JPS6329193A - Gas liquid separation type vertical thermo siphon - Google Patents

Gas liquid separation type vertical thermo siphon

Info

Publication number
JPS6329193A
JPS6329193A JP17136986A JP17136986A JPS6329193A JP S6329193 A JPS6329193 A JP S6329193A JP 17136986 A JP17136986 A JP 17136986A JP 17136986 A JP17136986 A JP 17136986A JP S6329193 A JPS6329193 A JP S6329193A
Authority
JP
Japan
Prior art keywords
working fluid
tube
inner tube
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17136986A
Other languages
Japanese (ja)
Other versions
JPH0379636B2 (en
Inventor
Masao Shiraishi
白石 正夫
Koichi Masuko
耕一 益子
Tsuneaki Motai
恒明 馬渡
Masataka Mochizuki
正孝 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP17136986A priority Critical patent/JPS6329193A/en
Publication of JPS6329193A publication Critical patent/JPS6329193A/en
Publication of JPH0379636B2 publication Critical patent/JPH0379636B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a superior work efficiency and a superior thermal transportation amount by a method wherein an inner pipe having an opened upper end and having several air holes at its circumferential wall is concentrically inserted and arranged within an external pipe having a closed structure and a helical line is held between both pipes. CONSTITUTION:A heat Q is applied to an evaporater part 15 from an external source and the heat Q is retrieved from a radiation part 14, a working fluid 19 is evaporated and gasified at an evaporation part and its steam flows upwardly toward a radiation part 14 having a low pressure. In this case, the working fluid vapor is generated between the inner pipe 11 and the outer pipe 10 to generate an ascending flow. Since a helical line 12 is held between the pipes, a flowing resistance is high, resulting in that the working fluid vapor passes through air holes 17 formed in the inner pipe 11, enters the inner pie 11 and then flows toward the radiation part 14. In this way, the condensed and liquefied liquid phase working fluid in contact with an inner circumferential surface of the outer pipe 10 at the radiation part 14 flows down along the inner surface of the outer pipe 10, enters a space between the inner pipe 11 and the outer pipe 10, the working liquid becomes a helical flow due to a presence of the helical line 12 and flows out of the inner pipe 11. Therefore, the interior of the inner pipe 11 becomes a vapor passage and the outer part becomes a working fluid passage and thus a gas liquid separation is carried out.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は密閉管の内部に封入した凝縮性の作動流体を
蒸発および液化させつつ上下方向において循環流動させ
ることにより作動流体の蒸発潜熱として熱の輸送を行な
うサーモサイホンに関するものである。
Detailed Description of the Invention: Industrial Application Field This invention transports heat as the latent heat of vaporization of the working fluid by evaporating and liquefying a condensable working fluid sealed inside a sealed tube and circulating it in the vertical direction. This relates to a thermosyphon that performs.

従来の技術 サーモサイホンは基本的には、密閉管の内部から空気な
どの非凝縮性のガスを真空排気した後に水などの凝縮性
の流体を作動流体として封入し、その密閉管をほぼ垂直
に設置した状態でその下端部に熱を与えることにより作
動流体を蒸発させ、同時に密閉管の上端部から熱を奪う
ことにより、作動流体蒸気を密閉管の上端部で凝縮液化
させ、ざらに液化した作動流体を密閉管の内面に沿わせ
て流下させ、その結果、作動流体の蒸発潜熱として熱の
輸送を行なうものである。したかってサーモサイホンは
構成が簡単であるうえに、外部動力を要さずに熱の輸送
を行なわせることかて゛きるから、地熱の採取あるいは
地中からの後熱による地中への冷熱の蓄熱等に用いるこ
とが考えられる。
Conventional technology The thermosiphon basically consists of evacuating a non-condensable gas such as air from the inside of a sealed tube, then sealing in a condensable fluid such as water as the working fluid, and then running the sealed tube almost vertically. When installed, heat is applied to the lower end of the tube to evaporate the working fluid, and at the same time heat is removed from the upper end of the sealed tube, causing the working fluid vapor to condense and liquefy at the upper end of the sealed tube, resulting in a rough liquefaction. The working fluid is caused to flow down along the inner surface of the sealed tube, and as a result, heat is transported as the latent heat of vaporization of the working fluid. Therefore, thermosiphons are simple in construction and can transport heat without requiring external power, so they can be used to collect geothermal heat or store cold heat underground using afterheat from the ground. It can be considered to be used for

しかしながら上述したような一般的なサーモサイホンで
は、作動液を密閉管の内面を伝って流下させる構成であ
るから、凝縮液化した作動流体を、外部から入熱のある
蒸発部の内周面全体に必ずしも充分分散させることがで
きず、また作動液の流動方向と作動流体蒸気の流動方向
とが反対となって両者が対向流となるから、作動液が入
熱のある蒸発部に還流する以前に蒸気流によって飛散さ
せられ、その結果蒸発部での作動液が不足して熱輸送量
が制限される問題がある。このような問題を解決するこ
とのできるサーモサイホンとして第5図に示す構成のも
のが従来提案されている。これは、密閉管1の上端部に
フィン2を取り付けた放熱兼液溜め部3を形成し、かつ
多数の小孔を周壁部に形成した分配管4を前記放熱兼液
溜め部3の底部に接続覆る一方、その分配管4の下端部
側を前記密閉管1の外側から内側に周壁部を貫通させて
引き入れ、ざらに密閉管1の内部には、空気等の非凝縮
性のガスを真空排気した状態で水などの凝縮Hの流体を
作動流体として封入した構成で必る。このような構成の
サーモサイホンであれば、前記放熱兼液溜め部3を上側
として垂直に立てた密閉管1の下端部側に熱Qを与え、
かつ放熱兼液溜め部3から熱Qを奪えば、作動流体蒸気
が密閉管1の内部を上方に流れて放熱兼液溜め部3にお
いて凝縮液化し、その結果生じた作動液が分配管4の内
部を通って流下し、密閉管1の内周面全体に分散供給さ
れる。
However, in the general thermosiphon described above, the working fluid is configured to flow down the inner surface of a sealed tube, so the condensed and liquefied working fluid is distributed over the entire inner circumferential surface of the evaporator where heat is input from the outside. It is not always possible to fully disperse the working fluid, and the flow direction of the working fluid and the working fluid vapor are opposite, resulting in counterflow, so the working fluid is not completely dispersed before it returns to the evaporation section where the heat is input. There is a problem in that the heat is scattered by the steam flow, resulting in a shortage of working fluid in the evaporator, which limits the amount of heat transport. A thermosiphon having the configuration shown in FIG. 5 has been proposed as a thermosiphon capable of solving such problems. This has a heat dissipation/liquid reservoir part 3 with fins 2 attached to the upper end of the sealed tube 1, and a distribution pipe 4 with many small holes formed in the peripheral wall at the bottom of the heat dissipation/liquid reservoir part 3. While covering the connection, the lower end side of the distribution pipe 4 is drawn in from the outside of the sealed tube 1 to the inside through the peripheral wall, and roughly inside the sealed tube 1, a non-condensable gas such as air is evacuated. This is necessary in a configuration in which a condensed H fluid such as water is sealed as a working fluid in an evacuated state. With a thermosiphon having such a configuration, heat Q is applied to the lower end side of the sealed tube 1 which is vertically erected with the heat dissipation/liquid reservoir section 3 on the upper side.
When the heat Q is removed from the heat dissipation/liquid reservoir section 3, the working fluid vapor flows upward inside the sealed pipe 1 and condenses and liquefies in the heat dissipation/liquid reservoir section 3, and the resulting working fluid flows into the distribution pipe 4. It flows down through the interior and is distributed and supplied over the entire inner peripheral surface of the sealed tube 1.

発明が解決しようとする問題点 しかるに第5図に示す従来のサーモサイホンでは、前記
分配管4における各小孔から噴出する作動液の量はその
小孔の上下位置に基づく水頭圧によって大きく影響され
るから、密閉管1の内周面全体に均一に作動液を分散さ
せることが離しく、また小径の分配管4を密閉管1の内
部に引き入れて所期の位置に固定することが困難である
などの製造上の問題がおった。
Problems to be Solved by the Invention However, in the conventional thermosiphon shown in FIG. 5, the amount of hydraulic fluid ejected from each small hole in the distribution pipe 4 is greatly influenced by the head pressure based on the vertical position of the small hole. Therefore, it is difficult to uniformly disperse the working fluid over the entire inner circumferential surface of the sealed tube 1, and it is also difficult to draw the small-diameter distribution pipe 4 into the sealed tube 1 and fix it at the desired position. There were some manufacturing problems.

この発明は上記の事情に鑑みてなされたもので、製造作
業性が良好で、しかも熱輸送量の優れた垂直曇ナーモサ
イホンを提供覆ることを目的とするものである。
The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a vertical fogging nermosyphon which is easy to manufacture and has an excellent heat transport amount.

問題点を解決するための手段 この発明は、上記の目的を達成するために、上下方向に
向けて配置する密閉構造の外管の内部に、その外管より
小径かつ短寸で少なくとも上端の開口した内管を同心状
に挿入配置し、その外管の内周面と内管の外周面との間
に螺旋状の線条体を挟み込み、さらに前記外管の内部に
実質的に凝縮性の作動流体のみを封入するとともに、前
記内管の周壁に多数の通気孔を形成したことを特徴とす
るものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides an opening at least at the upper end, which has a smaller diameter and shorter length than the outer tube, and is provided inside an outer tube of a closed structure arranged vertically. A helical filament is sandwiched between the inner circumferential surface of the outer tube and the outer circumferential surface of the inner tube, and a substantially condensable material is inserted into the outer tube. The inner tube is characterized in that only a working fluid is sealed therein, and a large number of ventilation holes are formed in the peripheral wall of the inner tube.

またこの発明においては、内管に上端部でつながった切
り起こし片を形成し、これを内管の外側に折り曲げて前
記通気孔を形成することが好ましい。
Further, in the present invention, it is preferable that a cut-and-raised piece is formed on the inner tube and connected at the upper end, and the cut-and-raised piece is bent to the outside of the inner tube to form the ventilation hole.

ざらにこの発明では、少なくとも内管をスパイラルコル
ゲート管とした場合には、前記通気孔を、内管の周壁の
うら外表面が斜め下側を向いた箇所に形成することが好
ましい。
Generally speaking, in this invention, when at least the inner tube is a spiral corrugated tube, it is preferable that the vent hole is formed at a location where the outer surface of the back of the peripheral wall of the inner tube faces diagonally downward.

作   用 この発明のサーモサイホンにおいても、作動流体が蒸発
して上端側に流動し、しかる後放熱して液化することに
より、作動流体の蒸発潜熱として熱の輸送を行なう。そ
の場合、この発明では、内管と外管との間に螺旋状の線
条体を挟み込んだから、内管と外管との間に螺旋状の液
溜め部か形成されていて、ここで作動流体の蒸発が生じ
、ぞの蒸気が内管と外管との間を上方に流れるが、内管
と外管との間の空間は螺旋状になっているので、作動流
体蒸気が次第に通気孔から内管の内側に流れ込み、実質
的には内管の内部が蒸気流路となって作動流体蒸気がこ
こを通って上端部に至る。また内管は外管より短いから
、上端部に流れた作動流体蒸気は外管の内周面に接触し
て熱を外部に放出し、その結果生じた液相の作動流体は
、外管の内周面を伝って流下し、したがって内懐と外管
との間の螺旋状の空間部が液流路となり、気液分離が行
なわれる。ざらに作動液は螺旋流となって流下するから
、熱授受の生じる外管の内周面全体に充分分散供給され
る。
Function: Also in the thermosiphon of the present invention, the working fluid evaporates and flows toward the upper end, and then radiates heat and liquefies, thereby transporting heat as the latent heat of evaporation of the working fluid. In this case, in this invention, since the spiral filament is sandwiched between the inner tube and the outer tube, a spiral liquid reservoir is formed between the inner tube and the outer tube, and the liquid is activated here. Evaporation of the fluid occurs and the vapor flows upward between the inner and outer tubes, but since the space between the inner and outer tubes is spiral, the working fluid vapor gradually flows into the vent hole. The working fluid vapor flows from the inside of the inner tube into the inner tube, and substantially the inside of the inner tube becomes a vapor flow path through which the working fluid vapor reaches the upper end. In addition, since the inner tube is shorter than the outer tube, the working fluid vapor flowing to the upper end contacts the inner circumferential surface of the outer tube and releases heat to the outside, and the resulting liquid phase working fluid is transferred to the outer tube. The liquid flows down along the inner peripheral surface, and thus the spiral space between the inner pocket and the outer tube becomes a liquid flow path, and gas-liquid separation is performed. Since the working fluid roughly flows down in a spiral flow, it is sufficiently distributed and supplied over the entire inner circumferential surface of the outer tube, where heat exchange takes place.

実施例 以下、この発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す断面図であって、外
管10の内部に内管11を同心状に挿入配置し、ざらに
これら外管10と内管11との間に螺旋状の線条体12
を挟み込んで全体としての容器が形成されている。ここ
で外管10は、周壁部の凹凸を螺旋状とした密閉構造の
スパイラルコルゲート管からなるもので必って、垂直に
立てて使用され、その上端部は直管状に形成されるとと
もにフィン13を取付けて放熱部14とされ、また下端
部の大半が外部から入熱のある蒸発部15とされ、さら
にその蒸発部15と放熱部14との間に断熱部16が形
成されている。これに対し内管11は上記の外管10よ
り小径かつ短寸で前記外管10と同ピツチのスパイラル
コルゲート管からなるものであって、この内管11はそ
の上端部が前記放熱部14の下側に位置するよう前記外
管10の内部に同心状に配置されている。そして前記線
条体12は外管10の内面と内管11の外面とに接触し
た状態でその両者の間に挟み付けられている。なあ、線
条体12は外管10と内管11とのいずれか一方に溶接
等の手段によって固定しておいてもよく、そのようにし
た場合には線条体12をネジ山として内管11を外管1
0の内部にねじ込めばよい。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, in which an inner tube 11 is inserted concentrically into an outer tube 10, and a spiral is formed between the outer tube 10 and the inner tube 11. striatum 12
The container as a whole is formed by sandwiching the two. Here, the outer tube 10 is made of a spiral corrugated tube with a closed structure in which the unevenness of the peripheral wall is spiral, and is necessarily used vertically, and its upper end is formed into a straight tube shape and has fins 13. A heat dissipation section 14 is formed by attaching the evaporation section 15 to the heat dissipation section 14, and most of the lower end section serves as an evaporation section 15 into which heat is input from the outside, and a heat insulation section 16 is formed between the evaporation section 15 and the heat dissipation section 14. On the other hand, the inner tube 11 is made of a spiral corrugated tube having a smaller diameter and shorter length than the outer tube 10 and the same pitch as the outer tube 10, and the upper end of the inner tube 11 is connected to the heat radiating section 14. It is arranged concentrically inside the outer tube 10 so as to be located on the lower side. The filamentous body 12 is sandwiched between the inner surface of the outer tube 10 and the outer surface of the inner tube 11 while being in contact with them. Incidentally, the filamentous body 12 may be fixed to either the outer tube 10 or the inner tube 11 by means such as welding. 11 to outer tube 1
Just screw it inside the 0.

また内管11のうち前記線条体12に接触しない箇所で
かつ外表面が斜め下方を向く箇所に丸形等の任意の形状
の通気孔17が形成されている。
Further, a ventilation hole 17 of any shape such as a round shape is formed in a portion of the inner tube 11 that does not come into contact with the filamentary body 12 and whose outer surface faces obliquely downward.

この通気孔17は内管11の一部を単に打ら太いて形成
したものでおってもよいが、第2図に示すように内管1
1の一部に切り込みを入れて上端部でつながった切り起
こし片18を形成し、その切り起こし片18を内管11
の外側に折り曲げて形成することが好ましい。
This ventilation hole 17 may be formed by simply punching out a part of the inner tube 11, but as shown in FIG.
1 to form a cut-and-raised piece 18 connected at the upper end, and then insert the cut-and-raised piece 18 into the inner tube 11.
It is preferable to form it by bending it outward.

そして上記のように構成した外管10の内部には、空気
等の非凝縮性のガスを真空排気した後に水などの使用目
的の温度で蒸発する凝縮性の作動流体19が封入されて
いる。
Inside the outer tube 10 configured as described above, a condensable working fluid 19, such as water, that evaporates at the intended use temperature is sealed after a non-condensable gas such as air is evacuated.

以上のように構成したサーモサイホンにおいて蒸発部1
5に外部から熱Qを与え、かつ放熱部14から熱Qを奪
えば、作動流体19が蒸発部において蒸発気化し、その
蒸気は圧力の低い放熱部14に向けて上方に流れる。そ
の場合、作動流体蒸気は内管11と外管10との間で発
生して上行流となるが、内管11と外管10との間は前
記線条体12を挟み込んであることにより螺旋状の空間
となっていて流動抵抗が大きいから、作動流体蒸気は内
管11に形成した通気孔17を通って内管11の内側に
入り、ここを放熱部14に向けて流れる。特に、通気孔
17を第2図に示すように切り起こし片18を残した構
成としておけば、切り起こし片18がガイドとなること
により作動流体蒸気が速やかに内管11の内側に入り込
む。内管11が前述したように外管10より短寸である
から、作動流体蒸気は放熱部14において外管10の内
周面に接触し、ここで放熱して凝縮液化する。
In the thermosiphon configured as above, the evaporation section 1
When heat Q is applied to 5 from the outside and heat Q is removed from the heat radiation section 14, the working fluid 19 is vaporized in the evaporation section, and the vapor flows upward toward the heat radiation section 14 where the pressure is lower. In that case, the working fluid vapor is generated between the inner tube 11 and the outer tube 10 and becomes an upward flow, but the filament 12 is sandwiched between the inner tube 11 and the outer tube 10 so that the working fluid vapor forms a spiral flow. Since the working fluid vapor enters the inside of the inner tube 11 through the vent hole 17 formed in the inner tube 11 and flows there toward the heat radiating section 14 . In particular, if the ventilation hole 17 is configured with a cut-and-raised piece 18 left as shown in FIG. 2, the cut-and-raised piece 18 serves as a guide, and the working fluid vapor quickly enters the inside of the inner tube 11. Since the inner tube 11 is shorter than the outer tube 10 as described above, the working fluid vapor contacts the inner circumferential surface of the outer tube 10 at the heat radiating section 14, radiates heat there, and condenses and liquefies.

その結果生じた液相作動流体は外管10の内面を伝って
流下するから、放熱部14より下側の部分で内管11と
外管10との間に入り込むが、内管11と外管10との
間は前記線条体12を挾み込んであることにより螺旋状
の空間となっているから、作動液は螺旋流となって内管
11の外側を流れる。
The resulting liquid-phase working fluid flows down along the inner surface of the outer tube 10, so it enters between the inner tube 11 and the outer tube 10 at a portion below the heat dissipation section 14, but the inner tube 11 and the outer tube Since a spiral space is formed between the inner tube 11 and the inner tube 11 by inserting the filament 12 therebetween, the hydraulic fluid flows outside the inner tube 11 in a spiral flow.

したがって上記のサーモサイホンでは、内管11の内側
が蒸気流路となるとともに内管11の外側が作動液流路
となるから、気液分離が行なわれて作動液が蒸気流によ
って飛散することがなく、ずなわら飛散限界による制約
が殆んどなくなり、また作動液は螺旋流となるから外管
10の内周面全体に分散させられ、その結果、入熱の必
る蒸発部15の内周面全体に充分な量の作動液を供給す
ることができる。
Therefore, in the above-mentioned thermosiphon, the inside of the inner tube 11 becomes the steam flow path, and the outside of the inner tube 11 becomes the working fluid flow path, so that gas-liquid separation is performed and the working fluid is not scattered by the steam flow. Therefore, there is almost no restriction due to the scattering limit, and since the working fluid forms a spiral flow, it is dispersed over the entire inner circumferential surface of the outer tube 10, and as a result, the inside of the evaporator section 15, where heat input is required, is eliminated. A sufficient amount of hydraulic fluid can be supplied to the entire circumferential surface.

なあ、この発明にあける外管および内管はスパイラルコ
ルゲート管に限定されるものではないのであって、直管
によって外管および内管を形成することかできる。その
例を第3図および第4図に示す。これらの図に示すよう
に密閉構造の直管によって外管20か形成されるととも
に、その内部に、外管20より小径でかつ短寸の直管状
の内管21が同心状に挿入配置されており、これらの外
管20と内管21との間に螺旋状の線条体22が挟み込
んで固定されている。また外管20のうら内管21より
上側の部分には、フィン23が取付けられ放熱部24と
されている。これに対し外管20の下側の太平が蒸発部
25とされるとともに、その蒸発部25と放熱部24と
の間のわずかな部分が断熱部26とされている。
Incidentally, the outer tube and inner tube according to the present invention are not limited to spiral corrugated tubes, and the outer tube and inner tube can be formed by straight tubes. Examples are shown in FIGS. 3 and 4. As shown in these figures, an outer tube 20 is formed of a straight tube with a sealed structure, and a straight inner tube 21 having a smaller diameter and shorter length than the outer tube 20 is inserted concentrically inside the outer tube 20. A spiral filament 22 is sandwiched and fixed between the outer tube 20 and the inner tube 21. Further, a fin 23 is attached to a portion of the outer tube 20 above the inner tube 21 to form a heat radiating portion 24 . On the other hand, the lower taper of the outer tube 20 serves as an evaporator section 25, and a small portion between the evaporator section 25 and the heat radiation section 24 serves as a heat insulating section 26.

他方、内管21には、第4図に示すように前記線条体2
2に干渉しない位置に多数の通気孔27が形成されてい
る。この通気孔27は前述した実施例におけると同様に
単に打ち疲いて形成してもよく、あるいは上端部がつな
がった切り起こし片を持つ円通孔として形成してもよい
On the other hand, the inner tube 21 has the striated body 2 as shown in FIG.
A large number of ventilation holes 27 are formed at positions that do not interfere with the ventilation holes 27. The ventilation hole 27 may be formed by simply punching it out as in the embodiment described above, or it may be formed as a circular hole having a cut and raised piece connected at the upper end.

以上の外管20と内管21とによって全体の容器が構成
され、その内部に実質的に凝縮性の作動流体29のみが
封入されている。
The outer tube 20 and inner tube 21 constitute the entire container, and only substantially condensable working fluid 29 is sealed inside the container.

なおここで内管21の内径りが25φ程度であった場合
には、通気孔27の径dは、1φ≦D≦8φ程度に設定
することが好ましい。
Note that when the inner diameter of the inner tube 21 is approximately 25φ, the diameter d of the vent hole 27 is preferably set to approximately 1φ≦D≦8φ.

第3図に示すように直管によって外管20と内管21と
を形成した構成であっても、前)ホした実施例における
と同様に、内管21と外管20との間が螺旋状の作動液
の還流部となり、また内管21の内部が作動流体蒸気の
流路となって両者が隔絶されるから、作動液を蒸発部2
5の全体に充分分散供給することができる。
Even if the outer tube 20 and the inner tube 21 are formed of straight tubes as shown in FIG. Since the inside of the inner tube 21 serves as a flow path for the working fluid vapor and the two are isolated, the working fluid is transferred to the evaporator 2.
5 can be sufficiently distributed and supplied to the entire area.

発明の詳細 な説明したようにこの発明によれば、所謂飛散限界によ
る熱輸送dの制約がなくなるうえに、入熱箇所全体への
作動液の分散供給を充分性なうことができるから、熱輸
送量を従来になく高めることができ、一般的なサーモサ
イホンに比へて熱輸送量を約数倍にすることができた。
As described in detail, according to the present invention, the restriction on heat transport d due to the so-called scattering limit is eliminated, and the working fluid can be sufficiently distributed and supplied to the entire heat input location, so that heat can be reduced. The amount of heat transported was increased to an unprecedented level, and the amount of heat transported was increased several times compared to a typical thermosiphon.

またこの発明では、外管の内部に孔開き構造の内管を挿
入固定さればよいので、製造作業性の良好なものとブる
ことができる。
Further, in the present invention, since the inner tube having a perforated structure may be inserted and fixed into the outer tube, it is possible to achieve good manufacturing workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図はそ
の部分図、第3図はこの発明の他の実施例を示す断面図
、第4図はその内管を示す正面図、第5図は従来のサー
モサイホンの一例を示す略解図である。 10.20・・・外管、 11.21・・・内管、 1
2゜22・・・線条体、 14.24・・・放熱部、 
15゜25・・・蒸発部、 17.27・・・通気孔、
18・・・切り起こし片、 19.29・・・作動流体
Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a partial view thereof, Fig. 3 is a sectional view showing another embodiment of the invention, and Fig. 4 is a front view showing the inner tube thereof. , FIG. 5 is a schematic diagram showing an example of a conventional thermosiphon. 10.20...Outer tube, 11.21...Inner tube, 1
2゜22...striatal body, 14.24...heat dissipation part,
15゜25...Evaporation part, 17.27...Vent hole,
18... cut and raised piece, 19.29... working fluid.

Claims (3)

【特許請求の範囲】[Claims] (1)上下方向に向けて配置する密閉構造の外管の内部
に、その外管より小径かつ短寸で少なくとも上端の開口
した内管を同心状に挿入配置し、その外管の内周面と内
管の外周面との間に螺旋状の線条体を挟み込み、さらに
前記外管の内部に実質的に凝縮性の作動流体のみを封入
するとともに、前記内管の周壁に多数の通気孔を形成し
たことを特徴とする気液分離型垂直サーモサイホン。
(1) An inner tube that is smaller in diameter and shorter than the outer tube and is open at least at the top end is inserted concentrically into an outer tube with a sealed structure that is arranged vertically, and the inner peripheral surface of the outer tube is arranged concentrically. A spiral filament is sandwiched between the inner tube and the outer peripheral surface of the inner tube, and substantially only a condensable working fluid is sealed inside the outer tube, and a large number of ventilation holes are provided in the peripheral wall of the inner tube. A vertical thermosiphon with gas-liquid separation.
(2)前記通気孔は、前記内管の一部に切り込みを入れ
て上端部でつながった切り起こし片を形成し、かつその
切り起こし片を内管の外周側に折り曲げて形成されてい
ることを特徴とする特許請求の範囲第1項記載の気液分
離型垂直サーモサイホン。
(2) The ventilation hole is formed by cutting a part of the inner tube to form a cut-and-raised piece connected at the upper end, and bending the cut-and-raised piece toward the outer circumference of the inner tube. A gas-liquid separation type vertical thermosiphon according to claim 1, characterized in that:
(3)前記外管および内管のうち少なくとも内管がスパ
イラルコルゲート管によって形成され、かつ前記通気孔
が、その内管の周壁のうち外表面が斜め下方を向いた箇
所に形成されていることを特徴とする特許請求の範囲第
1項もしくは第2項記載の気液分離型垂直サーモサイホ
ン。
(3) At least the inner tube of the outer tube and the inner tube is formed of a spiral corrugated tube, and the vent hole is formed in a portion of the peripheral wall of the inner tube with the outer surface facing diagonally downward. A gas-liquid separation type vertical thermosiphon according to claim 1 or 2, characterized in that:
JP17136986A 1986-07-21 1986-07-21 Gas liquid separation type vertical thermo siphon Granted JPS6329193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17136986A JPS6329193A (en) 1986-07-21 1986-07-21 Gas liquid separation type vertical thermo siphon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17136986A JPS6329193A (en) 1986-07-21 1986-07-21 Gas liquid separation type vertical thermo siphon

Publications (2)

Publication Number Publication Date
JPS6329193A true JPS6329193A (en) 1988-02-06
JPH0379636B2 JPH0379636B2 (en) 1991-12-19

Family

ID=15921902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17136986A Granted JPS6329193A (en) 1986-07-21 1986-07-21 Gas liquid separation type vertical thermo siphon

Country Status (1)

Country Link
JP (1) JPS6329193A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065659A (en) * 1988-05-23 1991-11-19 Casio Computer Co., Ltd. Apparatus for detecting the positions where strings are operated, and electronic musical instruments provided therewith
US5153364A (en) * 1988-05-23 1992-10-06 Casio Computer Co., Ltd. Operated position detecting apparatus and electronic musical instruments provided therewith
WO2020017414A1 (en) * 2018-07-18 2020-01-23 株式会社デンソー Thermosiphon heat exchange device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065659A (en) * 1988-05-23 1991-11-19 Casio Computer Co., Ltd. Apparatus for detecting the positions where strings are operated, and electronic musical instruments provided therewith
US5153364A (en) * 1988-05-23 1992-10-06 Casio Computer Co., Ltd. Operated position detecting apparatus and electronic musical instruments provided therewith
WO2020017414A1 (en) * 2018-07-18 2020-01-23 株式会社デンソー Thermosiphon heat exchange device
JP2020012588A (en) * 2018-07-18 2020-01-23 株式会社デンソー Thermosiphon type heat exchange device

Also Published As

Publication number Publication date
JPH0379636B2 (en) 1991-12-19

Similar Documents

Publication Publication Date Title
US4279294A (en) Heat pipe bag system
US4640347A (en) Heat pipe
US4588023A (en) Device for releasing heat
US3892273A (en) Heat pipe lobar wicking arrangement
US20070227703A1 (en) Evaporatively cooled thermosiphon
US4449578A (en) Device for releasing heat
US4339929A (en) Heat pipe bag system
JPS61107062A (en) Absorption type heat pump
JP2001066080A (en) Loop type heat pipe
JPS6329193A (en) Gas liquid separation type vertical thermo siphon
JPS5816187A (en) Heat transfer device
JP2663775B2 (en) Liquid-filled evaporator
JP2743022B2 (en) heat pipe
JPH0835786A (en) Rod-form loop type heat pipe
JP2787236B2 (en) Heat pipe manufacturing method
JPH0535353B2 (en)
US8261563B2 (en) External refrigerator condensing unit
JPH0712849Y2 (en) Absorption refrigeration cycle
JPH0612369Y2 (en) Double pipe heat exchanger heat pipe
JP2742823B2 (en) heat pipe
JPS62123291A (en) Large-caliber and long vertical thermo siphon
JP2743021B2 (en) heat pipe
JPS59112192A (en) Construction of heat transfer container
JPH0645170Y2 (en) Long vertical thermosiphon
JPH03117891A (en) Heat pipe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term