金のグ
ロー放電発光分光分析を、アルゴンガス圧10Torr、6
00Vの定電圧モードで行った。図3はNiの原子分率
を化学分析で求めた値(Ni原子分率(化学分析))と
本発明の請求項3による定電圧による定量方法で求めた
値(Ni原子分率(GDS))の関係を示す。この関係
の直線性は広い範囲にわたって優れている。
Glow discharge emission spectroscopy analysis of Fe—Ni alloys having five types of compositions was carried out at an argon gas pressure of 10 Torr and a pressure of 6 Torr.
The test was performed in the constant voltage mode of 00V. FIG. 3 shows the value obtained by chemical analysis of the atomic fraction of Ni (Ni atomic fraction (chemical analysis)) and the value obtained by the quantitative method using a constant voltage according to claim 3 of the present invention (Ni atomic fraction (GDS)). ). The linearity of this relationship is excellent over a wide range.

【0022】Snを約1μmの厚さだけめっきした薄鋼
板のグロー放電発光分光分析を、アルゴンガス圧8Tor
r、550Vの定電圧モードで行った。図4は深さ方向
の濃度分布を本発明の請求項4による定電流による深さ
方向定量方法で分析を行った結果を示す。この方法で
も、各スパッター深さでのSnの組成だけでなく、深さ
の定量も行うことができる。
Glow discharge emission spectroscopy analysis of a thin steel sheet plated with Sn to a thickness of about 1 μm was performed at an argon gas pressure of 8 Torr.
r, performed in a constant voltage mode of 550V. FIG. 4 shows the result of analyzing the concentration distribution in the depth direction by the constant-current depth direction determination method according to claim 4 of the present invention. This method can also determine not only the Sn composition at each sputtering depth but also the depth.

【0023】[0023]

【発明の効果】本発明のグロー放電発光分光分析の定量
方法により、鋼板などの表面分析の定量性、たとえばめ
っき材や被覆材の表層および酸化膜などの濃度の評価方
法が一段と向上する。特に、深さ方向に不均一な組成を
持つ皮膜の分析が可能になり、従来得られなかった詳細
な分析ができるようになった。これにより、この分析方
法の汎用性が著しく拡大し、材料を評価する上での効果
がきわめて大きい。
According to the method for glow discharge emission spectrometry of the present invention, the quantitativeness of the surface analysis of a steel plate or the like, for example, the method of evaluating the concentration of the surface layer and the oxide film of a plating material or a coating material is further improved. In particular, it has become possible to analyze a film having a non-uniform composition in the depth direction, and it has become possible to perform a detailed analysis that could not be obtained conventionally. As a result, the versatility of this analysis method is greatly expanded, and the effect in evaluating the material is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】6種類の組成を有するFe−Cr合金中のCr
の原子分率を化学分析で求めた値(Cr原子分率(化学
分析))と本発明の請求項1による定電流による定量方
法で求めた値(Cr原子分率(GDS))を示す。
FIG. 1 shows Cr in an Fe—Cr alloy having six types of compositions.
The values obtained by chemical analysis of the atomic fraction (Cr atomic fraction (chemical analysis)) and the values (Cr atomic fraction (GDS)) determined by the constant current quantitative method according to claim 1 of the present invention are shown.

【図2】Znを約1.8μmの厚さにめっきした薄鋼板
の表面からの深さ方向の濃度分布を本発明の請求項2に
よる定電流による深さ方向定量方法で分析を行った結果
を示す。
FIG. 2 shows the result of analyzing the concentration distribution in the depth direction from the surface of a thin steel sheet plated with Zn to a thickness of about 1.8 μm by the constant current depth direction determination method according to claim 2 of the present invention. Is shown.

【図3】5種類の組成を有するFe−Ni合金中のNi
の原子分率を化学分析で求めた値(Ni原子分率(化学
分析))と本発明の請求項3による定電圧による定量方
法で求めた値(Ni原子分率(GDS))示す。
FIG. 3 shows Ni in an Fe—Ni alloy having five compositions.
Are shown by a value (Ni atomic fraction (chemical analysis)) obtained by chemical analysis and a value (Ni atomic fraction (GDS)) obtained by a constant voltage quantitative method according to claim 3 of the present invention.

【図4】Snを約1μmの厚さだけめっきした薄鋼板の
深さ方向の濃度分布を本発明の請求項4による定電圧に
よる深さ方向定量方法で分析を行った結果を示す。
FIG. 4 shows the results of analyzing the concentration distribution in the depth direction of a thin steel sheet plated with Sn to a thickness of about 1 μm by the constant voltage depth direction determination method according to claim 4 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 薫 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 昭60−203838(JP,A) 特開 平5−149879(JP,A) 分析化学、第35巻(1986年)、第8 号、673−680頁 (58)調査した分野(Int.Cl.6,DB名) G01N 21/62 - 21/74──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kaoru Mizuno 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (56) References JP-A-60-203838 (JP, A) Kaihei 5-149879 (JP, A) Analytical Chemistry, Vol. 35 (1986), No. 8, pp. 673-680 (58) Fields investigated (Int. Cl. 6 , DB name) G01N 21/62- 21/74

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 グロー放電発光分光分析において、原子
分率fS i の元素i(i=1〜n)を有する標準試料S
を定電流モードでスパッターし、前記元素iのスペクト
ル線mの発光強度がImS i 、スパッター速度がv(mol・
-1)であるとき、前記元素iの有効な発光収率Rm i
(s・ mol-1)をImS i /vfS i で与え、前記スパッ
ター条件下での前記元素iの固体純物質の放電電圧をV
S i (V)とし、次に測定試料Xを前記スパッター条件
下でスパッターするときの前記元素iの発光強度がImX
i であるとき、前記測定試料中の前記元素iの原子分率
x i を〔1〕式から求めることを特徴とするグロー放
電発光分光分析の定量方法。 【数1】
1. A glow discharge emission spectroscopic analysis, the standard sample S including the element i (i = 1~n) atomic fraction f S i
Was sputtered in a constant current mode, the emission intensity of the spectral lines m of the element i is I mS i, is sputter rate v (mol ·
When a s -1), effective light emission yield R m i of the element i
(S · mol −1 ) is given by ImS i / vf S i , and the discharge voltage of the solid pure substance of the element i under the sputtering conditions is V
And S i (V), the emission intensity of the element i at the time of next sputtering a measurement sample X in the sputtering conditions I mX
When a i, quantitative method of glow discharge optical emission spectrometry and obtains the atomic fraction f x i of the element i of the measurement sample from (1) expression. (Equation 1)
【請求項2】 グロー放電発光分光分析において、原子
分率fS i の元素i(i=1〜n)を有する標準試料S
を定電流モードでスパッターし、前記元素iのスペクト
ル線mの発光強度がImS i 、スパッター速度がv(mol・
-1)であるとき、前記元素iの有効な発光収率Rm i
(s・ mol-1)をImS i /vfS i で与え、前記スパッ
ター条件下での前記元素iの固体純物質の放電電圧をV
S i (V)とし、次に測定試料Xを前記スパッター条件
下で時間Δtk (s)(k=1〜p)ずつスパッターす
るときの前記元素iの発光強度がImXk i 放電電圧が
Xk(V)であるとき、前記測定試料中の前記元素iの
原子分率fxk i を〔2〕式から求め、さらに前記元素i
の純物質の固体状態での密度をρi (g・m-3)、原子
量をMi (g・ mol-1)、放電面積をA(m2 )とする
とき、前記時間Δtk (s)でのスパッター深さΔdk
(m)を〔3〕式から求めることによって、前記測定試
料の表面からの深さ 【数2】 における原子分率fxp i を求めることを特徴とするグロ
ー放電発光分光分析の定量方法。 【数3】
2. A glow discharge emission spectroscopic analysis, the standard sample S including the element i (i = 1~n) atomic fraction f S i
Was sputtered in a constant current mode, the emission intensity of the spectral lines m of the element i is I mS i, is sputter rate v (mol ·
When a s -1), effective light emission yield R m i of the element i
(S · mol −1 ) is given by ImS i / vf S i , and the discharge voltage of the solid pure substance of the element i under the sputtering conditions is V
S i (V), and then, when the measurement sample X is sputtered under the sputtering conditions for a time Δt k (s) (k = 1 to p), the emission intensity of the element i is ImXk i , and the discharge voltage is when a V xk (V), determined the atomic fraction f xk i of the element i of the measurement sample from (2) expression, further the element i
When the density of the pure substance in the solid state is ρ i (g · m -3 ), the atomic weight is M i (g · mol −1 ), and the discharge area is A (m 2 ), the time Δt k (s ) Sputter depth Δd k
By calculating (m) from the formula [3], the depth from the surface of the measurement sample is given by A glow discharge optical emission spectrometric method for determining the atomic fraction f xp i in the above method. (Equation 3)
【請求項3】 グロー放電発光分光分析において、原子
分率fS i の元素i(i=1〜n)を有する標準試料Sを
定電圧モードでスパッターし、前記元素iのスペクトル
線mの発光強度がImS i 、スパッター速度がv(mol・s
-1)であるとき、前記元素iの有効な発光収率R
m i (s・ mol-1)をImS i /vfS i で与え、前記ス
パッター条件下での前記元素iの固体純物質の放電電流
をiS i (A)とし、前記有効発光収率の放電電流依存
性をai S i +bi (ai とbi は定数)で表し、次
に測定試料Xを前記スパッター条件下でスパッターする
ときの発光強度がImX i あるとき、前記測定試料中の
元素iの原子分率fx i を〔4〕式から求めることを特
徴とするグロー放電発光分光分析の定量方法。 【数4】
3. A glow discharge emission spectroscopic analysis, the standard sample S having an atomic fraction f S i of the elements i (i = 1 to n) is sputtered at a constant voltage mode, the emission spectral lines m of the element i The strength is ImS i , and the sputtering rate is v (mol · s
-1 ), the effective emission yield R of the element i
m i a (s · mol -1) given by I mS i / vf S i, the discharge current of a solid pure substance of the element i in the sputtering conditions as i S i (A), the effective light emitting yield when (the a i and b i constant) the discharge current dependence a i i S i + b i represents, the light emitting intensity when the next sputtered sample X in the sputtering conditions are I mX i, Determination method of glow discharge optical emission spectrometry and obtains the atomic fraction f x i of the elements i of the measurement sample from [4] expression. (Equation 4)
【請求項4】 グロー放電発光分光分析において、原子
分率fS i の元素i(i=1〜n)を有する標準試料S
を定電圧モードでスパッターし、前記元素iのスペクト
ル線mの発光強度がImS i 、スパッター速度がv(mol・
-1)であるとき、前記元素iの有効な発光収率Rm i
(s・ mol-1)をImS i /vfS i で与え、前記スパッ
ター条件下での前記元素iの固体純物質の放電電流をi
S i (A)とし、前記有効発光収率の放電電流依存性を
i S i +bi (ai とbiは定数)で表し、次に測
定試料Xを前記スパッター条件下でΔtk (s)(k=
1〜p)ずつスパッターするときの前記元素iの発光強
度がImXk i 、放電電流がiXk(A)であるとき、前記
測定試料中の前記元素iの原子分率fxk i を〔5〕式か
ら求め、さらに前記元素iの純物質の固体状態での密度
をρi (g・m-3)、原子量をMi (g・ mol-1)、放
電面積をA(m2 )とするとき、前記時間Δtk (s)
でのスパッター深さΔdk (m)を〔6〕式から求める
ことによって、前記測定試料の表面からの深さ 【数5】 における原子分率fxp i を求めることを特徴とするグロ
ー放電発光分光分析の定量方法。 【数6】
4. A standard sample S having an element i (i = 1 to n) having an atomic fraction f S i in glow discharge emission spectroscopy.
Is sputtered in a constant voltage mode, the emission intensity of the spectral line m of the element i is ImS i , and the sputtering speed is v (mol ·
When a s -1), effective light emission yield R m i of the element i
(S · mol −1 ) is given by I mS i / vf S i , and the discharge current of the solid pure substance of the element i under the sputtering conditions is i
And S i (A), the discharge current dependence of the effective emission yield a i i S i + b i (a i and b i are constants) expressed in, then the sample X in the sputtering conditions Delta] t k (S) (k =
1 to p), when the emission intensity of the element i is I mXk i and the discharge current is i Xk (A), the atomic fraction f xk i of the element i in the measurement sample is [5 ], Ρ i (g · m −3 ), the atomic weight M i (g · mol −1 ), and the discharge area are A (m 2 ). The time Δt k (s)
By calculating the sputter depth Δd k (m) from the equation (6), the depth from the surface of the measurement sample is given by A glow discharge optical emission spectrometric method for determining the atomic fraction f xp i in the above method. (Equation 6)
JP24553293A 1993-09-30 1993-09-30 Quantitative method of glow discharge emission spectrometry Expired - Fee Related JP2803982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24553293A JP2803982B2 (en) 1993-09-30 1993-09-30 Quantitative method of glow discharge emission spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24553293A JP2803982B2 (en) 1993-09-30 1993-09-30 Quantitative method of glow discharge emission spectrometry

Publications (2)

Publication Number Publication Date
JPH07103898A JPH07103898A (en) 1995-04-21
JP2803982B2 true JP2803982B2 (en) 1998-09-24

Family

ID=17135099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24553293A Expired - Fee Related JP2803982B2 (en) 1993-09-30 1993-09-30 Quantitative method of glow discharge emission spectrometry

Country Status (1)

Country Link
JP (1) JP2803982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113291A (en) * 2020-08-25 2022-03-01 江苏隆达超合金航材有限公司 Method for determining content of main element in multi-element alloy by using proportional coefficient correction glow mass spectrometry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
分析化学、第35巻(1986年)、第8号、673−680頁

Also Published As

Publication number Publication date
JPH07103898A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
Greczynski et al. X-ray photoelectron spectroscopy of thin films
Pisonero et al. Glow-discharge spectrometry for direct analysis of thin and ultra-thin solid films
Angeli et al. Glow discharge optical emission spectrometry: moving towards reliable thin film analysis–a short review
Bengtson et al. Surface analysis with the glow discharge lamp. State of the art and prospects for future development
Payling et al. Fundamental parameters in quantitative depth profiling and bulk analysis with glow discharge spectrometry
Payling et al. Quantitative analysis with dc‐and rf‐glow discharge spectrometry
Weiss Emission yields and the standard model in glow discharge optical emission spectroscopy: links to the underlying physics and analytical interpretation of the experimental data
Ja The use of a glow-discharge lamp as a light source in the spectrometric analysis of gold
US7893400B2 (en) Method for laser desorption/ionization mass spectrometry, sample supporting substrate used therein, and substrate material testing method
Ritschel et al. An electrochemical enrichment procedure for the determination of heavy metals by total-reflection X-ray fluorescence spectroscopy
JP2803982B2 (en) Quantitative method of glow discharge emission spectrometry
Bengtson et al. Depth profiling of thin films using a Grimm-type glow discharge lamp
Spitsberg et al. Depth profile and quantitative trace element analysis of diffusion aluminided type layers on Ni-base superalloys using high-resolution glow-discharge mass spectrometry
KennetháMarcus Radiofrequency powered glow discharges for emission and mass spectrometry: operating characteristics, figures of merit and future prospects
Ohashi et al. Modified glow discharge spectroscopy for surface analysis of steels
Pytskii et al. Surface Signal Integration As a Way of Evening Physical and Chemical Factors when Analyzing Stainless Steel for Chlorine Content
Lowe et al. Elemental analysis of renal slices by proton-induced X-ray emission.
JPH09273992A (en) Quantitative analysis method for metallic surface-oxidized layer
Bengtson et al. Glow Discharge Optical Emission Spectrometry–Activities and Opportunities in the Field of Depth Profile Analysis
JPH0211765A (en) Method of determining sputtering depth, sputtering yield or sputtering rate of metallic sample by glow discharge
RU2759632C1 (en) Method for determining chemical composition and thickness of two-layer electroplated coating
JPH0750043B2 (en) X-ray spectroscopic analysis method for thin layer
JP3369011B2 (en) Quantitative analysis method of weight composition ratio of element in depth direction of metal material in glow discharge emission spectroscopy
US4492866A (en) Method for predicting the performance of cathode materials
JPH1194802A (en) Gloaw-discharge mass spectrometry

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980630

LAPS Cancellation because of no payment of annual fees