JPS63292045A - Thermal-stress measuring device - Google Patents

Thermal-stress measuring device

Info

Publication number
JPS63292045A
JPS63292045A JP12887887A JP12887887A JPS63292045A JP S63292045 A JPS63292045 A JP S63292045A JP 12887887 A JP12887887 A JP 12887887A JP 12887887 A JP12887887 A JP 12887887A JP S63292045 A JPS63292045 A JP S63292045A
Authority
JP
Japan
Prior art keywords
sample
measured
samples
thermal
relative distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12887887A
Other languages
Japanese (ja)
Inventor
Yukiyasu Sugano
菅野 幸保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12887887A priority Critical patent/JPS63292045A/en
Publication of JPS63292045A publication Critical patent/JPS63292045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To perform measurement simply and accurately, by supporting a reference sample, whose thermal deformation is negligible, and a sample to be measured with the same supporting member together, reading the relative distance between the reflected light beams from both samples, and compensating for the error of fluctuation due to the heat of the supporting member. CONSTITUTION:A sample to be measured 1 and a reference sample 2 are supported with a single supporting member 3 in close proximity and provided in a constant temperature oven 4. A laser light source 5 is arranged so as to face the samples 1 and 2. The fluctuation of the relative distance DELTA between the reflected spots S1 and S2 from the samples 1 and 2 is read with a detecting part 6. Namely, warp is yielded in the sample 1 because of the difference in thermal expansion coefficients of a silicon substrate 7 and a silicon nitride thin film 8. Warp is not yielded in the sample 2 since the sample 2 comprises only a bare silicon substrate 9. Therefore, the thermal fluctuation of the member 3 is automatically compensated by reading the distance DELTA. The thermal stress of the sample 1 can be measured simply and accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基板上の薄膜の熱応力を測定する熱応力測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermal stress measuring device for measuring thermal stress of a thin film on a substrate.

〔発明の概要〕[Summary of the invention]

本発明は、熱応力測定装置において、同一支持部材にて
支持した被測定試料と熱変形を無視し得る参照試料とを
加熱室内に配して、両試料に光を当て、両試料からの2
つの反射光の相対距離を測定することによって、支持部
材の熱による変動を補償し被測定試料の正確な熱応力測
定を可能にしたものである。
In a thermal stress measuring device, the present invention arranges a sample to be measured supported by the same support member and a reference sample whose thermal deformation can be ignored in a heating chamber, shines light on both samples, and collects two samples from both samples.
By measuring the relative distances of the two reflected lights, it is possible to compensate for thermal fluctuations in the supporting member and to accurately measure thermal stress on the sample to be measured.

〔従来の技術〕[Conventional technology]

例えば半導体製造分野においては、半導体基板上に被着
形成したA1膜の消失あるいはオーバーコート膜のふく
れ等、昇温時において応力に起因する種々の不都合が発
生し問題となっている。室温での応力測定は容易である
が、昇温時の応力aす定は難しい。
For example, in the field of semiconductor manufacturing, various problems arise due to stress when the temperature rises, such as disappearance of the A1 film deposited on the semiconductor substrate or blistering of the overcoat film. Although it is easy to measure stress at room temperature, it is difficult to determine stress a when the temperature is increased.

従来、薄膜の応力測定法としては種々あるが、よ(用い
られる方法は、(i)片持ち乗法(光挺子法、電気容量
法)、(ii )円板法にュートンリング法)、(ii
i )回折法(X線回折法、電子線回折法)等である。
Conventionally, there are various methods for measuring stress in thin films.
i) Diffraction method (X-ray diffraction method, electron beam diffraction method), etc.

第6図は一般に知られている光挺子法による内熱応力測
定装置の構成図である。
FIG. 6 is a block diagram of a generally known internal thermal stress measuring device using the optical lever method.

この装置では基板(11)が一端で支持部(12)にて
固定され、光源(13)からの光(14)がプリズム(
15)及びレンズ系(16)を通して基板(11)の他
端に照射され、その反射光(14a)がレンズ系(16
) 、プリズム(15)及びレンズ系(17)を通して
差動光電池(18)に照射されるようになされる。この
基板(11)に薄膜が蒸着されて基板(11)に反りが
生ずると反射光(14a)の差動光電池への照射位置が
ずれることによりその差動光電池からの差動出力によっ
て薄膜の内部応力が測定される。(19)はマイクロメ
ータを示す。
In this device, a substrate (11) is fixed at one end with a support part (12), and light (14) from a light source (13) is transmitted through a prism (
15) and the lens system (16) to the other end of the substrate (11), and the reflected light (14a) is irradiated to the other end of the substrate (11) through the lens system (16).
), the differential photovoltaic cell (18) is illuminated through the prism (15) and lens system (17). When a thin film is deposited on this substrate (11) and the substrate (11) is warped, the irradiation position of the reflected light (14a) on the differential photovoltaic cell shifts, and the differential output from the differential photovoltaic cell causes the inside of the thin film to be distorted. Stress is measured. (19) indicates a micrometer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の光挺子法は感度の高い方法として知られているが
、熱応力測定を行うために加熱すると基板(11)の支
持部分が熱膨張によって変形し、基板(11)のみの変
形(反り)を分離できないという問題がある。このため
、熱応力の測定は一般にニュートンリグ法を用いて行な
われているが、干渉縞の位置測定にあいまいさが有り、
測定精度が上がらない。
The above-mentioned optical screw method is known as a highly sensitive method, but when heated to measure thermal stress, the supporting portion of the substrate (11) deforms due to thermal expansion, resulting in deformation (warpage) of only the substrate (11). ) cannot be separated. For this reason, thermal stress is generally measured using the Newton-Rig method, but there is ambiguity in measuring the position of interference fringes.
Measurement accuracy does not improve.

本発明は、上述の、点に鑑み、熱による変動に起因した
誤差を補償して基板上の薄膜の熱応力を正確に測定する
ことができる熱応力測定装置を提供するものである。
In view of the above-mentioned points, the present invention provides a thermal stress measuring device capable of accurately measuring thermal stress of a thin film on a substrate by compensating for errors caused by thermal fluctuations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の熱応力測定装置は、加熱室(4)と、この加熱
室(4)内において同一の支持部材(3)にて支持され
た被測定試料(1)及び熱変形を無視し得る参照試料(
2)と、この両試料(11及び(2)の一部に光を当て
る光源(5)と、両試料(11及び(2)からの2つの
反射光(Sl)及び(S2)を検出する検出部(6)と
を有し、この2つの反射光(Sl)及び(S2)間の相
対距離Δを測定することにより、被測定試料(1)の熱
応力を測定するように構成する。
The thermal stress measurement device of the present invention includes a heating chamber (4), a sample to be measured (1) supported by the same support member (3) in the heating chamber (4), and a reference whose thermal deformation can be ignored. sample(
2), a light source (5) that shines light on a part of both samples (11 and (2)), and detects two reflected lights (Sl) and (S2) from both samples (11 and (2)). The detection unit (6) is configured to measure the thermal stress of the sample to be measured (1) by measuring the relative distance Δ between the two reflected lights (Sl) and (S2).

被測定試料(1)は、基板上に薄膜が被着されたもので
用いる。参照試料(2)はSi、ガラス等均質な材料よ
りなり、熱膨張はしても反りの生じない基板を用いる。
The sample to be measured (1) is a substrate on which a thin film is adhered. The reference sample (2) is a substrate made of a homogeneous material such as Si or glass, which does not warp even when thermally expanded.

〔作用〕[Effect]

光源からの光が被測定試料(1)及び参照試料(2)の
夫り同じ高さ位置に照射され、その光の2つの反射スポ
ット(Sl)及び(S2)が検出部(6)で観察される
。参照試料(2)は昇温時でも反りは生じない。したが
って、被測定試料(1)に反りが生じていない状態では
、2つの反射スポット(Sl)及び(S2)間の相対距
離Δは0である。次に昇温時、被測定試料(1)にその
基板及び薄膜の熱膨張係数差で反りが生ずると被測定試
料(1)からの反射スポット(Sl)の位置が変位する
。この反射スポット(Sl)の変位量即ち両スポット(
Sl)及び(S2)間の相対距離Δを測定し、この相対
距離Δから、後述の式(1)(δ;lΔ/2L)により
被測定試料の反り量δが求まり、さらに式(2)(σ=
Eb2/3 (1−ν)β2 d)により被測定試料(
1)の応力σが求まる。
Light from the light source is irradiated onto the same height position of the sample to be measured (1) and the reference sample (2), and two reflected spots (Sl) and (S2) of the light are observed by the detection unit (6). be done. Reference sample (2) does not warp even when the temperature is increased. Therefore, when the sample to be measured (1) is not warped, the relative distance Δ between the two reflection spots (Sl) and (S2) is 0. Next, when the temperature is increased, when the sample to be measured (1) warps due to the difference in thermal expansion coefficient between the substrate and the thin film, the position of the reflection spot (Sl) from the sample to be measured (1) is displaced. The amount of displacement of this reflection spot (Sl), that is, both spots (
The relative distance Δ between Sl) and (S2) is measured, and from this relative distance Δ, the amount of warpage δ of the sample to be measured is determined using equation (1) (δ; lΔ/2L), which will be described later. (σ=
Eb2/3 (1-ν)β2 d) allows the sample to be measured (
1) The stress σ is found.

そして、昇温の際に支持部材(3)が熱によって変動じ
た場合、その支持部材(3)の変動の影響は両試料(1
)及び(2)に対して同じように与えられる。そのため
、検出部(6)で読み取られる両反射スポット(Sl)
と(S2)の相対距離Δは変動分が差し引かれた値、即
ち被測定試料(11のみの反りに起因した変位量となる
。従って、この両反射スポット(Sl)及び(S2)間
の相対距離Δを読み取ることにより、被測定試料の薄膜
の正確な熱応力が測定できる。
If the support member (3) changes due to heat during temperature rise, the influence of the change in the support member (3) will be
) and (2). Therefore, the double reflection spot (Sl) read by the detection unit (6)
The relative distance Δ between and (S2) is the value after the fluctuation is subtracted, that is, the amount of displacement caused by the warpage of only the sample to be measured (11).Therefore, the relative distance between both reflection spots (Sl) and (S2) is By reading the distance Δ, accurate thermal stress of the thin film of the sample to be measured can be measured.

〔実施例〕〔Example〕

以下、図面を参照して本発明による熱応力測定装置の実
施例を説明する。
Embodiments of the thermal stress measuring device according to the present invention will be described below with reference to the drawings.

本例においては、第1図に示すように被測定試料(1)
及び参照試料(2)を用意し、両試料(1)及び(2)
が互いに近接して並ぶように両試料(1)及び(2)の
一端を夫々例えばガラスよりなる単一支持部材(3)に
て挟持的に支持する。この共通に支持された被測定試料
(11及び参照試料(2)は加熱室即ち恒温槽(4)内
に設置する。本例では被測定試料(1)としては第3図
Aに示すようにシリコン基板(7)の片面に厚さ 1.
0μmのプラズマCVDよるシリコンナイトライド薄膜
(8)を堆積した試料を用い、参照試料(2)としては
第3図Bに示すように裸のシリコン基板(9)を用いる
。両試料(1)及び(2)ともシリコン基板(7)及び
(9)の寸法は厚さ 0.6mm、長さ12.5cm、
幅1 cmである。
In this example, as shown in Figure 1, the sample to be measured (1)
and reference sample (2), and both samples (1) and (2).
One end of each of the samples (1) and (2) is supported by a single support member (3) made of glass, for example, so that the samples (1) and (2) are arranged close to each other. The commonly supported sample to be measured (11) and reference sample (2) are placed in a heating chamber, that is, a constant temperature oven (4).In this example, the sample to be measured (1) is as shown in Figure 3A. Thickness on one side of silicon substrate (7) 1.
A sample on which a 0 μm silicon nitride thin film (8) was deposited by plasma CVD was used, and a bare silicon substrate (9) as shown in FIG. 3B was used as a reference sample (2). In both samples (1) and (2), the silicon substrates (7) and (9) have a thickness of 0.6 mm, a length of 12.5 cm,
The width is 1 cm.

そして、恒温M(4)内に設置された両試料(11及び
(2)に対向して、両試料(1)及び(2)にレーザ光
を照射するための1個のレーザ光源(5)と、レーザ光
の両試料+1)及び(2)で反射した反射スポット(S
l)及び(S2)を検出する検出部(6)を配置する。
Then, one laser light source (5) for irradiating laser light to both samples (1) and (2) is placed opposite to both samples (11 and (2)) installed in constant temperature M (4). and the reflected spot (S
A detection unit (6) is arranged to detect l) and (S2).

この場合、両試料(1)、 (21及びレーザ光源(5
)はレーザスポットが両試料に同時に当たるように配置
する。ここで、両試料fil及び(2)におけるレーザ
照射部(10)と支持部材(3)との距離lは8cII
+、両試料(11及び(2)と検出部(6)間の距ML
は11.8mである。
In this case, both samples (1), (21 and laser light source (5)
) is arranged so that the laser spot hits both samples simultaneously. Here, the distance l between the laser irradiation part (10) and the support member (3) in both samples fil and (2) is 8cII
+, distance ML between both samples (11 and (2) and detection part (6)
is 11.8m.

この熱応力測定装置を用いて昇温時の薄膜(8)の応力
を測定するには、次のようになす。
To measure the stress of the thin film (8) when the temperature is increased using this thermal stress measurement device, the following procedure is performed.

恒温槽(4)中に設置された単一支持部材(3)にて支
持された被測定試料(1)と参照試料(2)の両方に同
時に、レーザ光源(5)からのレーザ光を照射し、検出
部(6)にて被測定試料(1)及び参照試料(2)で反
射された夫々の反射スポット(Sl)及び(S2)の相
対距離Δの変動を読み取る。即ち、被測定試料(1)は
シリコン基板(7)とシリコンナイトライド薄膜(8)
の熱膨張係数差により温度による反りが生じるも、参照
試料(2)では裸のシリコン基板(9)を用いているの
で温度による反りは生じない。また両試料(11及び(
2)は共通の支持部材(3)によって支持されているの
で、支持部材(3)に熱による変動が生じた場合、両試
料(11及び(2)共に同じように変位する。従って温
度を変えた時の両試料(11及び(2)の反射スポット
(Sl)及び(S2)の相対距離Δを読み取ることによ
り、自動的に支持部材(3)の熱変動は補償される。こ
のようにして各測定温度に対する反射スポットの相対距
離Δを測定した結果の例を第4図に示す、但し、第4図
でのグラフは初期状態(室温)での相対距離を差引いた
値である。
Both the sample to be measured (1) and the reference sample (2) supported by a single support member (3) installed in a thermostatic chamber (4) are simultaneously irradiated with laser light from a laser light source (5). Then, the detection unit (6) reads the variation in the relative distance Δ of the respective reflection spots (Sl) and (S2) reflected by the sample to be measured (1) and the reference sample (2). That is, the sample to be measured (1) is a silicon substrate (7) and a silicon nitride thin film (8).
Although warping occurs due to temperature due to the difference in thermal expansion coefficient between the two, since the reference sample (2) uses a bare silicon substrate (9), no warping occurs due to temperature. Also, both samples (11 and (
2) is supported by a common support member (3), so if the support member (3) changes due to heat, both samples (11 and (2)) will be displaced in the same way. Therefore, if the temperature is changed, By reading the relative distance Δ between the reflection spots (Sl) and (S2) of both samples (11 and (2)) when An example of the results of measuring the relative distance Δ of the reflection spot for each measurement temperature is shown in FIG. 4. However, the graph in FIG. 4 is the value obtained by subtracting the relative distance in the initial state (room temperature).

この相対距離Δから被測定試料(1)の反り量δが計算
できる。
The amount of warpage δ of the sample to be measured (1) can be calculated from this relative distance Δ.

第5図に示すようにΔに対応する反射光の角度変化をθ
とすると、θ(lであることによりである。この変化は
レーザ光が当たっている部分が6だけ変化した結果であ
り、従って、より被測定試料(11の反り量δが求まる
As shown in Figure 5, the angle change of the reflected light corresponding to Δ is θ
This is due to the fact that θ(l). This change is the result of a change in the area irradiated by the laser beam by 6, and therefore, the amount of warpage δ of the sample to be measured (11) can be determined.

さらに、次式により、被測定試料(11の薄膜(8)の
応力σが求まる。
Furthermore, the stress σ of the thin film (8) of the sample to be measured (11) is determined by the following equation.

ここで、E:基板のヤング率 シ:基板のポアソン比 l:支持部材とレーザ照射部との距離 δ:二基板反り量 す二基板の厚さ d:薄膜の厚さ 第2図は本発明の熱応力測定装置の他の例である。本例
は、基本的な構成は第1図と同じであるが、特に相対位
置を固定した2つのレーザ光源(5a)及び(5b)を
配し、被測定試料(1)と参照試料(2)に夫々のレー
ザ光を照射するように構成した場合である。
Here, E: Young's modulus of the substrate: Poisson's ratio of the substrate l: Distance between the support member and the laser irradiation part δ: Amount of warp of the two substrates d: Thickness of the thin film Figure 2 shows the invention of the present invention. This is another example of the thermal stress measuring device. In this example, the basic configuration is the same as that in Fig. 1, but two laser light sources (5a) and (5b) whose relative positions are fixed are arranged, and a sample to be measured (1) and a reference sample (2) are arranged. ) is configured to irradiate the respective laser beams.

上述の熱応力測定装置によれば、被測定試料(11と反
りの生じない参照試料(2)を同一支持部材(3)にて
支持し、検出部(6)にて両試料(11及び(2)から
の反射スポット(Sl)及び(S2)の相対距離Δを測
定している。
According to the above-described thermal stress measuring device, the sample to be measured (11) and the reference sample (2), which does not cause warping, are supported by the same support member (3), and both samples (11 and (2) are supported by the detection unit (6). 2) is measuring the relative distance Δ of the reflection spots (Sl) and (S2).

昇温に応じて支持部材(3)が変動しても、反射スポッ
ト相対距離Δはその変動に基づく量が差し引かれた値即
ち被測定試料(11のみの反り量に対応した値となる。
Even if the support member (3) changes in accordance with the temperature rise, the reflection spot relative distance Δ becomes a value obtained by subtracting the amount based on the change, that is, a value corresponding to the amount of warpage of only the sample to be measured (11).

従って、支持部材(3)の熱変動が補償され、薄膜(8
)の熱応力を正確に測定することができる。
Therefore, thermal fluctuations in the support member (3) are compensated for and the thin film (8
) can be accurately measured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱変形を無視し得る参照試料を被測定
試料とともに同一の支持部材に固定し、両試料からの反
射スポットの相対距離を読み取るよううに構成すること
により、支持部材の熱による変動に起因する誤差が補償
され、被測定試料の熱応力を簡単且つ正確に測定するこ
とができる。
According to the present invention, a reference sample whose thermal deformation can be ignored is fixed to the same support member together with the sample to be measured, and the relative distance of the reflection spots from both samples is read. Errors caused by fluctuations are compensated for, and the thermal stress of the sample to be measured can be measured easily and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明による熱応力測定装置の
実施例を示す構成図、第3図は被測定試料及び参照試料
の例を示す斜視図、第4図は測定温度と反射スポット相
対距離の関係を示すグラフ、第5図は本発明の説明に供
する線図、第6図は従来の光挺子法による内部応力測定
装置の構成図である。 (11は被測定試料、(2)は参照試料、(3)は支持
部材、(4)は恒温槽、(5)はレーザ光源、(6)は
検出部、(Sl)、  (S2)は反射スポットである
1 and 2 are block diagrams showing an example of a thermal stress measuring device according to the present invention, FIG. 3 is a perspective view showing an example of a sample to be measured and a reference sample, and FIG. 4 is a diagram showing measurement temperature and reflection spots. FIG. 5 is a graph showing the relationship between relative distances, FIG. 5 is a diagram for explaining the present invention, and FIG. 6 is a configuration diagram of a conventional internal stress measuring device using the optical lever method. (11 is the sample to be measured, (2) is the reference sample, (3) is the support member, (4) is the thermostat, (5) is the laser light source, (6) is the detection unit, (Sl), (S2) is It is a reflective spot.

Claims (1)

【特許請求の範囲】 加熱室と、 該加熱室内において同一の支持部材にて支持された被測
定試料及び熱変形を無視し得る参照試料と、 上記両試料の一部に光を当てる光源と、 上記両試料からの2つの反射光を検出する検出部とを有
し、 上記2つの反射光の距離を測定して上記被測定試料の熱
応力を測定することを特徴とする熱応力測定装置。
[Scope of Claims] A heating chamber, a sample to be measured and a reference sample whose thermal deformation can be ignored, which are supported by the same support member in the heating chamber, and a light source that irradiates parts of both the samples. A thermal stress measuring device, comprising: a detection unit that detects two reflected lights from both of the samples, and measures a distance between the two reflected lights to measure thermal stress of the sample to be measured.
JP12887887A 1987-05-26 1987-05-26 Thermal-stress measuring device Pending JPS63292045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12887887A JPS63292045A (en) 1987-05-26 1987-05-26 Thermal-stress measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12887887A JPS63292045A (en) 1987-05-26 1987-05-26 Thermal-stress measuring device

Publications (1)

Publication Number Publication Date
JPS63292045A true JPS63292045A (en) 1988-11-29

Family

ID=14995588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12887887A Pending JPS63292045A (en) 1987-05-26 1987-05-26 Thermal-stress measuring device

Country Status (1)

Country Link
JP (1) JPS63292045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164132A (en) * 2017-12-06 2019-01-08 济南兰光机电技术有限公司 A kind of device, method and film pyrocondensation tester detecting material expansion and contraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164132A (en) * 2017-12-06 2019-01-08 济南兰光机电技术有限公司 A kind of device, method and film pyrocondensation tester detecting material expansion and contraction

Similar Documents

Publication Publication Date Title
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US5102231A (en) Semiconductor wafer temperature measurement system and method
KR970077431A (en) Method and apparatus for substrate temperature measurement
JP5485321B2 (en) Lithographic apparatus, method for calibrating a lithographic apparatus, and device manufacturing method
JPS6127682B2 (en)
JPS60219744A (en) Projection exposure device
TW201234119A (en) Method for operating a projection exposure tool and control apparatus
JP3764208B2 (en) Method and apparatus for characterizing a multilayer coating structure and measuring the distance between two faces facing the coating
JP6664499B2 (en) Measurement system, lithographic apparatus, and device manufacturing method
JP3897655B2 (en) Linear expansion coefficient measuring device
US5221142A (en) Method and apparatus for temperature measurement using thermal expansion
US8500326B2 (en) Probe for temperature measurement, temperature measuring system and temperature measuring method using the same
JPS63292045A (en) Thermal-stress measuring device
JPH11183413A (en) Expansion measuring apparatus
US20030231694A1 (en) Temperature-measuring device
JP3202183B2 (en) Scale and length measurement method using laser light
CN111879808A (en) Measuring device for phase transition temperature of thin film material
JPH0356846A (en) Heat expansion coefficient measuring instrument for thin film
JPH04132944A (en) Device for measuring thermal coefficient of expansion
JPH11153555A (en) Thin film-measuring apparatus
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JPH01244350A (en) Apparatus for measuring thermal expansion and contraction of plate material
JPH1019690A (en) Base temperature monitor
JP3670068B2 (en) Microscope and focus setting method thereof
JPS63222207A (en) Apparatus for measuring depth of recessed part and thickness of film