JPH01244350A - Apparatus for measuring thermal expansion and contraction of plate material - Google Patents

Apparatus for measuring thermal expansion and contraction of plate material

Info

Publication number
JPH01244350A
JPH01244350A JP7156388A JP7156388A JPH01244350A JP H01244350 A JPH01244350 A JP H01244350A JP 7156388 A JP7156388 A JP 7156388A JP 7156388 A JP7156388 A JP 7156388A JP H01244350 A JPH01244350 A JP H01244350A
Authority
JP
Japan
Prior art keywords
light
reflecting mirror
contraction
measured
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7156388A
Other languages
Japanese (ja)
Inventor
Kenji Tanabe
田辺 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7156388A priority Critical patent/JPH01244350A/en
Publication of JPH01244350A publication Critical patent/JPH01244350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To perform the measurement of the thermal expansion coefficient and the thermal contraction coefficient of a sample, by a constitution wherein a reflecting mirror can be smoothly moved based on the expansion and the contraction of the specimen with heat, and the amount of the movement is measured with the interference phenomenon of light. CONSTITUTION:When a specimen 2 is swelled with the heating of a heater 3, a moving reflecting mirror 4 is moved. Parallel light emitted from a light source 12 is split into transmitted light and light toward a fixed reflecting mirror 14 through a beam splitter 15. The transmitted light is reflected with the moving reflecting mirror 4 and interference with the light that is reflected from the fixed reflecting mirror 14. At this time, the intensity of the interfered light is changed based on the difference between two light paths. The number of times of the brightness and the darkness is measured by using a photoelectronic element 15a and a pulse counter 16a. Thus the variation of the order of the optical wavelength can be measured. The temperature in a heating furnace 1 is measured with a thermocouple 10 and inputted into a personal computer 17. In this way, the thermal expansion and contraction can be measured highly accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本−発明は、板材料における熱膨張及び収縮、率を計測
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring thermal expansion and contraction rates in plate materials.

(従来技術) 板材料の熱膨張率の計測においては、これまで差動トラ
ンス型の変位計などを利用した計測装置が多く開発され
ている。
(Prior Art) For measuring the coefficient of thermal expansion of plate materials, many measuring devices using differential transformer type displacement meters and the like have been developed.

(発明が解決しようとする課題) 上記の計測装置においては、その機構上、板の長手(軸
)方向に力を負荷する必要があシ、しかも膨張時の変形
とともに負荷力が増大するため温度上昇によって、その
負荷力が影響するような例えばプリント基板などの試料
の場合には、負荷力により、反りを発生する可能性があ
った。このため得られた測定データの中に純粋な熱膨張
率でなく、反りの影響が含まれることが多かっ九。
(Problem to be solved by the invention) In the above measuring device, due to its mechanism, it is necessary to apply force in the longitudinal (axial) direction of the plate, and since the load force increases with deformation during expansion, the temperature In the case of a sample such as a printed circuit board, which is affected by the load force due to the rise, there is a possibility that the load force causes warping. For this reason, the measurement data obtained often includes the effects of warpage, rather than the pure coefficient of thermal expansion.

また、同じような計測装置においては、第3図に示すよ
うに、試料22について2台のカメラ28を用いて、そ
れを画像処理することにより、試験片の熱膨張率を測定
するものも開発されているが(時開60−39540号
公報)、これらの装置では、試料の端面にエツジ加工を
施す必要があることや、試料の長さを精度良く管理する
必要があった。図中21は加熱炉、22は試料、23は
発熱体、24は照明装置、25はM’Mt対、26はフ
ィルター、27は望遠レンズ、28はカメラ、29はカ
メラコントロールユニット、30は温度計、31はイン
タフェース、22はマイクロコンビエータ、33はデジ
タルゾロツタ−534はオシロスコープを示す。
In addition, a similar measuring device, as shown in Figure 3, has been developed that measures the coefficient of thermal expansion of a specimen 22 by using two cameras 28 and processing the images. However, in these devices, it was necessary to perform edge processing on the end face of the sample, and it was necessary to control the length of the sample with high precision. In the figure, 21 is a heating furnace, 22 is a sample, 23 is a heating element, 24 is an illumination device, 25 is an M'Mt pair, 26 is a filter, 27 is a telephoto lens, 28 is a camera, 29 is a camera control unit, and 30 is a temperature In total, 31 is an interface, 22 is a micro combinator, 33 is a digital sensor, and 534 is an oscilloscope.

本発明は上記の点に鑑みてなされたもので、その目的と
するところは、板材料の熱膨張・収縮率の測定を非接触
に近い形で、しかも容易に、精度良く行うことにある。
The present invention has been made in view of the above points, and its purpose is to measure the coefficient of thermal expansion and contraction of a plate material in a nearly non-contact manner, and moreover, easily and accurately.

(課題を解決するための手段) 上記の目的を達成するため、本発明は板材料の熱膨張・
収縮率の計測において、試料の両端を板巾方向が垂直に
なるように支持し、その−端は試料の長さに応じて、止
める位置が調節できるようになっていて、また、他の一
端については、試料長手方向の膨張・収縮に対して小さ
い抵抗力でスライド可能な可動軸を有し、かつ、その可
動軸に対して非常に高精度な垂直性を有する面上に反射
鏡を備えることにより、光の干渉現象を利用して、はと
んど非接触に近い状態で膨張・収縮率を精度良く自動測
定できるようにしたことを特徴とする計測装置である。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides thermal expansion and
In measuring the shrinkage rate, both ends of the sample are supported so that the width direction is perpendicular, and the stopping position of the lower end can be adjusted depending on the length of the sample, and the other end is has a movable axis that can slide with small resistance against expansion and contraction in the longitudinal direction of the sample, and is equipped with a reflecting mirror on a surface that is perpendicular to the movable axis with very high precision. This measurement device is characterized by being able to automatically measure expansion and contraction rates with high precision in a nearly non-contact state by utilizing the optical interference phenomenon.

(作用) 本発明は上記のように構成されているため、試料の熱に
よる膨張・収縮に伴い、反射鏡がスムーズに移動できる
ようにし、その移動量を光の干渉現象を利用することに
よって光の波長オーダの高精度な計測が可能となる。
(Function) Since the present invention is configured as described above, the reflecting mirror can be moved smoothly as the sample expands and contracts due to heat, and the amount of movement is controlled by the optical interference phenomenon. This makes it possible to perform highly accurate measurements on the order of wavelengths.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

なお実施例は一つの例示であって、本発明の精神を逸脱
しない範囲で、種々の変更あるいは改良を行いうろこと
は云うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

次に、本発明の一実施例を第1及び第2図に基づいて説
明する。
Next, one embodiment of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の全体システムの一例、第2図は板状の
試料をチャックする部分の一例を示す。
FIG. 1 shows an example of the overall system of the present invention, and FIG. 2 shows an example of a part for chucking a plate-shaped sample.

発熱体3を備えた加熱炉1の中で試料2を固定側の支持
板5と移動側の支持板4aの間に。
In a heating furnace 1 equipped with a heating element 3, a sample 2 is placed between a support plate 5 on a fixed side and a support plate 4a on a movable side.

支持金具7によって取り付ける。その際、試料は極力、
重力による試料のたわみが少ないように面が垂直になる
ようにセットする。固定側の支持板5には、試料の長さ
に応じて、その位置を長手方向に調節ができるよう支持
板調節軸6と調節ブロック8が設けられている。調節軸
の材質としては、線膨張係数が低いセラミック材などが
好ましいが、他の材質であっても、温度 −変化による
膨張量を考慮してシステムを組むことができる。一方、
移動側の支持部は支持板4aと反射鏡4b(第2図参照
)が試料長手方向の膨張・収縮に対して、非常に小さい
抵抗力でスライド可能な可動軸6と直交して接続されて
いるものとする。
Attach with support metal fittings 7. At that time, the sample should be
Set the surface vertically to minimize deflection of the sample due to gravity. The support plate 5 on the fixed side is provided with a support plate adjustment shaft 6 and an adjustment block 8 so that its position can be adjusted in the longitudinal direction according to the length of the sample. The material of the adjustment shaft is preferably a ceramic material with a low coefficient of linear expansion, but the system can be constructed with other materials taking into account the amount of expansion due to temperature changes. on the other hand,
The supporting part on the moving side has a supporting plate 4a and a reflecting mirror 4b (see Fig. 2) connected orthogonally to a movable shaft 6 that can slide with very small resistance against expansion and contraction in the longitudinal direction of the sample. It is assumed that there is

いま、発熱体3の発熱によシ、試料が膨張すると、移動
反射鏡4が移動する。光の干渉現象の利用として、第1
図の光学ブロック13内に示すマイクルソン型干渉計を
考えるものとする。
Now, when the sample expands due to heat generated by the heating element 3, the movable reflecting mirror 4 moves. The first use of the optical interference phenomenon
Let us consider a Michelson type interferometer shown inside the optical block 13 in the figure.

光源12から発した平行光はビームスプリッタ−15で
固定反射鏡14への光とそれを透過する光とに分けられ
、透過した光は移動反射鏡4bで反射され最終的には固
定反射鏡14で反射された光とで干渉を起こす。その時
この2つの光の光路差により、干渉光の強さが変化する
The parallel light emitted from the light source 12 is divided by the beam splitter 15 into the light directed to the fixed reflecting mirror 14 and the light transmitted through it, and the transmitted light is reflected by the movable reflecting mirror 4b and finally returns to the fixed reflecting mirror 14. Interference occurs with the light reflected by the At this time, the intensity of the interference light changes due to the optical path difference between the two lights.

この明暗回数を光電素子151とパルスカクンタ16L
を用いて計測することにより、光の波長オーダーの変位
計測が可能となる。また加熱炉1内の温度を熱電対10
などによシ、同時に・臂ソコン17を用いて処理するこ
とによって高精度な熱膨張・収縮率自動計測システムが
可能となる。
The number of brightness and darkness is determined by the photoelectric element 151 and the pulse capacitor 16L.
By measuring using , it is possible to measure displacement on the order of the wavelength of light. In addition, the temperature inside the heating furnace 1 is measured by a thermocouple 10.
At the same time, by processing using the armature controller 17, a highly accurate thermal expansion/contraction rate automatic measurement system becomes possible.

第2図において、1は加熱炉の一部、5は支持板、7は
支持金具、2は試料、4aは支持板、4bは反射鏡、6
は精密可動軸、9は軸受けを示す。
In Fig. 2, 1 is a part of the heating furnace, 5 is a support plate, 7 is a support fitting, 2 is a sample, 4a is a support plate, 4b is a reflector, 6
9 indicates a precision movable shaft, and 9 indicates a bearing.

(発明の効果) 以上のように、本発明は光の干渉現象を利用することに
よυ、これまでの接触タイプの計測器で発生していた板
の反シの影響を極力少なくした熱膨張・収縮率の計測が
可能となる。またカメラを用いた非接触タイプの計測器
と比較すると、試料の端面加工や、長さの精度を必要と
しない安易な計測が可能となる効果を有する。
(Effects of the Invention) As described above, the present invention utilizes the optical interference phenomenon to achieve thermal expansion that minimizes the influence of plate deformation that occurs in conventional contact-type measuring instruments.・It becomes possible to measure the shrinkage rate. Furthermore, compared to non-contact type measuring instruments that use cameras, it has the effect of enabling easy measurement that does not require end face processing of the sample or length accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱膨張・収縮率計測装置の一実施
例を示す。第2図は、その試料チャック部の詳細図であ
る。また第3図は従来例を示す。 1・・・加熱炉、2・・・試料、3・・・発熱体、4・
・・移動反射板、4&・・・支持板、4b・・・反射鏡
、5・・・支持板、6・・・精密可動軸、7・・・支持
金具、8・・・調節ブロック、9・・・軸受け、10・
・・熱電対、11・・・A/D変換器、12・・・光源
、13・・・光学ブロック、14・・・固定反射鏡、1
5ζ・・・光電素子、16a・・・カウンタ、17・・
・パソコン。 第1図 第2図 ローーー師(7 第3図 28−−− 77メラ 手続ネ巾正書(方式) 1、事件の表示 昭和63年 特 許 願 第71563号、発明の名称 板材料の熱膨張・収縮計測1置 、補正をする当 事件との関係 特許出願人 名 称  (583)松下電工株式会社、代  理  
人   〒160 住  所   東京都新宿区西新宿7丁目5番10号第
2ミゾタビルディング7階 電話(03)365−1982番 氏  名   弁理士(6108)高  山  敏  
夫、補正命令の日付 昭和63年6月8日 (発進口 昭和63年6月28日
)、補正の対象 (2)明細書の「発明の名称」の欄 、補正の内容 (1)別紙のとおり
FIG. 1 shows an embodiment of a thermal expansion/contraction rate measuring device according to the present invention. FIG. 2 is a detailed view of the sample chuck section. Further, FIG. 3 shows a conventional example. DESCRIPTION OF SYMBOLS 1... Heating furnace, 2... Sample, 3... Heating element, 4...
...Moving reflector, 4 &... Support plate, 4b... Reflector, 5... Support plate, 6... Precision movable shaft, 7... Support metal fittings, 8... Adjustment block, 9 ...Bearing, 10.
...Thermocouple, 11...A/D converter, 12...Light source, 13...Optical block, 14...Fixed reflector, 1
5ζ...Photoelectric element, 16a...Counter, 17...
·computer. Fig. 1 Fig. 2 Fig. 2 (7 Fig. 3 28--77 Mera procedure booklet (method) 1. Indication of the case 1988 Patent application No. 71563, name of the invention Thermal expansion of plate material・Relationship to this case where contraction measurement is made and correction Name of patent applicant (583) Matsushita Electric Works Co., Ltd., Agent
Person: 160 Address: 7th Floor, 2nd Mizota Building, 7-5-10 Nishi-Shinjuku, Shinjuku-ku, Tokyo Phone: (03) 365-1982 Name: Satoshi Takayama, Patent Attorney (6108)
Husband, the date of the amendment order: June 8, 1988 (starting point: June 28, 1988), the subject of the amendment (2) the "Title of the Invention" column of the specification, the content of the amendment (1) the attached sheet. Street

Claims (1)

【特許請求の範囲】[Claims] 板材料の熱膨張・収縮率の計測装置において、被測定試
料の両端を板巾方向が垂直になるように支持する固定支
持板及び移動支持板と、前記の固定支持板には試料の長
さに応じて、止める位置が調節可能となっており、前記
の移動支持板には試料の長手方向の膨張・収縮に対して
小さい抵抗力でスライド可能な可動軸が設けられており
、かつ前記の可動軸には非常に高精度な垂直性を有する
面上に反射鏡が設けられ、前記反射鏡には光源及び固定
反射鏡よりの光を受けるビームスプリッターを介して光
が照射されるように構成されていることを特徴とする板
材料の熱膨張・収縮計測装置。
In an apparatus for measuring the coefficient of thermal expansion and contraction of a plate material, there is a fixed support plate and a movable support plate that support both ends of the sample to be measured so that the plate width direction is perpendicular, and the fixed support plate has a fixed support plate that supports the length of the sample. The stopping position can be adjusted according to the above-mentioned conditions. A reflecting mirror is provided on the movable axis on a highly accurate vertical surface, and the reflecting mirror is configured to be irradiated with light via a beam splitter that receives light from a light source and a fixed reflecting mirror. A device for measuring thermal expansion and contraction of plate materials.
JP7156388A 1988-03-25 1988-03-25 Apparatus for measuring thermal expansion and contraction of plate material Pending JPH01244350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156388A JPH01244350A (en) 1988-03-25 1988-03-25 Apparatus for measuring thermal expansion and contraction of plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156388A JPH01244350A (en) 1988-03-25 1988-03-25 Apparatus for measuring thermal expansion and contraction of plate material

Publications (1)

Publication Number Publication Date
JPH01244350A true JPH01244350A (en) 1989-09-28

Family

ID=13464306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156388A Pending JPH01244350A (en) 1988-03-25 1988-03-25 Apparatus for measuring thermal expansion and contraction of plate material

Country Status (1)

Country Link
JP (1) JPH01244350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141679A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2002107318A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Measuring device for linear expansion coefficient
CN108344626A (en) * 2018-01-29 2018-07-31 上海大学 The controllable high temperature thermal fatigue tester of ambient exhaust gas
CN108760797A (en) * 2018-07-16 2018-11-06 昆明理工大学 A kind of processing method of metal material swell increment curve
KR101988906B1 (en) * 2018-06-25 2019-06-13 사단법인 한국화재보험협회 Experimental device for evaluating behavior and measuring fire resistance of beam with axial and rotational restraints in fire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141679A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2002107318A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Measuring device for linear expansion coefficient
CN108344626A (en) * 2018-01-29 2018-07-31 上海大学 The controllable high temperature thermal fatigue tester of ambient exhaust gas
CN108344626B (en) * 2018-01-29 2020-09-08 上海大学 High-temperature thermal fatigue testing machine with controllable environmental waste gas
KR101988906B1 (en) * 2018-06-25 2019-06-13 사단법인 한국화재보험협회 Experimental device for evaluating behavior and measuring fire resistance of beam with axial and rotational restraints in fire
CN108760797A (en) * 2018-07-16 2018-11-06 昆明理工大学 A kind of processing method of metal material swell increment curve
CN108760797B (en) * 2018-07-16 2020-12-15 昆明理工大学 Method for processing expansion curve of metal material

Similar Documents

Publication Publication Date Title
US7460216B2 (en) Surface strain measuring device
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
Yamaguchi et al. Active phase-shifting interferometers for shape and deformation measurements
JPH08505951A (en) Device for analyzing substances on the surface of optical sensor
CN108700830B (en) Measurement system, lithographic apparatus and device manufacturing method
JPH01244350A (en) Apparatus for measuring thermal expansion and contraction of plate material
JP3897655B2 (en) Linear expansion coefficient measuring device
US6476922B2 (en) Apparatus for measuring variations in size on bodies subjected to temperature variations
US3916528A (en) Apparatus for compensation of dimensional position changes
JPH11183413A (en) Expansion measuring apparatus
US4263515A (en) Variable temperature test target
Zaidi et al. Noncontact, 1° C resolution temperature measurement by projection moiré interferometry
EP0539571A4 (en) Dynamic shearing interferometer
Rao et al. Differential interferometry in heat transfer
JP2009200487A (en) Lithographic apparatus with temperature sensor and device manufacturing method
SU748212A1 (en) Apparatus for determining temperature-dependence of substance optical characteristics
Brunfeld et al. High resolution optical profilometer
RU2641629C2 (en) Dilatometer
KR100505019B1 (en) Method measurement of strain late for micro structure
JPH01270654A (en) Measuring apparatus of thermal expansion-contraction coefficient of circuit board material
Tada et al. Novel imaging system for measuring microscale curvatures at high temperatures
Wang et al. Metrology of the mirrors at the Taiwan Light Source
Ruffino et al. New opto-electronic dilatometer
Kang et al. Effective area measurement of apertures by optical method
JPH04188030A (en) Apparatus for measuring infrared-ray radiation temperature