JPS63291874A - Refractory molded article of yttria material - Google Patents

Refractory molded article of yttria material

Info

Publication number
JPS63291874A
JPS63291874A JP62128834A JP12883487A JPS63291874A JP S63291874 A JPS63291874 A JP S63291874A JP 62128834 A JP62128834 A JP 62128834A JP 12883487 A JP12883487 A JP 12883487A JP S63291874 A JPS63291874 A JP S63291874A
Authority
JP
Japan
Prior art keywords
yttria
fibers
molded article
refractory
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62128834A
Other languages
Japanese (ja)
Other versions
JPH0236549B2 (en
Inventor
Masahiro Hayase
早瀬 雅博
Hajime Asami
浅見 肇
Hiroyuki Asakura
浅倉 寛行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP62128834A priority Critical patent/JPS63291874A/en
Publication of JPS63291874A publication Critical patent/JPS63291874A/en
Publication of JPH0236549B2 publication Critical patent/JPH0236549B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a readily moldable refractory molded article of yttria material, having excellent mechanical impact resistance and thermal shock resistance suppressing development of cracks even if fine flaws exist, by blending yttria powder with a specific weight ratio of zirconia fibers and molding. CONSTITUTION:100pts.wt. yttria powder is blended with 5-100pts.wt. zirconia fibers and molded to give the refractory molded article of yttria material. Refractory fibers selected from pure zirconia fibers, lime stabilized zirconia fibers, magnesia added zirconia fibers and yttria stabilized zirconia fibers are used as the zirconia fibers. The yttria powder is blended with the zirconia fibers and an organic material (e.g. polyethylene beads), molded, the molded article is burnt to eliminate the organic material and to form a great number of pores so that the molded article is made lightweight and is suitable for a catalytic carrier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、セラミックス耐火成形体に関し、より詳細
には、イツトリア質耐火成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a ceramic refractory molded body, and more particularly to an ittrian refractory molded body.

〔従来の技術〕[Conventional technology]

イツトリアY2O3は、融点が約2410℃とアルミナ
より高く、熱膨張率がアルミナ、マグネシア、ジルコニ
アより小さく、相変態がない。すなわち、結晶転移がな
く、さらにスラグに対して良好な耐食性を示すので、高
温酸化雰囲気で安定な耐火材として注目されている。従
って、イットリア粉末からの成形体は、高温炉のライニ
ング材から、酸素センサー、コンデンサー、原子炉用炉
材に至るまで、広範囲な分野での適用・応用が期待され
ている。
Ittria Y2O3 has a melting point of about 2410°C, which is higher than alumina, a coefficient of thermal expansion smaller than alumina, magnesia, and zirconia, and has no phase transformation. That is, it has no crystal transition and exhibits good corrosion resistance against slag, so it is attracting attention as a stable refractory material in high-temperature oxidizing atmospheres. Therefore, compacts made from yttria powder are expected to find applications in a wide range of fields, from lining materials for high-temperature reactors to oxygen sensors, condensers, and reactor materials for nuclear reactors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、イツトリアのみからなる成形体は、微少
な傷に対して脆く、また、熱的機械的衝撃に弱いという
問題を持ち、しかも、一般的に供給されるミクロンオー
ダーのイツトリア粉末を用いる成形では、亀裂が非常に
発生しやすく、アイソスタチックプレス成形(ラバープ
レス)やホットプレスなどの成形法に限定されていた。
However, molded bodies made only of ittria have the problem of being brittle to minute scratches and susceptible to thermal and mechanical shocks.Moreover, molding using commonly supplied ittria powder on the micron order, Cracks are extremely likely to occur, and molding methods such as isostatic press molding (rubber press) and hot press have been limited.

この発明は上述の背景に基づきなされたものであり、そ
の目的とするところは、微少な傷に対して強く、熱的機
械的衝撃に対する抵抗性を有し、しかも、アイソスタチ
ックプレスなどに替わる簡便な成形法で得ることのでき
るイツトリア質耐火成形体を提供することである。
This invention was made based on the above-mentioned background, and its purpose is to provide a material that is strong against minute scratches, resistant to thermal and mechanical shock, and that can replace isostatic presses. It is an object of the present invention to provide an ittria refractory molded article that can be obtained by a simple molding method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、イツトリア原料粉末に種々の補強材を添
加してイツトリア成形体の特性改良を試みた結果、耐火
繊維を添加すれば、比較的改善されるとの知見を得、こ
の知見に基づき更に、各種の耐火繊維、例えば、グラフ
ァイト繊維、カーボン繊維、SiC繊維、Si3N4繊
維、アルミナ繊維などを検討したが、いずれも焼成処理
あるいは実使用時に焼失、分解、酸化、溶融などが起こ
り、十分な繊維添加効果を得ることができなかった。し
かしながら、発明者は、更に詳細に研究を進めた結果、
十分な繊維添加効果を得ることができないと考えられた
耐火繊維のうちジルコニア繊維が、意外にもイツトリア
と反応せずに低融物質を形成しないことを見出し、この
発明を完成するに至った。
The present inventors tried to improve the characteristics of the Ittria molded product by adding various reinforcing materials to the Ittria raw material powder, and found that the addition of refractory fibers would relatively improve the properties. Based on this, various fire-resistant fibers such as graphite fibers, carbon fibers, SiC fibers, Si3N4 fibers, alumina fibers, etc. were investigated, but all of them burn out, decompose, oxidize, melt, etc. during firing treatment or actual use, and are not sufficient. It was not possible to obtain a significant effect of adding fiber. However, as a result of further detailed research, the inventor discovered that
Among the refractory fibers that were thought to be unable to obtain sufficient fiber addition effects, it was surprisingly discovered that zirconia fibers do not react with ittria and do not form a low-melting substance, leading to the completion of this invention.

すなわち、この発明のイツトリア質耐火成形体は、イツ
トリア粉末100重量部に対しジルコニア繊維を5〜1
00重量部添加配合されていることを特徴とするもので
ある。
That is, the ittria refractory molded article of the present invention contains 5 to 1 zirconia fiber per 100 parts by weight of ittria powder.
00 parts by weight is added.

この発明の好ましい態様において、この発明で用いるジ
ルコニア繊維として、純ジルコニアファイバー、ライム
安定化ジルコニアファイバー、マグネシア添加ジルコニ
アファイバー、およびイツトリア安定化ジルコニアファ
イバーから選ばれた少なくとも1種の耐火繊維、好まし
くはイツトリア安定化ジルコニアファイバーとすること
ができる。
In a preferred embodiment of the present invention, the zirconia fiber used in the present invention is at least one refractory fiber selected from pure zirconia fiber, lime-stabilized zirconia fiber, magnesia-added zirconia fiber, and ittria-stabilized zirconia fiber, preferably ittria. It can be a stabilized zirconia fiber.

この発明の一態様として、成形体を焼成処理されたもの
とすることができる。
In one embodiment of the present invention, the molded body can be fired.

この発明の好ましい態様において、この成形体に、添加
されていた有機物の焼失により形成された多数の空孔を
設けることができる。
In a preferred embodiment of the present invention, the molded body can be provided with a large number of pores formed by burning off the added organic matter.

上記の態様において、その有機物の添加量は、イツトリ
ア粉末とジルコニア繊維との合計量100重量部に対し
、100重量部未満とすることができる。
In the above embodiment, the amount of the organic substance added can be less than 100 parts by weight based on 100 parts by weight of the total amount of ittria powder and zirconia fiber.

この発明の別の態様において、イツトリア粉末の粒径を
、0.1〜100μmとすることができる。
In another aspect of the invention, the particle size of the ittria powder can be between 0.1 and 100 μm.

以下、この発明をより詳細に説明する。This invention will be explained in more detail below.

イツトリア粉末 この発明において用いられるイツトリア粉末は、化学式
Y2O3で表される酸化物セラミックスから実質的にな
るものであり、炭酸ジルコニル、水酸化ジルコニルなど
のジルコニウム化合物やそれらにY2O3、MgO1C
aOなどの安定化剤を添加したものの粉末である。これ
らは、例えは、噴霧乾燥による微細粉体の製造法により
得ることができる。このイツトリア粉体の粒度は、この
発明において特に制限されず、イツトリア成形体の用途
、形状などに応じて適宜選択することができ、例えば、
イツトリア成形体を酸素センサーに用いる場合、その粒
径を1〜3μmに設定することができる。
Ittria Powder The ittria powder used in this invention consists essentially of oxide ceramics represented by the chemical formula Y2O3, and includes zirconium compounds such as zirconyl carbonate and zirconyl hydroxide, as well as zirconium compounds such as Y2O3 and MgO1C.
It is a powder to which a stabilizer such as aO is added. These can be obtained, for example, by a method for producing fine powders by spray drying. The particle size of the ittria powder is not particularly limited in the present invention, and can be appropriately selected depending on the use, shape, etc. of the ittria molded product.
When the Ittria molded body is used for an oxygen sensor, its particle size can be set to 1 to 3 μm.

ジルコニア繊維 この発明において使用できるジルコニア繊維として、例
えば、純ジルコニアファイバー、ライム安定化ジルコニ
アファイバー、マグネシア添加ジルコニアファイバー、
イツトリア添加ジルコニアファイバー、およびこれらの
混合物などがあり、好ましくは、イツトリア添加ジルコ
ニアファイバーがある。
Zirconia fibers Examples of the zirconia fibers that can be used in the present invention include pure zirconia fibers, lime-stabilized zirconia fibers, magnesia-added zirconia fibers,
Examples include itria-doped zirconia fibers and mixtures thereof, and preferably itria-doped zirconia fibers.

このジルコニア繊維は、種々の方法により製造すること
ができ、例えば、ジルコニウム塩の水溶液を出発原料(
紡糸液)としてこれを繊維化して、繊維前駆体(プリカ
ーサ−)を形成し、繊維前駆体を高温で焼成して製造す
ることができ、イツトリア成形体の用途、形状などに応
じて適宜選択することができる。
This zirconia fiber can be produced by various methods. For example, an aqueous solution of zirconium salt is used as a starting material (
It can be produced by converting it into fibers as a spinning solution to form a fiber precursor and firing the fiber precursor at high temperature, and it can be selected as appropriate depending on the use, shape, etc. of the Ittria molded product. be able to.

ジルコニア繊維の添加量は、イツトリア粉末100重量
部に対し5〜100重量部、好ましくは10〜80重量
部、より好ましくは30〜70重量部である。これは、
ジルコニア繊維の添加量についてこの下限量未満では繊
維添加効果が小さく、他方上限量を超えると繊維過多と
なって実使用の時の荷重あるいは自重によるクリープ変
形が発生し易くなるからである。
The amount of zirconia fiber added is 5 to 100 parts by weight, preferably 10 to 80 parts by weight, and more preferably 30 to 70 parts by weight, based on 100 parts by weight of ittria powder. this is,
This is because if the amount of zirconia fiber added is less than this lower limit, the effect of adding the fiber will be small, whereas if it exceeds the upper limit, there will be too much fiber and creep deformation due to the load or own weight during actual use will easily occur.

添加剤 この発明において、成形体用原料に上記成分以外に目的
に応じて種々の添加物を含めることができる。そのよう
な添加物として、例えば、バインダー、多孔化剤、界面
活性剤、分散剤、凝集剤などがある。
Additives In the present invention, the raw material for the molded body may contain various additives in addition to the above-mentioned components depending on the purpose. Examples of such additives include binders, porosity-forming agents, surfactants, dispersants, and flocculants.

用いることのできるバインダーとしては、例えば、ポリ
エチレンオキシド、ポリビニルアルコール、ポリアクリ
ル酸などの合成高分子、メチルセルロース、カルボキシ
エチルセルロース、ヒドロキシメチルセルロース、ヒド
ロキシエチルセルロース、リン酸セルロースなどのセル
ロース誘導体、デンプンおよびデンプン誘導体、ペクチ
ン、アルギン酸ナトリウム、寒天などの動植物性粘質物
、並びに酢酸イツトリウム、塩化イツトリウム、硝酸イ
ツトリウム、硫酸イツトリウムなどの水溶性イツトリウ
ム化合物などがある。
Examples of binders that can be used include synthetic polymers such as polyethylene oxide, polyvinyl alcohol, and polyacrylic acid, cellulose derivatives such as methylcellulose, carboxyethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, and cellulose phosphate, starch and starch derivatives, and pectin. , animal and plant mucilages such as sodium alginate and agar, and water-soluble yttrium compounds such as yttrium acetate, yttrium chloride, yttrium nitrate, and yttrium sulfate.

この発明のイツトリア成形体を軽量化するために、また
、ろ過材や触媒担体などの用途に用いるために、焼成処
理により焼失φ気化して成形体中に多数の気孔を残す物
質、すなわち多孔化剤を添加してもよい。そのような多
孔化剤として、例えば、発泡スチロールビーズ、発泡ウ
レタンフオームビーズ、ポリエチレンビーズなどの有機
法および合成繊維や麻糸、木綿などの天然繊維などの有
機繊維がある。この多孔化剤である球状または繊維状有
機物の添加量は、用途、気孔率、気孔径によって異なる
が、例えば、ろ過材などにイツトリア成形体を使用する
場合、イツトリア粉末およびジルコニア繊維の添加量1
00重量部に対して、その球状または繊維状有機物の添
加量は100重景重量満、好ましくは、10〜50重量
部である。これは、その上限量を超えると得られたイツ
トリア成形体の強度が低下して充分な取扱強度が得られ
ないからである。
In order to reduce the weight of the Ittria molded body of this invention, and to use it for applications such as filter media and catalyst carriers, we have developed a material that is burnt off and φ vaporized during the firing process, leaving a large number of pores in the molded body. Agents may also be added. Examples of such pore-forming agents include organic fibers such as organic fibers such as expanded styrene beads, expanded urethane foam beads, and polyethylene beads, as well as synthetic fibers and natural fibers such as linen thread and cotton. The amount of spherical or fibrous organic material added as a porosity agent varies depending on the application, porosity, and pore size, but for example, when using ittria molded bodies for filter media, the amount of addition of ittria powder and zirconia fibers is 1
The amount of the spherical or fibrous organic substance added is less than 100 parts by weight, preferably 10 to 50 parts by weight. This is because if the upper limit amount is exceeded, the strength of the obtained Ittria molded product will decrease and sufficient handling strength will not be obtained.

製造法 この発明のイツトリア成形体は、種々の方法により調製
・成形することができ、アイソスタチックプレス法やホ
ットプレス法などの方法以外に、−軸プレス、流し込み
成形、射出成形などでできる。
Manufacturing method The ittria molded article of the present invention can be prepared and molded by various methods, including isostatic pressing, hot pressing, and other methods such as -axis pressing, casting molding, and injection molding.

この発明においては、成形後、成形体を乾燥し、更に焼
成処理に付しても、またその処理に付さなくてもよく、
イツトリア成形体の成分種類、用途などに応じて適宜選
択することができる。例えば、イツトリア成形体を成形
後に乾燥処理し、いわゆる不焼成耐火物としてそのまま
使用してもよい。
In this invention, after molding, the molded body may be dried and may or may not be subjected to a firing treatment,
It can be selected as appropriate depending on the type of components of the Ittria molded product, its use, etc. For example, the ittria molded body may be dried after being molded and used as is as a so-called unfired refractory.

また、加えたバインダーから発生するガス成分や焼成収
縮が問題となるときなど、焼成処理を施す。
In addition, firing treatment is performed when gas components generated from the added binder or firing shrinkage become a problem.

焼成する場合その焼成温度は例えば1300〜2000
℃であり、好ましくは1500〜1900℃である。こ
の温度下限未満では焼結強度が弱く、上限を超えると過
焼結となって変形を生じるからである。
When firing, the firing temperature is, for example, 1300 to 2000.
℃, preferably 1500 to 1900℃. This is because if the temperature is below the lower limit, the sintering strength will be weak, and if it exceeds the upper limit, oversintering will occur and deformation will occur.

得られたイツトリア成形体は、所望の形状に切断・分割
して行うことができる。
The obtained ittria molded product can be cut and divided into desired shapes.

〔作 用〕[For production]

この発明のイツトリア成形体で用いるジルコニア繊維は
、成形体の主成分であるイツトリアと反応せず従って低
融物質を形成せず、更に、ジルコニア繊維は約2600
℃以上の高融点を有しているので、ジルコニア繊維以外
の耐火繊維でよく起こる分解や溶融などの現象が生じな
い。この成形体には、機械的強度に優れたジルコニア繊
維が添加されているので、これが成形体に対し補強材と
しての働きをして、制限のない成形法を可能にするとと
もに、得られた成形体の機械的強度を著しく高める。
The zirconia fibers used in the ittria molded body of this invention do not react with ittria, which is the main component of the molded body, and therefore do not form a low-melting substance.
Since it has a high melting point of ℃ or higher, phenomena such as decomposition and melting that often occur with refractory fibers other than zirconia fibers do not occur. Zirconia fibers with excellent mechanical strength are added to this molded body, which acts as a reinforcing material for the molded body, enabling unlimited molding methods and improving the Significantly increases the mechanical strength of the body.

〔発明の効果〕〔Effect of the invention〕

上記の構成および作用を有するこの発明は、以下の効果
を有する。
This invention having the above configuration and operation has the following effects.

(イ)イツトリア成形体に微少な傷があっても、その傷
に対する抵抗性が高く、亀裂の進行を抑制できる。
(a) Even if there are minute scratches on the Ittria molded product, it has high resistance to the scratches and can suppress the progression of cracks.

(ロ)機械的熱的に優れた特性を有するジルコニア繊維
を含有するので、イツトリア成形体に機械的熱的衝撃に
対する良好な抵抗性を付与する。
(b) Since it contains zirconia fibers having excellent mechanical and thermal properties, it imparts good resistance to mechanical and thermal shock to the Ittria molded article.

(ハ)通常のミクロンオーダーの微細粉末イツトリアを
用いても、ジルコニア繊維を添加しない場合と比較して
容易に種々の方法で成形できる。
(c) Even if ordinary fine powder powder of micron order is used, it can be molded more easily by various methods than when no zirconia fiber is added.

〔実施例〕〔Example〕

以下にこの発明を実施例および比較例により更に具体的
に説明するが、この発明はその要旨を越えない限り以下
の実施例に限定されるものではない。
This invention will be explained in more detail below using Examples and Comparative Examples, but this invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 平均径1μmのイツトリア粉末100重責部に対し、平
均径5μm1平均長20〜30mmのイツトリア安定化
ジルコニアファイバー(品川白煉瓦社製)20重量部、
メチルセルロース1重量部、塩化イツトリウム粉1重量
部、水40重量部を添加配合し、混線後に型枠に流し込
み、乾燥してイツトリア成形体を得た。この成形体を1
600℃で焼成した焼成物の特性を第1表に示す。
Example 1 100 parts by weight of Ittria powder with an average diameter of 1 μm, 20 parts by weight of Ittria stabilized zirconia fibers (manufactured by Shinagawa Shirorenga Co., Ltd.) with an average diameter of 5 μm and an average length of 20 to 30 mm;
1 part by weight of methylcellulose, 1 part by weight of yttrium chloride powder, and 40 parts by weight of water were added and blended, mixed, poured into a mold, and dried to obtain an yttrium molded body. This molded body is 1
Table 1 shows the properties of the fired product fired at 600°C.

実施例2 平均径50〜100μmのイツトリア粉末100重量部
に対し、平均径5μm1平均長20〜30m層のライム
安定化ジルコニアファイバー(品川白煉瓦社製)70重
量部、カルボキシセルロース1重量部、平均径1m+s
の発泡スチロールビーズ2重量部、水20重量部を添加
配合し、50Kg/cdの圧力で一軸加圧成形し、乾燥
してイツトリア成形体を得た。この成形体を1700℃
で焼成した焼成物の特性を第1表に示す。
Example 2 100 parts by weight of Ittria powder with an average diameter of 50 to 100 μm, 70 parts by weight of lime-stabilized zirconia fiber (manufactured by Shinagawa Shirorenga Co., Ltd.) with an average diameter of 5 μm and a layer of 20 to 30 m in average length, 1 part by weight of carboxycellulose, average Diameter 1m+s
2 parts by weight of expanded polystyrene beads and 20 parts by weight of water were added and blended, uniaxially pressure molded at a pressure of 50 kg/cd, and dried to obtain an ittria molded product. This molded body was heated to 1700°C.
Table 1 shows the properties of the fired product.

比較例1 実施例1で用いたジルコニア繊維のみを配合しなかった
こと以外、実施例1と同様にイツトリア成形体を得、焼
成した。その特性を第1表に示す。
Comparative Example 1 An Ittria molded body was obtained and fired in the same manner as in Example 1, except that the zirconia fiber used in Example 1 was not blended. Its characteristics are shown in Table 1.

製造の過程で、乾燥後に、無数の亀裂を生じた。During the manufacturing process, numerous cracks appeared after drying.

比較例2 実施例2で用いたジルコニア繊維のみを配合しなかった
こと以外、実施例2と同様にイツトリア成形体を得、焼
成した。その特性を第1表に示す。
Comparative Example 2 An Ittria molded body was obtained and fired in the same manner as in Example 2, except that the zirconia fibers used in Example 2 were not blended. Its characteristics are shown in Table 1.

製造の過程で、プレス成形後の脱枠時に亀裂が発すると
共に乾燥後に、無数の亀裂を生じた。
During the manufacturing process, cracks appeared when the frame was removed after press molding, and numerous cracks also appeared after drying.

第  1  表Table 1

Claims (1)

【特許請求の範囲】 1、イットリア粉末100重量部に対しジルコニア繊維
を5〜100重量部添加配合されていることを特徴とす
るイットリア質耐火成形体。 2、ジルコニア繊維が、純ジルコニアファイバー、ライ
ム安定化ジルコニアファイバー、マグネシア添加ジルコ
ニアファイバー、およびイットリア安定化ジルコニアフ
ァイバーから選ばれた少なくとも1種の耐火繊維である
特許請求の範囲第1項記載のイットリア質耐火成形体。 3、該成形体が焼成処理されたものである特許請求の範
囲第1項または第2項記載のイットリア質耐火成形体。 4、該成形体が、添加されていた有機物の焼失により形
成された多数の空孔を有する特許請求の範囲第3項記載
のイットリア質耐火成形体。 5、該有機物の添加量が、イットリア粉末とジルコニア
繊維との合計量100重量部に対し、100重量部未満
である特許請求の範囲第4項記載のイットリア質耐火成
形体。 6、イットリア粉末の粒径が、0.1〜100μmであ
る特許請求の範囲第1項または第5項記載のイットリア
質耐火成形体。
[Scope of Claims] 1. An yttria refractory molded article characterized in that 5 to 100 parts by weight of zirconia fibers are added to 100 parts by weight of yttria powder. 2. The yttria fiber according to claim 1, wherein the zirconia fiber is at least one refractory fiber selected from pure zirconia fiber, lime-stabilized zirconia fiber, magnesia-added zirconia fiber, and yttria-stabilized zirconia fiber. Fireproof molded body. 3. The yttria refractory molded body according to claim 1 or 2, wherein the molded body has been subjected to a firing treatment. 4. The yttria refractory molded product according to claim 3, wherein the molded product has a large number of pores formed by burning out the added organic matter. 5. The yttria refractory molded article according to claim 4, wherein the amount of the organic substance added is less than 100 parts by weight based on 100 parts by weight of the total amount of yttria powder and zirconia fiber. 6. The yttria refractory molded article according to claim 1 or 5, wherein the yttria powder has a particle size of 0.1 to 100 μm.
JP62128834A 1987-05-26 1987-05-26 Refractory molded article of yttria material Granted JPS63291874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128834A JPS63291874A (en) 1987-05-26 1987-05-26 Refractory molded article of yttria material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128834A JPS63291874A (en) 1987-05-26 1987-05-26 Refractory molded article of yttria material

Publications (2)

Publication Number Publication Date
JPS63291874A true JPS63291874A (en) 1988-11-29
JPH0236549B2 JPH0236549B2 (en) 1990-08-17

Family

ID=14994554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128834A Granted JPS63291874A (en) 1987-05-26 1987-05-26 Refractory molded article of yttria material

Country Status (1)

Country Link
JP (1) JPS63291874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579721A1 (en) * 1991-04-09 1994-01-26 Modar, Inc. Zirconium oxide ceramics for surfaces exposed to high temperature water oxidation environments
CN103608966A (en) * 2011-06-17 2014-02-26 应用材料公司 Pinhole-free dielectric thin film fabrication
JP5920788B2 (en) * 2010-12-10 2016-05-18 国立研究開発法人物質・材料研究機構 Oxide-based composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579721A1 (en) * 1991-04-09 1994-01-26 Modar, Inc. Zirconium oxide ceramics for surfaces exposed to high temperature water oxidation environments
EP0579721A4 (en) * 1991-04-09 1994-03-23 Modar, Inc.
US5358645A (en) * 1991-04-09 1994-10-25 Modar, Inc. Zirconium oxide ceramics for surfaces exposed to high temperature water oxidation environments
JP5920788B2 (en) * 2010-12-10 2016-05-18 国立研究開発法人物質・材料研究機構 Oxide-based composite material
CN103608966A (en) * 2011-06-17 2014-02-26 应用材料公司 Pinhole-free dielectric thin film fabrication
CN103608966B (en) * 2011-06-17 2017-02-15 应用材料公司 Pinhole-free dielectric thin film fabrication

Also Published As

Publication number Publication date
JPH0236549B2 (en) 1990-08-17

Similar Documents

Publication Publication Date Title
JP2017024987A (en) Method for producing light ceramic materials
US4690790A (en) Silicon nitride/silicon carbide composition and articles thereof
JP2959683B2 (en) Method for producing high-purity alumina fiber molded body
JPH04139079A (en) Production of porous ceramics
JPH0653626B2 (en) Zirconia composite fireproof insulation
JPS63297267A (en) Zirconia composite refractory
JPS63291874A (en) Refractory molded article of yttria material
JPH0288452A (en) Heat-resistant inorganic compact
JP3094148B2 (en) Manufacturing method of lightweight refractory
JP2880002B2 (en) Ceramic porous body
Piao et al. Preparation and properties of porous Al2O3‐based ceramics by gel casting using MgO as a gelling and consolidating agent
CN112279637A (en) Alumina fiber-magnesia-alumina spinel porous ceramic and preparation method thereof
JPH04104952A (en) Zirconia-substance complex refractory composition
JPH05319949A (en) Production of alumina based fiber formed product
JPH01320277A (en) Porous body of mgo-al2o3 spinel
JPS63291858A (en) Yttria based self-hardenable refractory composition
CN112535907B (en) High-density ceramic fiber filter material and preparation method thereof
JP2550547B2 (en) Modification method of ceramic molded products
JP3312068B2 (en) Method for producing large magnesia molded body and sintered body
JPH01282150A (en) Yttria refractory molded body and production thereof
JPS6364954A (en) Manufacture of porous ceramic sintered body
JPS6049420B2 (en) Manufacturing method of ceramic honeycomb
JPH03215375A (en) Production of porous silicon carbide having low density
JPH01301561A (en) Refractory heating element of zirconia
JPH0388787A (en) Porous refractory material