JPS6329208A - Measuring method for flatness by moire fringe - Google Patents

Measuring method for flatness by moire fringe

Info

Publication number
JPS6329208A
JPS6329208A JP17336086A JP17336086A JPS6329208A JP S6329208 A JPS6329208 A JP S6329208A JP 17336086 A JP17336086 A JP 17336086A JP 17336086 A JP17336086 A JP 17336086A JP S6329208 A JPS6329208 A JP S6329208A
Authority
JP
Japan
Prior art keywords
inspected
light source
light
light beams
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17336086A
Other languages
Japanese (ja)
Other versions
JPH0656299B2 (en
Inventor
Masane Suzuki
鈴木 正根
Kenji Yasuda
賢司 安田
Kenichi Noguchi
憲一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP61173360A priority Critical patent/JPH0656299B2/en
Publication of JPS6329208A publication Critical patent/JPS6329208A/en
Publication of JPH0656299B2 publication Critical patent/JPH0656299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the accuracy of the measurement of the flatness of a surface to be inspected based on the order of moire fringes by providing a means for photographing the moire fringes at a position where the regularly reflected light beams of a light source from a surface to be inspected are not photodetected. CONSTITUTION:A camera 4 is equipped with a photographic lens L and a film F and the principal point H of the lens L is set at distance l from the light source O and at distance (b) from the surface to be inspected off a plane containing the center O of the light source 3 and a normal N to the center (c) of the body 1 to be inspected at a position of an angle theta to the center (c). The angle theta is so determined that the regularly reflected light beams R from the surface 1a to be inspected are not converged by the lens L. Consequently, no harmful light beams such as the regularly reflected light beams R from the body 1 to be inspected, diffracted light beams from a reference grating 2, and scattered light beams from the body 1 to be inspected are wade incident on the camera 4 and contour moire fringes formed on the surface 1a to be inspected are photographed sharply on a film F through the lens L.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、基準格子と被検体−ヒの変形格子とによっ
て形成されるモアレ縞を利用して、被検体表面の平坦度
を測定することができるモアレ縞にj且 よる平−度測定方法に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention measures the flatness of a surface of an object by using moiré fringes formed by a reference grid and a deformed grid of an object. This invention relates to a method for measuring flatness based on moiré fringes.

(従来の技術) 従来より、モアレ縞を利用した計測法として、等高線パ
ターン計測法、すなわちモアレトポグラフィ法が知られ
ている。第3図は、前記モアレトポグラフィ法の一つで
ある格子閘射型モアレトポグラフィ法の原理図を示す。
(Prior Art) Conventionally, a contour line pattern measurement method, that is, a moire topography method, has been known as a measurement method using moire fringes. FIG. 3 shows a principle diagram of the lattice projecting moire topography method, which is one of the moire topography methods.

即ち、この方法によれば第3図に示すように、被検体の
直前におかれ、透過部および不透過部が黒白等間隔に製
作された基準格子Gが、この基準格子より距離すに置か
ねた点または線光源Sで照射されると、光線は黒白の明
暗をもった放射状の光束となり、被検体上に黒白のパタ
ーン(模様)を形成する。このパターンは、基準格子G
より距離すで、前記光#Sより距離βの位置で観察また
は撮影されると、被検体表面の形状に応じて変形を受け
た変形格子となって見える。そして、基準格子Gの透明
部と被検体上の変形格子の白線部とが交わった点列が、
等高線モアレ縞(単にモアレ縞ともいう)となって明る
く見える。
That is, according to this method, as shown in FIG. 3, a reference grid G, which is placed immediately in front of the subject and has transparent and opaque parts spaced at equal black and white intervals, is placed at a distance from this reference grid. When irradiated with a continuous point or line light source S, the light beam becomes a radial light beam with black and white brightness, forming a black and white pattern on the subject. This pattern is the reference grid G
When observed or photographed at a distance β from the light #S, it appears as a deformed lattice that has been deformed according to the shape of the surface of the subject. Then, the point sequence where the transparent part of the reference grid G and the white line part of the deformed grid on the subject intersect is
Contour line moiré fringes (also simply called moiré fringes) appear bright.

そして、この格子照射型モアレトポグラフィ法にあって
は、基準格子GのピッチをP。、モアレ縞次数をNとす
ると、基準格子GからN次の等高線モアレ縞の形成され
る位置迄の距離hNは、被横面の凹凸量を表わし一般に
次式(イ)で表わされる。
In this grating irradiation type moiré topography method, the pitch of the reference grating G is P. , where the order of the moire fringe is N, the distance hN from the reference grid G to the position where the Nth-order contour moire fringe is formed represents the amount of unevenness of the surface to be traversed, and is generally expressed by the following equation (a).

hN = bNPo / (f  NPo )−−(イ
)前式において、hNは測定感度を表わし、パラメータ
ー、b−1およびP。を適当に選ぶことにより、最小測
定感度は10μm程度まで可能である。
hN = bNPo / (fNPo) -- (a) In the previous equation, hN represents the measurement sensitivity, and the parameters b-1 and P. By appropriately selecting , the minimum measurement sensitivity can be up to about 10 μm.

第4図は、前記格子照射型モアレトポグラフィ法に基づ
いて構成された従来例を示す。手≠にドい−#ミロ −4図において、基準格子2は被検体1の直前に配設さ
れ、基準格子2上の光源3により照明されて、被検体1
の表面−ヒにその表面の凹凸により変形を受けた変形格
子を形成する。この変形格子と基準格子2とが重なり合
って等高線モアレ縞が生ずる。この等高線モアレ縞を、
光源3からβの距離で基準格子2からbの距離に正対さ
せて配設されたカメラ4で撮影すれば、そのモアレ縞か
ら紙、ウェハー金属などの被検体1の表面の平坦度を非
接触で容易に測定可能である。
FIG. 4 shows a conventional example constructed based on the grating irradiation type moiré topography method. In Figure 4, the reference grid 2 is placed just in front of the subject 1, and is illuminated by the light source 3 on the reference grid 2, which illuminates the subject 1.
A deformed lattice that is deformed due to the unevenness of the surface is formed on the surface. This deformed grid and the reference grid 2 overlap to produce contour moiré fringes. These contour moire fringes are
If the camera 4 is placed directly facing the reference grid 2 at a distance β from the light source 3 and a distance b from the light source 3, the flatness of the surface of the object 1 such as paper or wafer metal can be determined from the moire fringes. Easily measurable by contact.

(発明が解決しようとする問題点) ところで、第4図の測定方法において、1がセラミック
ス等の多孔質の被検体である場合は、その表面に微小の
穴が存在するので、照明光により反射光や散乱光を生ず
る。従い、その反射光や散乱光がフレアとなるため、被
検体表面に生ずる等高線モアレ縞を明瞭かつ精確に観察
したり撮影することが、実際−ト困難であった。そこで
この点を改善する方法として第5図の方法が考えられる
(Problem to be Solved by the Invention) By the way, in the measurement method shown in Fig. 4, when 1 is a porous specimen such as ceramics, there are minute holes on the surface, so the illumination light is reflected. Produces light and scattered light. Therefore, since the reflected light and scattered light become flares, it is actually difficult to clearly and accurately observe or photograph the contour moiré fringes that occur on the surface of the subject. Therefore, the method shown in FIG. 5 can be considered as a method to improve this point.

第5図Talは側面図、第5図fblは平面図を示す。FIG. 5 Tal shows a side view, and FIG. 5 fbl shows a plan view.

第5図において、被検体1の被検面1aによる光源3の
正反射光Rがカメラ4に入射するように、カメラ4は基
準格子2から距Mbで光源3からβの距離で光源3、光
源3から被検体1に入射する入射光1、被検面Ta上に
立てた法線N、入射光Iに対応する反射光Rを含む面内
に設けられている。
In FIG. 5, the camera 4 is positioned at a distance Mb from the reference grating 2 and a distance β from the light source 3 so that the specularly reflected light R of the light source 3 by the surface 1a to be examined of the object 1 enters the camera 4. It is provided within a plane that includes incident light 1 entering the subject 1 from the light source 3, a normal N erected on the subject surface Ta, and reflected light R corresponding to the incident light I.

第5図の方法によれば、カメラ4は被検面1aからの正
反射光Rを充分に集光できるので等高線モアレ縞のコン
トラストは改善されるが、カメラ4に基準格子2からの
反射光や回折光も同時に入射し集光され、それらが雑音
となるため平面度の測定精度が劣化するものであった。
According to the method shown in FIG. 5, the camera 4 can sufficiently collect the specularly reflected light R from the test surface 1a, so the contrast of the contour moiré fringes is improved. Also, diffracted light and diffracted light are incident and focused at the same time, and these become noise, deteriorating the flatness measurement accuracy.

(問題点を解決するための手段) 前記事情に鑑み、本願発明のモアレ縞による平坦度測定
方法は、前記基準格子と変形格子との重ね合せにより生
ずる等高線モアレ縞を観察もしくは撮影する手段を、被
検体の被検面から反射する光源の正反射光を受光しない
位置に設けるようにしたものである。
(Means for Solving the Problems) In view of the above circumstances, the flatness measurement method using moire fringes of the present invention includes means for observing or photographing contour moire fringes caused by superimposing the reference grating and the deformed grating. It is arranged at a position where it does not receive the specularly reflected light of the light source reflected from the test surface of the test object.

(作用) 本発明のモアレ縞による平坦度測定方法は1次のように
して行う。モアレ縞を観察もしくは撮影する手段を、被
検面による光源の正反射光を受光しない位置に設ける。
(Function) The flatness measuring method using moiré fringes of the present invention is carried out as follows. A means for observing or photographing moiré fringes is provided at a position that does not receive specularly reflected light from a light source by the surface to be inspected.

このようにすることにより、前記正反射光や基準格子に
よる回折光、更には被検体からの散乱光が、観察もしく
は撮影手段に入射しなくなる。これらの光と等高線モア
レ縞は重なり合うことがないので、観察もしくは撮影さ
れた等高線モアレ縞を読み取ると、そのモアレ縞の縞次
数から被検体の被検面の平坦度測定が行える。
By doing so, the specularly reflected light, the diffracted light by the reference grating, and furthermore the scattered light from the subject are prevented from entering the observation or photographing means. Since these lights and the contour moire fringes do not overlap, when the contour moire fringes that are observed or photographed are read, the flatness of the surface of the object to be examined can be measured from the fringe order of the moire fringes.

(実施例) 以下、本発明の一実施例について添付図面を参照しなが
ら説明する。第1図(alおよびfb)は、それぞれ、
本発明に係るモアレ縞による平坦度測定方法を示す平面
図および側面図を表わす。図中符号lはセラミック等の
多孔質の材料からなる被検体であり、laはその被検面
である。2は基準格子、3は光源、4はカメラを示し、
Oは光源の中心、Cは被検面1の中心、Hはカメラに備
えられた撮影レンズLの主点位置を表わす。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. FIG. 1 (al and fb) is, respectively,
1A and 1B show a plan view and a side view showing a flatness measurement method using moiré fringes according to the present invention. In the figure, reference numeral 1 is a test object made of a porous material such as ceramic, and la is a test surface of the test object. 2 is a reference grid, 3 is a light source, 4 is a camera,
O represents the center of the light source, C represents the center of the test surface 1, and H represents the principal point position of the photographing lens L provided in the camera.

基準格子2は、第2図に示すように透過部2a、不透過
部2bが、ピッチP。で構成され、その格子は光源3の
中心Oからの光線に対して、直角方向に向けられ、被検
体lの被検面1aに近接または軽く接触して置かれる。
As shown in FIG. 2, the reference grating 2 has a transparent portion 2a and a non-transparent portion 2b at a pitch P. The grating is oriented perpendicularly to the light beam from the center O of the light source 3, and is placed close to or in slight contact with the surface 1a to be examined of the subject 1.

光源3は、ハロゲン灯や水銀灯等を発光源とする点ある
いは線状光源から成り、基準格子2を照明する。照明さ
れた基準格子2は、それに近接または接触している被検
体1の被検面Ta上に、その被検面1aの凹凸により変
形を受けた変形格子を形成する。この変形格子と基中格
子2は、重なり合って等高純モアレ縞を生ずる。光源3
の中心Oは、被検体lの被検面1aから高さ方向でbの
距離にある。
The light source 3 consists of a point or linear light source using a halogen lamp, a mercury lamp, or the like as a light source, and illuminates the reference grating 2. The illuminated reference grid 2 forms a deformed grid on the test surface Ta of the test subject 1 that is close to or in contact with it, which is deformed by the unevenness of the test surface 1a. This deformed lattice and the base lattice 2 overlap to produce equal-height pure moiré fringes. light source 3
The center O of is located at a distance b from the surface 1a to be examined of the subject 1 in the height direction.

カメラ4は、撮影レンズ上1フイルムFを備えている。The camera 4 is equipped with one film F on the photographing lens.

その撮影レンズの主点Hは、光源Oからlの距離、被検
面1aからbの距離で、光源3の中心Oと被検面lの中
心C上に立てた、法L?INとを含む平面外で被検面1
の中心Cに向って角度θ−10°の位置に置かれている
。この角度θは、被検体1の大きさやレンズI、の画角
を考慮して、被検面1aからの正反射光Rが、レンズI
−によって築光されないような角度に決められる。カメ
ラ4を前記のごとく説明した位置に置くと被検体1によ
る光源の正反射光や基準格子2による回折光、更には被
検体からの散乱光等の有害光が、カメラ4に入射しなく
なるので、被検体1の被検面1aトにルした等高線千ア
レ縞が、撮影レンズLを通して鮮明にフィルムFlに撮
影される。この場合、カメラ4は等高純モアレ縞を斜視
的にとらえるので、モアレ縞のピッチは前記■)。でな
(P ’ −p。
The principal point H of the photographing lens is a distance l from the light source O, a distance from the test surface 1a to b, and is placed on the center O of the light source 3 and the center C of the test surface l, and is the modulus L? Test surface 1 outside the plane including IN
It is placed at an angle θ-10° toward the center C of . This angle θ is determined by considering the size of the subject 1 and the angle of view of the lens I, so that the specularly reflected light R from the subject surface 1a is
− The angle is determined so that no light buildup occurs. When the camera 4 is placed in the position described above, harmful light such as specularly reflected light from the light source by the subject 1, diffracted light by the reference grating 2, and even scattered light from the subject will not enter the camera 4. , a thousand contour fringes on the surface to be examined 1a of the object 1 are clearly photographed on a film Fl through a photographing lens L. In this case, since the camera 4 captures the pure moire fringes obliquely, the pitch of the moire fringes is determined by the pitch of the moire fringes described above. Dena(P'-p.

/cosθで表わされる値となる。前記(イ)式に、P
、の代わりにP′、距Mb、1、および撮影されたモア
レ縞次数Nを代入すれば、被検体1の被検面1aの凹凸
¥h)1が求められる。1例として、Po   −0,
]mm X  b=235 1鳳、  7! =120
0m++ X  N  =1、θ=10°の場合、被検
面1aの凹凸1hN=にヰは 0.0199mmとなる
。第6図は、本願発明の第1図+a+、(blの方法に
より、被検面としてセラミックの表面をP、−0,1m
s、b=235mm、ff−1200mm、θ−1O°
に設定して、焦点距H50mvsのレンズI、で撮影し
た写真である。この第6図の写真において、モアレ縞1
本は0.02 msの凹凸量を表わす。第7図は第4図
に示す従来の方法により、前記セラミックの表面をP。
/cosθ. In the above formula (A), P
, by substituting P', distance Mb, 1, and the photographed moiré fringe order N, the unevenness of the surface 1a to be examined 1a of the object 1 can be found. As an example, Po −0,
] mm X b = 235 1, 7! =120
When 0 m++ Figure 6 shows the surface of the ceramic as the surface to be inspected at P, -0, 1 m by the method of Figure 1 +a+, (bl) of the present invention.
s, b=235mm, ff-1200mm, θ-1O°
This photo was taken with a lens I with a focal length of H50mvs. In this photograph of Fig. 6, moire fringes 1
The book represents the amount of unevenness of 0.02 ms. FIG. 7 shows the surface of the ceramic coated with P by the conventional method shown in FIG.

−0,111、b−25f)mn、、#=1000m−
に設定して、前記焦点距離50謳謹のレンズLで撮影し
た写真である。この第7図の写真において、千了し縞1
本は0.025 mmの凹凸¥を表わす。前記両図を比
較すると、本願発明による第6図の写真は従来例の第7
図の写真に比べ、セラミック表面の凹凸状態を示すモア
レ縞をはるかに鮮明に記録していることが知れる。
-0,111,b-25f)mn,,#=1000m-
This photo was taken using the lens L with the focal length set to 50. In this photo in Figure 7, Senryoshi stripes 1
The book represents an unevenness of 0.025 mm. Comparing the above two figures, the photograph in Figure 6 according to the present invention is compared to the photograph in Figure 7 in the conventional example.
It can be seen that the moiré fringes, which indicate the unevenness of the ceramic surface, are much more clearly recorded than in the photograph shown in the figure.

このモアレ縞による平坦度測定方法の他の実用的な使用
法として、次の方法もある。前記(イ)弐かられかるよ
うに、先にモアレ縞のピッチP。、距離す及びl、許容
される被検面の凹凸Wk h Nを決めておき、これら
の数値からモアレ縞の次数Noを求める。このNoを限
界値として、カメラに撮影されたモアレ縞の次数Nが前
記No以内であれば、被検面1aの凹凸量hNは許容値
内にあると判定するものである。
Another practical method of measuring flatness using moiré fringes is the following method. As shown in (A) above, first the pitch P of the moiré fringes. , the distance L, and the permissible unevenness Wk h N of the surface to be inspected are determined, and the order No. of the moiré fringes is determined from these values. With this No as a limit value, if the order N of the moire fringes photographed by the camera is within the above-mentioned No, it is determined that the amount of unevenness hN of the surface to be inspected 1a is within the allowable value.

なお、前記カメラの代わりにテレビカメラや投影スクリ
ーンを用いれば、瞬時にモアレ縞を読み取ることができ
るため、作業を能率的に行える。
Note that if a television camera or a projection screen is used instead of the camera, moire fringes can be read instantaneously, making the work more efficient.

モアレ縞の観察手段や撮影手段の選択は、その作業内容
や作業場の広さ等を考慮して決められる。
The selection of means for observing and photographing moiré fringes is determined by taking into consideration the nature of the work, the size of the workplace, and other factors.

(発明の効果) 以上説明してきたように、本発明のモアレ縞による平坦
度測定方法によれば、モアレ縞を観察もしくは撮影する
手段を被検体の被検面から反射する光源の正反射光を受
光しない0置に設けたから、被検体としてセラミ、り等
の多JLtT材の平坦度測定が、前記正反射光等の有害
光の影響を受けろことなく正確に行える。
(Effects of the Invention) As explained above, according to the flatness measurement method using moire fringes of the present invention, the means for observing or photographing moire fringes is used to detect specularly reflected light from a light source that is reflected from the test surface of an object. Since it is installed at the 0 position where no light is received, flatness measurements of multi-JLtT materials such as ceramic and porcelain can be accurately performed without being affected by harmful light such as the specularly reflected light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al及びfblは、それぞれ本発明に係るモア
レ縞による平坦度測定方法を示す平面図及び側面図、第
2図は本発明の構成要素である基準格子を説明する説明
図、第3図は格子照射型モアレトポグラフィ法の原理を
説明する説明図、第4図は第3Mの原理に基づいて構成
された従来例、第5図(al及び(blは、それぞれ第
3図の原理に基づいて構成された他の従来例を示す側面
図及び平面図である。第6Mは本願発明の第1図の方法
により撮影したセラミック表面のモアレ縞の写真である
。第7図は従来例の第4図の方法により撮影したセラミ
ック表面のモアレ縞の写真である。 1・・・被検体、 1a・・・被検面、 2・・・基Y1!!格子、 3・・・光源、 4・・・カメラ、 C・・・被検面の中心、 θ・・・カメラが被検面の中心を見こむ角度。 ′  10チホ序妹 富士写真光機株式会社男2履 第31 菊4朋 篤5図(α) 茗y図(b)
FIG. 1 (al and fbl are a plan view and a side view, respectively, showing the flatness measurement method using moiré fringes according to the present invention, FIG. The figure is an explanatory diagram explaining the principle of the grating irradiation type moire topography method, Figure 4 is a conventional example constructed based on the principle of 3M, and Figure 5 (al and (bl are respectively based on the principle of Figure 3). FIG. 7 is a side view and a plan view showing another conventional example constructed based on the above-described method. FIG. 6M is a photograph of moiré fringes on a ceramic surface taken by the method shown in FIG. This is a photograph of moire fringes on the ceramic surface taken by the method shown in Fig. 4. 1... Subject, 1a... Test surface, 2... Base Y1!! grating, 3... Light source, 4 ...Camera, C...Center of the surface to be inspected, θ...Angle at which the camera looks at the center of the surface to be inspected. Atsushi figure 5 (α) Mei y figure (b)

Claims (1)

【特許請求の範囲】[Claims] 可視光を発光する光源により照射される基準格子と、こ
の基準格子に近接または接触する被検体の被検面上に生
ずる変形格子との重ね合せにより形成される等高線モア
レ縞を観察もしくは撮影する方法において、前記観察も
しくは撮影する手段を前記被検面から反射する光源の正
反射光を受光しない位置に設けることを特徴とするモア
レ縞による平坦度測定方法。
A method of observing or photographing contour moiré fringes formed by the superposition of a reference grating illuminated by a light source that emits visible light and a deformed grating generated on the test surface of a subject that is close to or in contact with the reference grating. A flatness measuring method using moiré fringes, characterized in that the observing or photographing means is provided at a position where it does not receive specularly reflected light from a light source reflected from the test surface.
JP61173360A 1986-07-23 1986-07-23 Flatness measurement method using moire fringes Expired - Lifetime JPH0656299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173360A JPH0656299B2 (en) 1986-07-23 1986-07-23 Flatness measurement method using moire fringes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173360A JPH0656299B2 (en) 1986-07-23 1986-07-23 Flatness measurement method using moire fringes

Publications (2)

Publication Number Publication Date
JPS6329208A true JPS6329208A (en) 1988-02-06
JPH0656299B2 JPH0656299B2 (en) 1994-07-27

Family

ID=15958960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173360A Expired - Lifetime JPH0656299B2 (en) 1986-07-23 1986-07-23 Flatness measurement method using moire fringes

Country Status (1)

Country Link
JP (1) JPH0656299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196416A (en) * 1992-01-17 1993-08-06 Japan Radio Co Ltd Optical displacement measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049409U (en) * 1983-09-14 1985-04-06 関東自動車工業株式会社 Moire type surface shape measuring instrument
JPS60161513A (en) * 1984-02-01 1985-08-23 Toshiba Corp Surface flaw detection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049409U (en) * 1983-09-14 1985-04-06 関東自動車工業株式会社 Moire type surface shape measuring instrument
JPS60161513A (en) * 1984-02-01 1985-08-23 Toshiba Corp Surface flaw detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196416A (en) * 1992-01-17 1993-08-06 Japan Radio Co Ltd Optical displacement measuring device

Also Published As

Publication number Publication date
JPH0656299B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
US7456978B2 (en) Shape measuring apparatus
US4147052A (en) Hardness tester
KR19990029064A (en) Moiré Interference System and Method with Extended Image Depth
US5973771A (en) Pupil imaging reticle for photo steppers
JPS6329208A (en) Measuring method for flatness by moire fringe
JPS604402B2 (en) Surface shape measuring device
JPH0258766B2 (en)
KR20050031328A (en) The method and device for 3d inspection by moire and stereo vision
JPH0616480B2 (en) Reduction projection type alignment method and apparatus
JP3146568B2 (en) Pattern recognition device
JPH036411A (en) Surface defect recordor
JPH0612753B2 (en) Pattern detection method and apparatus thereof
JP3556324B2 (en) Hologram inspection apparatus and method
KR0170476B1 (en) Device and method for measuring optical system efficiency using moire pattern
JPH06160046A (en) Strain measurement device for long material
JPH01143904A (en) Thin film inspecting device
JP3198466B2 (en) Position detecting device and exposure device
JP2550979B2 (en) Alignment method
JPS6211779B2 (en)
JP2565274B2 (en) Height measuring device
JPS6122563Y2 (en)
JPH0547091B2 (en)
JPH05141924A (en) Film thickness measuring device
JP3798473B2 (en) Apparatus for measuring the shape of an object including a lens array
Dirckx et al. Projection moiré interferometer for research in otology