JPH0835786A - Rod-form loop type heat pipe - Google Patents

Rod-form loop type heat pipe

Info

Publication number
JPH0835786A
JPH0835786A JP19197294A JP19197294A JPH0835786A JP H0835786 A JPH0835786 A JP H0835786A JP 19197294 A JP19197294 A JP 19197294A JP 19197294 A JP19197294 A JP 19197294A JP H0835786 A JPH0835786 A JP H0835786A
Authority
JP
Japan
Prior art keywords
refrigerant
metal tube
pipe
liquid return
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19197294A
Other languages
Japanese (ja)
Inventor
Yorio Yoshida
順雄 吉田
Shinya Hirama
信也 平間
Yasuo Tomita
康男 冨田
Hiroyuki Sato
裕之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kitashiba Electric Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kitashiba Electric Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP19197294A priority Critical patent/JPH0835786A/en
Publication of JPH0835786A publication Critical patent/JPH0835786A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To provide a rod-form loop type heat pipe which is constituted to separate a steam passage through which refrigerant steam is raised and a liquid return passage through which a refrigerant condensed at a condensation part is returned and causeds flow-down of all the condensed refrigerant through the liquid-return passage, and provide an excellent heat transmission efficiency. CONSTITUTION:A vaporization part 5 is formed at the lower part of a vertical metallic pipe 3a having a lower end being closed and an upper end being opened and a condensation part 6 is formed at a metallic pipe 3b having two ends being closed and tilted. The opening upper part of the metallic pipe 3a at which the vaporization part 5 is arranged is protruded in the inner lower side of the metallic pipe 3b at which the condensation part 6 is arranged and the lower side of the tilting condensation part 3b forms a liquid reservoir 13. A liquid return part 9 through which the liquid reservoir part 13 and the vaporization part 5 are intercommunicated is located in the metallic pipe 3a at which the vaporization part 5 is arranged. The sectional area of the liquid return passage 9 is reduced to a value lower than that of the metallic pipe 3a at which the vaporization part 5 is arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低位置にある温度の高
い熱源から、高位置にある温度の低い所に熱を伝達させ
るループ型ヒートパイプの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a loop heat pipe for transferring heat from a heat source at a low position and having a high temperature to a place at a high position and having a low temperature.

【0002】[0002]

【従来の技術】路面や駐車場などの積雪や、屋根の上の
積雪を融雪する場合や、あるいは住宅設備等の凍結を防
止するために地熱を利用して加熱することが行なわれて
いる。このように地熱を利用して融雪や凍結を防止する
装置としては、減圧した金属管の内部に冷媒を封入し、
金属管の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部
としたヒートパイプが用いられている。このヒートパイ
プを地中に埋設し、深く埋めた蒸発部から温度の高い地
熱を吸熱して、温度の低い地表近くに埋設した凝縮部に
熱を移動させて加熱するものである。このヒートパイプ
の構造としては、従来、図7に示す単管型ヒートパイプ
1と図8に示すループ型ヒートパイプ2が一般に用いら
れている。
2. Description of the Related Art Geothermal heat is used to heat snow on a road surface or a parking lot, or to melt snow on a roof, or to prevent freezing of housing equipment. In this way, as a device to prevent snow melting and freezing by using geothermal heat, a refrigerant is enclosed inside a depressurized metal tube,
A heat pipe is used in which the lower part of the metal tube is an evaporation part of the refrigerant and the upper part is a condensation part of the refrigerant vapor. This heat pipe is buried in the ground, absorbs high-temperature geothermal heat from the deeply buried evaporation section, and transfers the heat to the condensation section buried near the low-temperature surface to heat it. As a structure of this heat pipe, conventionally, a single pipe type heat pipe 1 shown in FIG. 7 and a loop type heat pipe 2 shown in FIG. 8 are generally used.

【0003】単管型ヒートパイプ1は図7に示すように
銅管やステンレス管などの金属管3の内部を減圧して、
ここに水やアルコールなどの冷媒4を封入し、金属管3
の下部を冷媒4の蒸発部5、上部を斜め上方に傾斜させ
て冷媒蒸気4aの凝縮部6とした構造をなしている。こ
の単管型ヒートパイプ1を地中に縦方向に埋設して地中
の深い所の温度の高い熱源により蒸発部5が加熱され、
この内部に封入された冷媒4が減圧状態で低い温度で急
速に蒸発し、この冷媒蒸気4aが蒸気通路7を上昇して
凝縮部6に達する。
As shown in FIG. 7, the single-pipe heat pipe 1 decompresses the inside of a metal pipe 3 such as a copper pipe or a stainless pipe,
Refrigerant 4 such as water or alcohol is enclosed in the metal tube 3
Has a structure in which the lower portion of the refrigerant is an evaporation portion 5 of the refrigerant 4 and the upper portion thereof is inclined obliquely upward to form a condenser portion 6 of the refrigerant vapor 4a. The single-pipe heat pipe 1 is vertically embedded in the ground to heat the evaporation part 5 by a high-temperature heat source deep in the ground,
The refrigerant 4 enclosed in the inside rapidly evaporates at a low temperature in a depressurized state, and the refrigerant vapor 4a rises in the vapor passage 7 and reaches the condenser portion 6.

【0004】この凝縮部6は温度の低い地表近くに埋設
されているため、上昇してきた冷媒蒸気4aはこの内面
で放熱して凝縮し、水滴状に凝縮した冷媒4は蒸気通路
7の内壁面に沿って自重により流下して蒸発部5に戻さ
れる。このように減圧下で、冷媒4の蒸発、凝縮を急速
に繰り返すことにより、低位置にある温度の高い熱源か
ら高位置にある温度の低い所に連続的に熱を移動させる
ものである。
Since the condensing section 6 is buried near the surface of the earth where the temperature is low, the rising refrigerant vapor 4a dissipates heat and condenses on its inner surface, and the refrigerant 4 condensed in the form of water drops forms the inner wall surface of the vapor passage 7. It is flown down by itself due to its own weight and returned to the evaporator 5. By rapidly repeating evaporation and condensation of the refrigerant 4 under reduced pressure in this manner, heat is continuously transferred from a heat source having a high temperature at a low position to a place having a low temperature at a high position.

【0005】この単管型ヒートパイプ1の熱抵抗は蒸発
部と凝縮部との温度差が比較的小さい範囲で大きく、特
に地熱を利用して融雪する温度差の少ない範囲では熱抵
抗が大きくなり熱の伝達効率が悪くなる問題がある。こ
の理由は、蒸発部5で蒸発した冷媒蒸気4aが蒸気通路
7を上昇する過程で、凝縮部6から蒸気通路7の内壁面
を伝わって流下して来た冷媒4の移動方向が、冷媒蒸気
4aの上昇方向と逆になるため押し上げられて円滑に流
下せず、しかも上昇する高温の冷媒蒸気4aが、流下し
て来た温度の低い冷媒4と接触して熱が奪われるため、
凝縮部6に達するまでに冷媒蒸気4aの温度が低くなる
からである。
The heat resistance of the single-pipe heat pipe 1 is large in a range where the temperature difference between the evaporation section and the condensation section is relatively small, and particularly in a range where there is a small temperature difference where snow is melted by utilizing the geothermal heat. There is a problem that the heat transfer efficiency becomes poor. The reason for this is that the refrigerant vapor 4a evaporated in the evaporation section 5 moves up the vapor passage 7 and the moving direction of the refrigerant 4 flowing down from the condenser 6 along the inner wall surface of the vapor passage 7 is the refrigerant vapor. 4a is pushed up because it is opposite to the rising direction and does not smoothly flow down, and the rising high temperature refrigerant vapor 4a comes into contact with the low temperature refrigerant 4 that has flowed down to remove heat.
This is because the temperature of the refrigerant vapor 4a is lowered by the time it reaches the condenser section 6.

【0006】また図8に示すループ型ヒートパイプ2
は、金属管3を上部と下部が傾斜した四角枠状に形成
し、傾斜した下部側を冷媒4を溜めた蒸発部5とし、こ
の上部側の端部に垂直に連通した金属管3を蒸気通路7
とし、傾斜した上部側を凝縮部6とし、この下部側に垂
直に連通した管径の小さい金属管3を液戻り通路9とし
たものである。このループ型ヒートパイプ2は、加熱さ
れた蒸発部5の冷媒4が冷媒蒸気4aとなって矢印で示
すように管径の大きい蒸気通路7を上昇し、温度の低い
凝縮部6で放熱して水滴状の冷媒4に凝縮する。この凝
縮した冷媒4が管径の小さい液戻り管8aを流下して蒸
発部5に戻され、冷媒蒸気4aと冷媒4が四角のループ
を循環しながら熱伝達するようになっている。
Further, the loop type heat pipe 2 shown in FIG.
Is formed by forming a metal tube 3 in the shape of a rectangular frame having an upper part and a lower part inclined, and forming the evaporating part 5 storing the refrigerant 4 on the inclined lower part, and vaporizing the metal pipe 3 vertically communicating with the end part on the upper part. Passage 7
The slanted upper side is the condensing section 6, and the metal pipe 3 having a small pipe diameter and vertically communicating with the lower side is the liquid return passage 9. In this loop-type heat pipe 2, the heated refrigerant 4 of the evaporator 5 becomes refrigerant vapor 4a, which rises in a vapor passage 7 having a large pipe diameter as shown by an arrow and radiates heat in a condenser 6 having a low temperature. It condenses into the water droplet-shaped refrigerant 4. The condensed refrigerant 4 flows down the liquid return pipe 8a having a small pipe diameter and is returned to the evaporation unit 5, so that the refrigerant vapor 4a and the refrigerant 4 transfer heat while circulating in a square loop.

【0007】つまりこのループ型ヒートパイプ2は冷媒
蒸気4aの上昇する蒸気通路7と、放熱して凝縮した冷
媒4が戻る液戻り通路9とが別個に形成され、互いに干
渉しないようになっているため熱抵抗が少なく、特に蒸
発部と凝縮部との温度差が低い範囲では熱の伝達効率が
優れている利点がある。
That is, the loop type heat pipe 2 has a vapor passage 7 in which the refrigerant vapor 4a rises and a liquid return passage 9 in which the refrigerant 4 that has radiated heat and condensed returns, are formed separately so as not to interfere with each other. Therefore, there is an advantage that the heat resistance is small and the heat transfer efficiency is excellent especially in the range where the temperature difference between the evaporation section and the condensation section is low.

【0008】しかしながらこのループ型ヒートパイプ2
は四角枠状に形成されているため、製造が面倒であり、
また融雪装置として地中に十数メートルの長さで埋設す
る場合には、大きな穴を掘らなければならず施工が面倒
であり、現状では熱伝達効率の悪い単管型ヒートパイプ
1が用いられている。
However, this loop type heat pipe 2
Is shaped like a square frame, which makes it difficult to manufacture.
In addition, when burying a dozen meters or so in the ground as a snow melting device, a large hole must be dug, and the construction is troublesome. At present, the single pipe heat pipe 1 having poor heat transfer efficiency is used. ing.

【0009】この点を改善するため、本発明者は先に棒
状ループ型ヒートパイプを開発した(特願平5ー353
741号明細書実施例図1)。この棒状ループ型ヒート
パイプ10は図9および図10に示すように、金属管3の内
部を減圧してここに冷媒4を封入し、金属管3の下部を
冷媒4の蒸発部5、上部を斜め上方に傾斜させてここを
冷媒蒸気4aの凝縮部6とした構造をなしている。蒸発
部5と傾斜した凝縮部6との間の蒸気通路7の内側に、
凝縮部6の傾斜方向側の内壁に沿って、上下両端が開口
した小径の液戻り管8を一体に接合して、この内側を液
戻り通路9としたものである。
In order to improve this point, the present inventor first developed a rod-shaped loop heat pipe (Japanese Patent Application No. 5-353).
741 specification example Figure 1). As shown in FIGS. 9 and 10, the rod-shaped loop heat pipe 10 decompresses the inside of the metal tube 3 and seals the refrigerant 4 therein. The structure is formed so as to be inclined obliquely upward and used as the condensing portion 6 of the refrigerant vapor 4a. Inside the vapor passage 7 between the evaporator 5 and the inclined condenser 6,
A small-diameter liquid return pipe 8 whose upper and lower ends are opened is integrally joined along the inner wall of the condenser portion 6 on the inclined direction side, and the inside is formed as a liquid return passage 9.

【0010】この棒状ループ型ヒートパイプ10を地中に
埋設して、路面11の融雪を行なう場合、温度の高い地中
の熱源により蒸発部5が加熱され、この内部に封入され
た冷媒4が減圧状態で急速に蒸発し、この冷媒蒸気4a
が蒸気通路7を上昇して凝縮部6に達する。上昇してき
た冷媒蒸気4aはこの内面で放熱して凝縮し、水滴状に
なった冷媒4は傾斜した凝縮部6に沿って流れて、この
下部に設けた液戻り通路9に流入し、ここを流下して蒸
発部5に戻される。
When the rod-shaped loop heat pipe 10 is buried in the ground to melt snow on the road surface 11, the evaporation part 5 is heated by a heat source in the ground having a high temperature, and the refrigerant 4 enclosed therein is This refrigerant vapor 4a evaporates rapidly under reduced pressure.
Goes up the steam passage 7 and reaches the condenser 6. The rising refrigerant vapor 4a dissipates heat and condenses on this inner surface, and the water droplet-shaped refrigerant 4 flows along the inclined condensing portion 6 and flows into the liquid return passage 9 provided at the lower portion of the condensing portion 6. It flows down and is returned to the evaporator 5.

【0011】この結果、冷媒蒸気4aの上昇する蒸気通
路7と、凝縮部6で凝縮した冷媒4の液が戻る液戻り通
路9とが別個に形成され、しかも蒸気通路7の断面積が
液戻り管8より大きく形成されているので、蒸気通路7
内の蒸気圧が液戻り通路9より大きくなり、矢印で示す
ようにループ状の冷媒通路が形成される。このため液戻
り通路9内を流下する冷媒4の移動が、上昇する冷媒蒸
気4aによって妨げられず、しかも上昇する冷媒蒸気4
aが、流下する冷媒4の液により熱を奪われず互いに干
渉しないので、熱抵抗が単管型ヒートパイプ1に比べて
少なく、特に蒸発部と凝縮部との温度差が低い範囲で熱
の伝達効率が優れている。
As a result, the vapor passage 7 through which the refrigerant vapor 4a rises and the liquid return passage 9 through which the liquid of the refrigerant 4 condensed in the condenser 6 returns are formed separately, and the cross-sectional area of the vapor passage 7 is the liquid return. Since it is formed larger than the pipe 8, the steam passage 7
The vapor pressure inside becomes larger than that of the liquid return passage 9, and a loop-shaped refrigerant passage is formed as shown by an arrow. Therefore, the movement of the refrigerant 4 flowing down in the liquid return passage 9 is not hindered by the rising refrigerant vapor 4a, and the rising refrigerant vapor 4
Since the heat of a is not taken by the liquid of the flowing down refrigerant 4 and does not interfere with each other, the heat resistance is smaller than that of the single-tube heat pipe 1, and the heat transfer is achieved particularly in the range where the temperature difference between the evaporation section and the condensation section is low. Excellent efficiency.

【0012】しかしながら融雪実験を行なったところ、
凝縮部6での凝縮状態は、温度の低い路面11側の内壁で
凝縮する冷媒4の量が、地中側の内壁で凝縮する量より
多く、実際には水滴状になった冷媒4が流下してきても
全部が液戻り通路9に流入せず、一部は蒸気通路7の内
壁に沿って流下してくる。このため蒸気通路7の内壁に
沿って流下してきた冷媒4が、上昇してくる冷媒蒸気4
aにより押し上げられて円滑に流下せず、また高温の冷
媒蒸気4aと温度の低い冷媒4が接触して熱が奪われる
ため、伝熱効率が低下する問題があった。
However, when the snow melting experiment was conducted,
In the condensation state in the condensation unit 6, the amount of the refrigerant 4 condensed on the inner wall on the side of the road surface 11 having a low temperature is larger than the amount condensed on the inner wall on the underground side, and the refrigerant 4 in the form of water drops actually flows down. Even if it does, the whole does not flow into the liquid return passage 9, but a part flows down along the inner wall of the vapor passage 7. For this reason, the refrigerant 4 flowing down along the inner wall of the vapor passage 7 is increased by the ascending refrigerant vapor 4
There is a problem that the heat transfer efficiency is lowered because the refrigerant is pushed up by a and does not flow smoothly, and the high temperature refrigerant vapor 4a and the low temperature refrigerant 4 come into contact with each other to remove heat.

【0013】[0013]

【発明が解決しようとする課題】本発明は上記欠点を除
去し、冷媒蒸気の上昇する蒸気通路と凝縮部で凝縮した
冷媒が戻る液戻り通路とを分離すると共に、凝縮した冷
媒を全て液戻り通路を流下させて熱伝達効率の優れた棒
状ループ型ヒートパイプを提供するものである。
SUMMARY OF THE INVENTION The present invention eliminates the above-mentioned drawbacks and separates the vapor passage through which the refrigerant vapor rises from the liquid return passage through which the refrigerant condensed in the condenser returns and the condensed refrigerant is all returned to the liquid. It is intended to provide a rod-shaped loop heat pipe having an excellent heat transfer efficiency by flowing down a passage.

【0014】[0014]

【課題を解決するための手段】本発明の請求項1記載の
発明は、減圧した金属管の内部に冷媒を封入し、金属管
の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部とした
棒状のヒートパイプにおいて、下端が閉塞され上端が開
口した垂直な金属管の下部に蒸発部を形成し、両端が閉
塞されて傾斜した金属管に凝縮部を形成し、蒸発部を設
けた前記金属管の開口した上部を前記凝縮部を設けた金
属管内の下部側に突出させると共に、この傾斜した凝縮
部の下部側を液溜り部とし、蒸発部を設けた金属管の内
側または外側に、前記液溜り部と蒸発部とを連通する液
戻り通路を設け、この液戻り通路の断面積が、前記蒸発
部を設けた金属管の断面積より小さいことを特徴とする
ものである。
The invention according to claim 1 of the present invention encloses a refrigerant inside a depressurized metal tube, the lower part of the metal tube is an evaporation part of the refrigerant, and the upper part is a condensation part of the refrigerant vapor. In the rod-shaped heat pipe, the evaporating part is formed in the lower part of the vertical metal pipe whose lower end is closed and whose upper end is opened, and the condensing part is formed in the inclined metal pipe whose both ends are closed, and the evaporating part is provided. The upper part of the opening of the metal tube is projected to the lower side in the metal tube provided with the condensing section, and the lower side of the inclined condensing section is used as a liquid pool section, inside or outside the metal tube provided with the evaporating section, A liquid return passage that connects the liquid reservoir and the vaporizer is provided, and the cross-sectional area of the liquid return passage is smaller than the cross-sectional area of the metal pipe provided with the vaporizer.

【0015】本発明の請求項2記載の発明は、減圧した
金属管の内部に冷媒を封入し、金属管の下部を冷媒の蒸
発部、上部を冷媒蒸気の凝縮部とした棒状のヒートパイ
プにおいて、下部側が垂直で上部側が傾斜し、閉塞した
下端側に蒸発部を形成し、傾斜した上端側が開口した金
属管の、傾斜した上部側の外側に、間隔をおいてこの外
形より内径の大きい両端が閉塞した金属管を傾斜して設
けてここを凝縮部とし、この傾斜した凝縮部の下部側を
液溜り部とし、蒸発部を設けた前記金属管の内側または
外側に、液溜り部と蒸発部とを連通する液戻り通路を設
け、この液戻り通路の断面積が、前記蒸発部を設けた金
属管の断面積より小さいことを特徴とするものである。
According to a second aspect of the present invention, in a rod-shaped heat pipe, a refrigerant is enclosed in a depressurized metal tube, the lower part of the metal tube is a refrigerant evaporation part, and the upper part is a refrigerant vapor condensing part. , The lower side is vertical, the upper side is inclined, the evaporating portion is formed on the closed lower end side, and the inclined upper end side is open. The inclined metal pipe is closed to form a condensing section, and the lower side of the inclined condensing section is used as a liquid pool. And a cross-sectional area of the liquid return passage is smaller than that of the metal pipe provided with the evaporation portion.

【0016】本発明の請求項3記載の発明は、減圧した
金属管の内部に冷媒を封入し、金属管の下部を冷媒の蒸
発部、上部を冷媒蒸気の凝縮部とした棒状のヒートパイ
プにおいて、両端が閉塞し、下部側が垂直で上部側が傾
斜した金属管の下部に蒸発部を形成し、傾斜した上部側
を凝縮部とした金属管の、垂直な下部内側に間隔をおい
てこの内径より外形の小さい両端が開口した金属管を挿
着して二重管構造とし、この内側金属管を冷媒蒸気が上
昇する蒸気通路とし、この外側を液戻り通路として、こ
の液戻り通路の断面積が、前記蒸気通路の断面積より小
さいことを特徴とするものである。
According to a third aspect of the present invention, there is provided a rod-shaped heat pipe in which a refrigerant is enclosed in a decompressed metal tube, the lower part of the metal tube is an evaporation part of the refrigerant, and the upper part is a condensation part of the refrigerant vapor. , Both ends are closed, the lower side is vertical and the upper side is inclined, the evaporation part is formed in the lower part of the metal pipe, and the inclined upper side is the condensing part. A double-tube structure is formed by inserting metal pipes with small outer diameters at both ends.The inner metal pipe is used as a vapor passage through which the refrigerant vapor rises, and the outer side is used as a liquid return passage. The cross-sectional area of the steam passage is smaller than that of the steam passage.

【0017】本発明の請求項4記載の発明は、減圧した
金属管の内部に冷媒を封入し、金属管の下部を冷媒の蒸
発部、上部を冷媒蒸気の凝縮部とした棒状のヒートパイ
プにおいて、下端が閉塞し上端が開口した垂直な金属管
の下部に蒸発部を形成し、この金属管の上部外周に間隔
をおいてこの外形より内径の大きい両端が閉塞した金属
管を設けてここを凝縮部とし、この凝縮部を設けた金属
管の下部を液溜り部とし、蒸発部を設けた前記金属管の
内側または外側に、液溜り部と蒸発部とを連通する液戻
り通路を設け、この液戻り通路の断面積が、前記蒸発部
を設けた金属管の断面積より小さいことを特徴とするも
のである。
According to a fourth aspect of the present invention, there is provided a rod-shaped heat pipe in which a refrigerant is enclosed in a depressurized metal tube, the lower part of the metal tube is an evaporation part of the refrigerant, and the upper part is a condensation part of the refrigerant vapor. , A vaporization part is formed in the lower part of a vertical metal pipe with the lower end closed and the upper end opened, and a metal pipe with an inner diameter larger than the outer diameter is provided at the upper outer periphery of this metal pipe with a space between them. A condenser part, a lower part of the metal pipe provided with this condenser part is used as a liquid reservoir part, and a liquid return passage that connects the liquid reservoir part and the evaporator part is provided inside or outside the metal pipe provided with the evaporator part, A cross-sectional area of the liquid return passage is smaller than that of the metal pipe provided with the evaporation portion.

【0018】本発明の請求項5記載の発明は、減圧した
金属管の内部に冷媒を封入し、金属管の下部を冷媒の蒸
発部、上部を冷媒蒸気の凝縮部とした棒状のヒートパイ
プにおいて、両端が閉塞した垂直な金属管の下部に蒸発
部を形成し、上部に凝縮部を形成した金属管の内側に間
隔をおいて、この内径より外形が小さい両端が開口した
金属管を挿着して二重管構造とし、この内側金属管を冷
媒蒸気が上昇する蒸気通路とし、この外側を液戻り通路
として、この液戻り通路の断面積が、前記蒸気通路の断
面積より小さいことを特徴とするものである。
According to a fifth aspect of the present invention, there is provided a rod-shaped heat pipe in which a refrigerant is enclosed in a depressurized metal tube, a lower part of the metal tube is a refrigerant evaporation part, and an upper part is a refrigerant vapor condensing part. , Evaporating part is formed in the lower part of a vertical metal tube with both ends blocked, and a metal tube with an outer diameter smaller than this inner diameter is inserted at intervals inside the metal tube with a condensing part in the upper part. The inner metal pipe is used as a vapor passage through which the refrigerant vapor rises, and the outer side is used as a liquid return passage, and the cross-sectional area of the liquid return passage is smaller than the cross-sectional area of the vapor passage. It is what

【0019】[0019]

【作用】本発明の棒状ループ型ヒートパイプは縦方向に
設置し、低い所にある温度の高い熱源により蒸発部が加
熱され、この内部に封入された冷媒が減圧状態で低い温
度で急速に蒸発し、この冷媒蒸気が蒸気通路を上昇して
凝縮部に達する。この凝縮部は温度の低い所に設置され
ているので、上昇してきた冷媒蒸気はこの内面で放熱し
て凝縮し、水滴状になった冷媒が凝縮部に沿って流れて
来ると、この下部に設けた液溜り部に溜められて、ここ
から液溜り部に流入し、ここを流下して蒸発部に戻され
る。また金属管を二重管構造として、この内側金属管を
蒸気通路、外側を液戻り通路として液溜り部を設けてい
ない構造のものは、凝縮部で凝縮した冷媒が液戻り通路
を通って蒸発部に戻るようになっている。このため、冷
媒蒸気の上昇する蒸気通路と、凝縮部で凝縮した冷媒の
液が戻る液戻り通路とが別個になってループ状の冷媒通
路が形成されているので互いに干渉せず、効率良く熱伝
達することができる。
The rod-shaped loop heat pipe of the present invention is installed in a vertical direction, and the evaporation part is heated by a high temperature heat source located at a low temperature, and the refrigerant enclosed therein rapidly evaporates at a low temperature under reduced pressure. Then, this refrigerant vapor rises in the vapor passage and reaches the condenser. Since this condensing part is installed in a place with a low temperature, the rising refrigerant vapor radiates heat inside and condenses, and when the refrigerant in the form of water drops flows along the condensing part, It is stored in the provided liquid pool, flows into the liquid pool from here, flows down there, and is returned to the evaporation unit. In the case of a structure in which the metal pipe has a double pipe structure, the inside metal pipe is a vapor passage, the outside is a liquid return passage, and the liquid pool is not provided, the refrigerant condensed in the condensing portion evaporates through the liquid return passage. It is designed to return to the club. For this reason, since the vapor passage in which the refrigerant vapor rises and the liquid return passage through which the liquid of the refrigerant condensed in the condensing section returns are separated to form a loop-shaped refrigerant passage, they do not interfere with each other and heat is efficiently generated. Can be communicated.

【0020】[0020]

【実施例】以下本発明の一実施例を図1および図2を参
照して詳細に説明する。この棒状ループ型ヒートパイプ
10は、垂直な金属管3aと傾斜した金属管3bとを逆L
字形に接合して蒸気通路7が形成されている。前記垂直
な金属管3aは、下端が閉塞し上端が開口しており、ま
た傾斜した金属管3bは両端が閉塞されており、傾斜し
た下部側に図2に示すように垂直な円筒部12が一体に形
成されている。この円筒部12の底面を貫通して前記金属
管3aの開口した上端部が金属管3b内に挿着されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. This rod-shaped heat pipe
10 is the reverse L of the vertical metal pipe 3a and the inclined metal pipe 3b.
The steam passage 7 is formed by joining in a letter shape. The vertical metal pipe 3a has a lower end closed and an upper end open, and the inclined metal pipe 3b has both ends closed, and a vertical cylindrical portion 12 is formed on the inclined lower side as shown in FIG. It is formed integrally. The open upper end of the metal tube 3a is inserted into the metal tube 3b by penetrating the bottom surface of the cylindrical portion 12.

【0021】この蒸気通路7の内部を減圧してここに冷
媒4を封入し、金属管3aの下部を冷媒4の蒸発部5、
傾斜させた金属管3bの上部側を冷媒蒸気4aの凝縮部
6とした構造をなしている。更に金属管3aの上端が貫
通する円筒部12の底部を液溜り部13としている。この液
溜り部13から、金属管3aの内壁に沿って、この下部の
蒸発部5までを連通する小径の液戻り管8を一体に接合
して、この内側を液戻り通路9としたものである。なお
この液戻り通路9の断面積は、前記蒸発部7を設けた金
属管3aの断面積より小さく形成されている。
The inside of the vapor passage 7 is decompressed and the refrigerant 4 is enclosed therein.
The structure is such that the upper portion of the inclined metal pipe 3b serves as the condensing portion 6 for the refrigerant vapor 4a. Further, the bottom of the cylindrical portion 12 through which the upper end of the metal tube 3a penetrates is used as a liquid reservoir 13. A small-diameter liquid return pipe 8 that communicates from the liquid reservoir 13 to the lower evaporation portion 5 along the inner wall of the metal pipe 3a is integrally joined to form a liquid return passage 9 inside. is there. The cross-sectional area of the liquid return passage 9 is smaller than that of the metal tube 3a provided with the evaporation section 7.

【0022】この棒状ループ型ヒートパイプ10を地中に
埋設して、路面11の融雪を行なう場合、図1に示すよう
に温度の高い地中の熱源により蒸発部5が加熱され、こ
の内部に封入された冷媒4が減圧状態で急速に蒸発し、
この冷媒蒸気4aが金属管3aの蒸気通路7を通って上
昇し、更に傾斜した金属管3bを斜めに上昇して凝縮部
6に達する。上昇してきた冷媒蒸気4aはこの凝縮部6
の内面で放熱して凝縮するが、温度の低い路面11側の内
壁で凝縮する冷媒4の量が、地中側の内壁で凝縮する量
より多い。凝縮して水滴状になった冷媒4は傾斜した金
属管3bの内壁に沿って流れ、この下部に形成した液溜
り部13に溜り、ここから液戻り通路9を流下して蒸発部
5に戻される。
When the rod-shaped loop heat pipe 10 is buried in the ground to melt snow on the road surface 11, as shown in FIG. The enclosed refrigerant 4 rapidly evaporates under reduced pressure,
This refrigerant vapor 4a rises through the vapor passage 7 of the metal pipe 3a, and further rises diagonally in the inclined metal pipe 3b to reach the condenser section 6. The ascending refrigerant vapor 4a is transferred to the condenser 6
The amount of the refrigerant 4 condensed on the inner wall on the side of the road surface 11 having a low temperature is larger than the amount condensed on the inner wall on the ground side. The condensed refrigerant 4 in the form of water drops flows along the inner wall of the slanted metal tube 3b, collects in the liquid pool 13 formed in the lower part, and then flows down the liquid return passage 9 to be returned to the evaporator 5. Be done.

【0023】この結果、凝縮部6で凝縮した冷媒4が全
て液溜り部13に溜められて、ここから金属管3aと別個
に形成された液戻り通路9を通って蒸発部5に戻されて
ループ状の冷媒通路が形成される。このため金属管3a
の蒸気通路7内では、上昇する冷媒蒸気4aが、凝縮し
て液戻り通路9内を流下する冷媒4とが互いに干渉しな
いので、熱抵抗が少なく伝達効率を向上させることがで
きる。
As a result, all the refrigerant 4 condensed in the condensing section 6 is accumulated in the liquid pool section 13 and returned to the evaporation section 5 through the liquid return passage 9 formed separately from the metal pipe 3a. A loop-shaped coolant passage is formed. Therefore, the metal tube 3a
In the vapor passage 7, the ascending refrigerant vapor 4a does not interfere with the refrigerant 4 that condenses and flows down in the liquid return passage 9, so that the heat resistance is small and the transfer efficiency can be improved.

【0024】なお上記実施例では液溜り部13に連通する
液戻り管8の上端側を、金属管3aの外部に一旦引き出
した構造について示したが、金属管3aの内側から、直
接、液溜り部13に連通させた構造でも良い。この構造で
は液戻り管8が外部に露出していないので冷媒蒸気4a
のリークを防止することができる。
In the above-described embodiment, the structure in which the upper end side of the liquid return pipe 8 communicating with the liquid reservoir 13 is once pulled out to the outside of the metal pipe 3a is shown. A structure communicating with the portion 13 may be used. In this structure, since the liquid return pipe 8 is not exposed to the outside, the refrigerant vapor 4a
Can be prevented from leaking.

【0025】図3ないし図5は夫々異なる本発明の他の
実施例を示すもので、図3の棒状ループ型ヒートパイプ
10は、下部側が垂直で上部側が傾斜した逆L字形の金属
管3aの閉塞した下端側に蒸発部5が形成され、傾斜し
た上端側が開口している。この金属管3aの傾斜した上
部側の外側に、間隔をおいてこの外形より内径の大きい
両端が閉塞した金属管3bが傾斜して設けられ、ここを
凝縮部6としている。更にこの傾斜した凝縮部6の下部
側を液溜り部13とし、ここに凝縮した冷媒4が溜るよう
になっている。この液溜り部13から、蒸発部5を設けた
金属管3aの外壁に沿って、この下部の蒸発部5まで連
通する小径の液戻り管8を一体に接合して、この内側を
液戻り通路9としたものである。またこの液戻り通路9
の断面積は、前記蒸発部7を設けた金属管3aの断面積
より小さく形成されている。
FIGS. 3 to 5 show other embodiments of the present invention which are different from each other. The rod-shaped loop heat pipe of FIG.
As for 10, the evaporation part 5 is formed on the closed lower end side of the inverted L-shaped metal tube 3a in which the lower side is vertical and the upper side is inclined, and the inclined upper end side is open. On the outer side of the inclined upper side of the metal tube 3a, a metal tube 3b, which is closed at both ends and has an inner diameter larger than the outer shape, is inclinedly provided, and serves as a condensing section 6. Further, the lower side of the inclined condensing section 6 is used as a liquid pool section 13, in which the condensed refrigerant 4 is pooled. A small-diameter liquid return pipe 8 communicating from the liquid reservoir 13 to the lower evaporation portion 5 is integrally joined along the outer wall of the metal pipe 3a provided with the evaporation portion 5, and the inside thereof is connected to the liquid return passageway. 9 is used. Also, this liquid return passage 9
The cross-sectional area of is formed smaller than the cross-sectional area of the metal tube 3a provided with the evaporation part 7.

【0026】この棒状ループ型ヒートパイプ10は、蒸発
部5の冷媒4が加熱されて急速に蒸発し、この冷媒蒸気
4aが金属管3aの蒸気通路7を通って上昇し、更に傾
斜した上部側から、外側の金属管3bに流入して凝縮部
6に達する。冷媒蒸気4aはこの凝縮部6の内面で放熱
して凝縮し、水滴状になった冷媒4は傾斜した金属管3
bの内壁に沿って流れ、この下部に形成した液溜り部13
に溜る。次いでここから蒸発部5を設けた金属管3aの
外壁に沿って設けられた液戻り通路9を流下して蒸発部
5に戻される。従って金属管3aの蒸気通路7内を上昇
する冷媒蒸気4aと、凝縮して液戻り通路9内を流下す
る冷媒4とが互いに干渉しないループ状の冷媒通路が形
成されるので、熱抵抗が少なく伝達効率を向上させるこ
とができる。
In this rod-shaped loop heat pipe 10, the refrigerant 4 in the evaporation part 5 is heated and rapidly evaporated, and the refrigerant vapor 4a rises through the vapor passage 7 of the metal tube 3a, and the inclined upper side. From, it flows into the outer metal tube 3b and reaches the condenser section 6. The refrigerant vapor 4a dissipates heat and condenses on the inner surface of the condensing portion 6, and the refrigerant 4 in the form of water drops forms the inclined metal tube 3
Flow along the inner wall of b.
Accumulate in Next, from here, the liquid return passage 9 provided along the outer wall of the metal tube 3a provided with the evaporation portion 5 flows down to be returned to the evaporation portion 5. Therefore, since the refrigerant vapor 4a rising in the vapor passage 7 of the metal tube 3a and the refrigerant 4 condensing and flowing down in the liquid return passage 9 form a loop-shaped refrigerant passage, the thermal resistance is small. The transmission efficiency can be improved.

【0027】図4に示す棒状ループ型ヒートパイプ10
は、両端が閉塞し、下部側が垂直で上部側が傾斜した逆
L字形の金属管3aの下部に冷媒4を封入してここに蒸
発部5を形成し、傾斜した上部側を凝縮部6としてい
る。この金属管3aの、垂直な下部側の内側に間隔をお
いてこの内径より外形の小さい両端を開口した金属管3
bを挿着して二重管構造とし、この金属管3bの内側を
冷媒蒸気4aが上昇する蒸気通路7とし、この蒸気通路
7の外側と金属管3aの内側との間に液戻り通路9が形
成されている。またこの液戻り通路9の断面積は、前記
蒸発部7の断面積より小さく形成されている。
A rod-shaped loop heat pipe 10 shown in FIG.
Of the inverted L-shaped metal tube 3a whose both ends are closed and whose lower side is vertical and whose upper side is inclined forms a vaporizing part 5 in the lower part, and the inclined upper side is a condensing part 6. . The metal pipe 3a having both ends smaller in outer diameter than the inner diameter with a space inside the vertical lower side of the metal pipe 3a.
b is inserted to form a double pipe structure, the inside of the metal pipe 3b is used as a vapor passage 7 through which the refrigerant vapor 4a rises, and the liquid return passage 9 is provided between the outside of the vapor passage 7 and the inside of the metal pipe 3a. Are formed. The cross-sectional area of the liquid return passage 9 is smaller than that of the evaporation section 7.

【0028】この棒状ループ型ヒートパイプ10は、蒸発
部5の冷媒4が加熱されて蒸発し、この冷媒蒸気4aが
蒸気通路7を通って上昇し、更に傾斜した上部側の凝縮
部6に達する。冷媒蒸気4aはこの凝縮部6の内面で放
熱して凝縮し、水滴状になった冷媒4は傾斜した金属管
3aの内壁に沿って流れ、更に蒸気通路7の外側と金属
管3aの内側との間に形成された液戻り通路9を流下し
て蒸発部5に戻される。従って金属管3bの蒸気通路7
内を上昇する冷媒蒸気4aと、この外側の液戻り通路9
内を流下する冷媒4とが互いに干渉しないループ状の冷
媒通路が形成されるので、熱抵抗が少なく伝達効率を向
上させることができる。
In the rod-shaped loop heat pipe 10, the refrigerant 4 in the evaporation portion 5 is heated and evaporated, and the refrigerant vapor 4a rises through the vapor passage 7 and reaches the further inclined upper condenser portion 6. . The refrigerant vapor 4a dissipates heat and condenses on the inner surface of the condensing portion 6, and the water droplet-shaped refrigerant 4 flows along the inner wall of the inclined metal pipe 3a, and further outside the vapor passage 7 and inside the metal pipe 3a. The liquid is returned to the evaporator 5 by flowing down the liquid return passage 9 formed between the two. Therefore, the vapor passage 7 of the metal tube 3b
Refrigerant vapor 4a rising inside and liquid return passage 9 outside this
Since a loop-shaped coolant passage that does not interfere with the coolant 4 flowing down is formed, the thermal resistance is small and the transfer efficiency can be improved.

【0029】図5に示す棒状ループ型ヒートパイプ10
は、垂直な金属管3aの閉塞した下端側に蒸発部5が形
成され、上端側が開口している。この金属管3aの上部
側を蒸気通路7としこの外側に、間隔をおいてこの外形
より内径の大きい両端が閉塞した金属管3bが設けら
れ、ここを凝縮部6としている。更にこの凝縮部6の下
部側を液溜り部13として凝縮した冷媒4が溜るようにな
っている。この液溜り部13から、蒸発部5を設けた金属
管3aの内壁に沿って、この下部の蒸発部5まで連通す
る小径の液戻り管8を一体に接合して、この内側を液戻
り通路9としたものである。
A rod-shaped loop heat pipe 10 shown in FIG.
Has an evaporating portion 5 formed on the closed lower end side of the vertical metal tube 3a and an open upper end side. The upper side of the metal pipe 3a is used as a vapor passage 7, and a metal pipe 3b, which is closed at both ends and has an inner diameter larger than the outer shape, is provided outside the vapor passage 7 and serves as a condensing section 6. Further, the lower side of the condensing section 6 is used as a liquid pool section 13 to collect the condensed refrigerant 4. A small-diameter liquid return pipe 8 communicating from the liquid reservoir 13 to the lower evaporation portion 5 is integrally joined along the inner wall of the metal pipe 3a provided with the evaporation portion 5, and the inside of the liquid return passage 8 is connected to the liquid return passage. 9 is used.

【0030】この棒状ループ型ヒートパイプ10は、蒸発
部5の冷媒4が加熱されて蒸発し、この冷媒蒸気4aが
金属管3aの蒸気通路7を通って上昇し、更に上端開口
部から外側の金属管3bに流入して凝縮部6に達する。
冷媒蒸気4aはこの凝縮部6の内面で放熱して凝縮し、
水滴状になった冷媒4は金属管3bの内壁に沿って流
れ、この下部に形成した液溜り部13に溜る。次いでここ
から金属管3aの内壁に沿って液戻り通路9内を流下し
て蒸発部5に戻るループ状の冷媒通路が形成される。
In this rod-shaped loop heat pipe 10, the refrigerant 4 in the evaporator 5 is heated and evaporated, the refrigerant vapor 4a rises up through the vapor passage 7 of the metal tube 3a, and further from the upper end opening to the outside. It flows into the metal tube 3b and reaches the condenser section 6.
The refrigerant vapor 4a dissipates heat and condenses on the inner surface of the condenser 6,
The water-drop-shaped refrigerant 4 flows along the inner wall of the metal tube 3b, and collects in the liquid pool 13 formed in the lower part. Then, a loop-shaped refrigerant passage is formed from here along the inner wall of the metal tube 3a, flowing down in the liquid return passage 9 and returning to the evaporator 5.

【0031】図6に示す棒状ループ型ヒートパイプ10
は、両端が閉塞した垂直な金属管3aの下部に冷媒4を
封入してここに蒸発部5を形成し、上部側を凝縮部6と
している。この金属管3aの内側に間隔をおいてこの内
径より外形の小さい両端が開口した金属管3bを挿着し
て二重管構造とし、この金属管3bの内側を冷媒蒸気4
aが上昇する蒸気通路7とし、この蒸気通路7の外側と
金属管3aの内側との間に液戻り通路9が形成されてい
る。
A rod-shaped loop heat pipe 10 shown in FIG.
The refrigerant 4 is enclosed in the lower part of the vertical metal tube 3a whose both ends are closed to form the evaporation part 5 there, and the upper part is the condensation part 6. A metal tube 3b having an outer diameter smaller than the inner diameter and having both ends opened is inserted inside the metal tube 3a to form a double-tube structure.
The vapor return passage 7 has a rising a, and a liquid return passage 9 is formed between the outside of the vapor passage 7 and the inside of the metal pipe 3a.

【0032】この棒状ループ型ヒートパイプ10は、蒸発
部5の冷媒4が加熱されて急速に蒸発し、この冷媒蒸気
4aが蒸気通路7を通って上昇して、上端開口部から金
属管3aの凝縮部6に達する。冷媒蒸気4aはこの凝縮
部6の内面で放熱して凝縮し、水滴状になった冷媒4は
金属管3aの内壁に沿って流れ、更に蒸気通路7の外側
と金属管3aの内側との間に形成された液戻り通路9を
流下して蒸発部5に戻され、上昇する冷媒蒸気4aと、
流下する冷媒4とが互いに干渉しないループ状の冷媒通
路が形成される。
In this rod-shaped loop heat pipe 10, the refrigerant 4 in the evaporation portion 5 is heated and rapidly evaporated, and the refrigerant vapor 4a rises through the vapor passage 7 and the metal pipe 3a from the upper end opening. Reach the condenser 6. The refrigerant vapor 4a dissipates heat and condenses on the inner surface of the condensing portion 6, and the water droplet-shaped refrigerant 4 flows along the inner wall of the metal pipe 3a, and further between the outside of the vapor passage 7 and the inside of the metal pipe 3a. The refrigerant vapor 4a that flows down through the liquid return passage 9 formed in
A loop-shaped coolant passage is formed so that the coolant 4 that flows down does not interfere with each other.

【0033】なお上記実施例では地中に埋設し、地熱を
利用した融雪装置や凍結防止装置に適用した場合につい
て示したが、本発明の棒状ループ型ヒートパイプは、放
熱装置や廃熱回収装置など他の熱伝達装置にも適用する
ことができる。
In the above embodiment, the case where the rod-shaped loop heat pipe of the present invention is buried in the ground and applied to a snow melting device or an antifreezing device utilizing geothermal heat is used as a heat dissipation device or a waste heat recovery device. It can also be applied to other heat transfer devices.

【0034】[0034]

【発明の効果】以上説明した如く本発明に係る棒状ルー
プ型ヒートパイプによれば、蒸気通路と液戻り通路を複
合して一体の棒状に形成されているので、製造や施工が
容易である。しかも冷媒蒸気の上昇する蒸気通路と、凝
縮部で凝縮した冷媒の液が戻る液戻り通路とが完全に分
離され、凝縮した冷媒が全部液戻り通路を流下するルー
プ状の循環通路が形成されているので、熱伝達効率が優
れ、特に地熱のように低い温度差の範囲で熱伝達を行な
う融雪装置や凍結防止装置に効果的である。
As described above, according to the rod-shaped loop heat pipe according to the present invention, since the vapor passage and the liquid return passage are formed integrally into an integral rod shape, the manufacture and construction are easy. Moreover, the vapor passage in which the refrigerant vapor rises and the liquid return passage through which the liquid of the refrigerant condensed in the condenser returns are completely separated, and a loop-shaped circulation passage is formed in which all the condensed refrigerant flows down the liquid return passage. Since it has excellent heat transfer efficiency, it is particularly effective for a snow melting device or an antifreezing device that transfers heat in a range of low temperature difference such as geothermal heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による棒状ループ型ヒートパ
イプを示す縦断面図である。
FIG. 1 is a vertical sectional view showing a rod-shaped loop heat pipe according to an embodiment of the present invention.

【図2】図1に示すヒートパイプのAーA線断面図であ
る。
FIG. 2 is a sectional view taken along the line AA of the heat pipe shown in FIG.

【図3】本発明の他の実施例によるヒートパイプの縦断
面図である。
FIG. 3 is a vertical sectional view of a heat pipe according to another embodiment of the present invention.

【図4】本発明の他の実施例によるヒートパイプの縦断
面図である。
FIG. 4 is a vertical sectional view of a heat pipe according to another embodiment of the present invention.

【図5】本発明の他の実施例によるヒートパイプの縦断
面図である。
FIG. 5 is a vertical sectional view of a heat pipe according to another embodiment of the present invention.

【図6】本発明の他の実施例による棒状ループ型ヒート
パイプを示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing a rod-shaped loop heat pipe according to another embodiment of the present invention.

【図7】従来の単管型ヒートパイプを示す縦断面図であ
る。
FIG. 7 is a vertical cross-sectional view showing a conventional single tube heat pipe.

【図8】従来の四角枠状のループ型ヒートパイプを示す
縦断面図である。
FIG. 8 is a vertical cross-sectional view showing a conventional square frame loop heat pipe.

【図9】従来の棒状ループ型ヒートパイプを示す縦断面
図である。
FIG. 9 is a vertical cross-sectional view showing a conventional rod-shaped loop heat pipe.

【図10】図9に示す棒状ループ型ヒートパイプの水平
断面図である。
10 is a horizontal sectional view of the rod-shaped loop heat pipe shown in FIG.

【符合の説明】[Description of sign]

1 単管型ヒートパイプ 2 ループ型ヒートパイプ 3 金属管 3a 金属管 3b 金属管 4 冷媒 4a 冷媒蒸気 5 蒸発部 6 凝縮部 7 蒸気通路 8 液戻り管 9 液戻り通路 10 棒状ループ型ヒートパイプ 11 路面 12 円筒部 13 液溜り部 1 Single Tube Heat Pipe 2 Loop Heat Pipe 3 Metal Tube 3a Metal Tube 3b Metal Tube 4 Refrigerant 4a Refrigerant Vapor 5 Evaporator 6 Condenser 7 Vapor Passage 8 Liquid Return Pipe 9 Liquid Return Passage 10 Rod Loop Heat Pipe 11 Road Surface 12 Cylindrical part 13 Liquid pool part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 康男 福島県福島市松川町字天王原9番地 北芝 電機株式会社内 (72)発明者 佐藤 裕之 福島県福島市松川町字天王原9番地 北芝 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Tomita 9 Tennohara, Matsukawa-cho, Fukushima City, Fukushima Prefecture Kitashiba Electric Co., Ltd. (72) Hiroyuki Sato 9th Tennohara, Matsukawa-cho, Fukushima City, Fukushima Prefecture Kitashiba Electric Co., Ltd. Within

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 減圧した金属管の内部に冷媒を封入し、
金属管の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部
とした棒状のヒートパイプにおいて、下端が閉塞され上
端が開口した垂直な金属管の下部に蒸発部を形成し、両
端が閉塞されて傾斜した金属管に凝縮部を形成し、蒸発
部を設けた前記金属管の開口した上部を前記凝縮部を設
けた金属管内の下部側に突出させると共に、この傾斜し
た凝縮部の下部側を液溜り部とし、蒸発部を設けた金属
管の内側または外側に、前記液溜り部と蒸発部とを連通
する液戻り通路を設け、この液戻り通路の断面積が、前
記蒸発部を設けた金属管の断面積より小さいことを特徴
とする棒状ループ型ヒートパイプ。
1. A refrigerant is sealed inside a depressurized metal tube,
In a rod-shaped heat pipe in which the lower part of the metal tube is the evaporation part of the refrigerant and the upper part is the condensation part of the refrigerant vapor, the evaporating part is formed in the lower part of the vertical metal tube with the lower end closed and the upper end opened, and both ends are closed. A condensing part is formed on the inclined metal pipe, and the opened upper part of the metal pipe provided with the evaporating part is projected to the lower side in the metal pipe provided with the condensing part, and the lower part side of the inclined condensing part is A liquid return passage is provided inside or outside of the metal pipe provided with the evaporation portion, and the liquid return passage communicating the liquid accumulation portion and the evaporation portion is provided, and the cross-sectional area of the liquid return passage is provided with the evaporation portion. A rod-shaped loop heat pipe that is smaller than the cross-sectional area of a metal tube.
【請求項2】 減圧した金属管の内部に冷媒を封入し、
金属管の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部
とした棒状のヒートパイプにおいて、下部側が垂直で上
部側が傾斜し、閉塞した下端側に蒸発部を形成し、傾斜
した上端側が開口した金属管の、傾斜した上部側の外側
に、間隔をおいてこの外形より内径の大きい両端が閉塞
した金属管を傾斜して設けてここを凝縮部とし、この傾
斜した凝縮部の下部側を液溜り部とし、蒸発部を設けた
前記金属管の内側または外側に、液溜り部と蒸発部とを
連通する液戻り通路を設け、この液戻り通路の断面積
が、前記蒸発部を設けた金属管の断面積より小さいこと
を特徴とする棒状ループ型ヒートパイプ。
2. A refrigerant is sealed inside a depressurized metal tube,
In a rod-shaped heat pipe in which the lower part of the metal pipe is the evaporation part of the refrigerant and the upper part is the condensation part of the refrigerant vapor, the lower part is vertical and the upper part is inclined, the evaporating part is formed on the closed lower end side, and the inclined upper end side is open. On the outside of the inclined upper side of the metal tube, a metal tube whose inner diameter is larger than this outer shape is closed at an interval and is inclined, and this is used as a condensing section, and the lower side of this inclined condensing section is A liquid return passage is provided inside or outside of the metal pipe provided with the evaporation portion and provided with the evaporation portion, the liquid return passage communicating the liquid accumulation portion and the evaporation portion, and the cross-sectional area of the liquid return passage is provided with the evaporation portion. A rod-shaped loop heat pipe that is smaller than the cross-sectional area of a metal tube.
【請求項3】 減圧した金属管の内部に冷媒を封入し、
金属管の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部
とした棒状のヒートパイプにおいて、両端が閉塞し、下
部側が垂直で上部側が傾斜した金属管の下部に蒸発部を
形成し、傾斜した上部側を凝縮部とした金属管の、垂直
な下部内側に間隔をおいてこの内径より外形の小さい両
端が開口した金属管を挿着して二重管構造とし、この内
側の金属管を冷媒蒸気が上昇する蒸気通路とし、この外
側を液戻り通路として、この液戻り通路の断面積が、前
記蒸気通路の断面積より小さいことを特徴とする棒状ル
ープ型ヒートパイプ。
3. A refrigerant is enclosed inside a depressurized metal tube,
In a rod-shaped heat pipe in which the lower part of the metal pipe is the evaporation part of the refrigerant and the upper part is the condensation part of the refrigerant vapor, both ends are closed, the lower part is vertical and the upper part is inclined to form the evaporation part in the lower part of the metal pipe. The metal tube with the upper part as the condensing part is inserted into the vertical lower part at intervals with a metal tube with an outer diameter smaller than this inner diameter open to form a double tube structure. A rod-shaped loop heat pipe, characterized in that a vapor passage through which a refrigerant vapor rises is formed, and an outer side thereof serves as a liquid return passage, and a cross-sectional area of the liquid return passage is smaller than a cross-sectional area of the vapor passage.
【請求項4】 減圧した金属管の内部に冷媒を封入し、
金属管の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部
とした棒状のヒートパイプにおいて、下端が閉塞し上端
が開口した垂直な金属管の下部に蒸発部を形成し、この
金属管の上部外周に間隔をおいてこの外形より内径の大
きい両端が閉塞した金属管を設けてここを凝縮部とし、
この凝縮部を設けた金属管の下部を液溜り部とし、蒸発
部を設けた前記金属管の内側または外側に、液溜り部と
蒸発部とを連通する液戻り通路を設け、この液戻り通路
の断面積が、前記蒸発部を設けた金属管の断面積より小
さいことを特徴とする棒状ループ型ヒートパイプ。
4. A refrigerant is sealed inside a depressurized metal tube,
In a rod-shaped heat pipe in which the lower part of the metal tube is the evaporating part of the refrigerant and the upper part is the condensing part of the refrigerant vapor, the evaporating part is formed in the lower part of the vertical metal tube with the lower end closed and the upper end opened. Provide a metal tube with an inner diameter larger than this outer shape and closed at both ends on the outer circumference of the upper part to make it a condensing part,
A lower portion of the metal pipe provided with the condensing portion serves as a liquid reservoir portion, and a liquid return passage that connects the liquid reservoir portion and the evaporation portion is provided inside or outside the metal pipe provided with the evaporation portion. Has a cross-sectional area smaller than that of the metal tube provided with the evaporation portion.
【請求項5】 減圧した金属管の内部に冷媒を封入し、
金属管の下部を冷媒の蒸発部、上部を冷媒蒸気の凝縮部
とした棒状のヒートパイプにおいて、両端が閉塞した垂
直な金属管の下部に蒸発部を形成し、上部に凝縮部を形
成した金属管の内側に間隔をおいて、この内径より外形
が小さい両端が開口した金属管を挿着して二重管構造と
し、この内側の金属管を冷媒蒸気が上昇する蒸気通路と
し、この外側を液戻り通路として、この液戻り通路の断
面積が、前記蒸気通路の断面積より小さいことを特徴と
する棒状ループ型ヒートパイプ。
5. A refrigerant is sealed inside a depressurized metal tube,
In a rod-shaped heat pipe in which the lower part of the metal tube is the evaporation part of the refrigerant and the upper part is the condensation part of the refrigerant vapor, the evaporating part is formed in the lower part of the vertical metal tube whose both ends are closed, and the condensing part is formed in the upper part. A metal tube whose outer diameter is smaller than this inner diameter is placed inside the tube with a space between both ends to form a double-tube structure.The metal tube inside this is used as a vapor passage through which the refrigerant vapor rises. A rod-shaped loop heat pipe, wherein the liquid return passage has a cross-sectional area smaller than that of the vapor passage.
JP19197294A 1994-07-22 1994-07-22 Rod-form loop type heat pipe Pending JPH0835786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19197294A JPH0835786A (en) 1994-07-22 1994-07-22 Rod-form loop type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19197294A JPH0835786A (en) 1994-07-22 1994-07-22 Rod-form loop type heat pipe

Publications (1)

Publication Number Publication Date
JPH0835786A true JPH0835786A (en) 1996-02-06

Family

ID=16283508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19197294A Pending JPH0835786A (en) 1994-07-22 1994-07-22 Rod-form loop type heat pipe

Country Status (1)

Country Link
JP (1) JPH0835786A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250378B1 (en) 1998-05-29 2001-06-26 Mitsubishi Denki Kabushiki Kaisha Information processing apparatus and its heat spreading method
WO2003056626A1 (en) * 2001-12-27 2003-07-10 Showa Denko K.K. Ebullition cooling device for heat generating component
JP2011149563A (en) * 2010-01-19 2011-08-04 Furukawa Electric Co Ltd:The Heat pipe and heat sink with heat pipe
JP2012026723A (en) * 2011-11-10 2012-02-09 Tai-Her Yang Heat dissipation system carrying out convection by thermal actuation of natural thermo carrier
CN102455141A (en) * 2010-10-21 2012-05-16 昆明东院制冷工程有限责任公司 Two-glass-cavity normal-temperature gravity heat pipe
JP6111003B1 (en) * 2015-10-22 2017-04-05 株式会社丸三電機 Piping member, heat pipe, and cooling device
JP2017227420A (en) * 2016-06-24 2017-12-28 土山産業株式会社 Earth thermal utilization heat pipe type air conditioner, its configuration units and air conditioning method
JP2020112277A (en) * 2019-01-08 2020-07-27 学校法人同志社 Thermosiphon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250378B1 (en) 1998-05-29 2001-06-26 Mitsubishi Denki Kabushiki Kaisha Information processing apparatus and its heat spreading method
WO2003056626A1 (en) * 2001-12-27 2003-07-10 Showa Denko K.K. Ebullition cooling device for heat generating component
US7093647B2 (en) 2001-12-27 2006-08-22 Showa Denko K.K. Ebullition cooling device for heat generating component
JP2011149563A (en) * 2010-01-19 2011-08-04 Furukawa Electric Co Ltd:The Heat pipe and heat sink with heat pipe
CN102455141A (en) * 2010-10-21 2012-05-16 昆明东院制冷工程有限责任公司 Two-glass-cavity normal-temperature gravity heat pipe
JP2012026723A (en) * 2011-11-10 2012-02-09 Tai-Her Yang Heat dissipation system carrying out convection by thermal actuation of natural thermo carrier
JP6111003B1 (en) * 2015-10-22 2017-04-05 株式会社丸三電機 Piping member, heat pipe, and cooling device
JP2017227420A (en) * 2016-06-24 2017-12-28 土山産業株式会社 Earth thermal utilization heat pipe type air conditioner, its configuration units and air conditioning method
JP2020112277A (en) * 2019-01-08 2020-07-27 学校法人同志社 Thermosiphon

Similar Documents

Publication Publication Date Title
CA1120029A (en) Heat pipe bag system
US6450247B1 (en) Air conditioning system utilizing earth cooling
US7146823B1 (en) Horizontal and vertical direct exchange heating/cooling system sub-surface tubing installation means
US20070227703A1 (en) Evaporatively cooled thermosiphon
US4586561A (en) Low temperature heat pipe employing a hydrogen getter
US4339929A (en) Heat pipe bag system
RU2104456C1 (en) Thermosiphon
JPH0835786A (en) Rod-form loop type heat pipe
JPS5928839B2 (en) Thermosiphon type heat pipe with heat storage function
JP2886110B2 (en) Heat pipe type snow melting equipment
JPH07198278A (en) Rodlike loop type heat pipe
US5238053A (en) Method of and system for warming road surface
JP2006084093A (en) Heat pump type air conditioner
CN208860177U (en) The buried gravity assisted heat pipe of big L/D ratio stage evaporation type
JPH06347182A (en) Heat transfer device and manufacture thereof
JP2012083021A (en) Underground heat exchanger
JP2599516Y2 (en) Geothermal heat source heat pipe snow melting device
JPS60233205A (en) Heat pipe for melting snow on road capable of been arranged in connected state
JPS63247595A (en) Thermosyphon
JPS608276Y2 (en) solar heat collector
JPH0665764U (en) Heat pipe type low temperature storage
JP2542912Y2 (en) Long heat pipe with inclined arrangement
JP2562484Y2 (en) Snow melting system using geothermal
JPS608275Y2 (en) Heat collection device for solar collector
JPH09126671A (en) Heat pipe and burying method of heat pipe