JPS63291173A - Aircraft detector - Google Patents

Aircraft detector

Info

Publication number
JPS63291173A
JPS63291173A JP62125589A JP12558987A JPS63291173A JP S63291173 A JPS63291173 A JP S63291173A JP 62125589 A JP62125589 A JP 62125589A JP 12558987 A JP12558987 A JP 12558987A JP S63291173 A JPS63291173 A JP S63291173A
Authority
JP
Japan
Prior art keywords
temperature
aircraft
unit
pattern
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62125589A
Other languages
Japanese (ja)
Inventor
Hisashi Kurosaki
久 黒埼
Junya Toda
順也 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP62125589A priority Critical patent/JPS63291173A/en
Publication of JPS63291173A publication Critical patent/JPS63291173A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always discriminate the presence and the absence of an aircraft by operating a difference between an object temperature signal and a background temperature signal and outputting a difference temperature signal when the aircraft is present. CONSTITUTION:An objective temperature detecting part 1a and a background temperature detecting part 1b are disposed and the difference of the temperature signals from both detecting parts 1a, 1b is operated. Thereby, an influence due to the drift in the background temperature according to the elapse of a time, the change of weather or the like is removed, only the presence of the aircraft is detected, the aircraft can be detected according to a complete automation, for instance, when the aircraft is already present in a detecting area at the time of activating a device, the aircraft can be detected.

Description

【発明の詳細な説明】 産業上の利用分野 空港内を地上走行する航空機の管制システムにおいて、
航空機の位置9機種等を決定することは重要な事項であ
り、本発明は非接触温度センサを用いて航空機の存在を
検出する装置、更に該検出装置からの温度パタン出力に
より航空機の機種を決定する装置に関する。
[Detailed Description of the Invention] Industrial Field of Application In a control system for aircraft taxiing within an airport,
Determining the location and type of aircraft is an important matter, and the present invention uses a non-contact temperature sensor to detect the presence of an aircraft, and furthermore, determines the type of aircraft based on the temperature pattern output from the detection device. related to a device for

従来の技術 温度計測による航空機の検出および航空機の機種判別を
行う装置は従来な(・。
Conventional technology Devices for detecting aircraft and identifying the type of aircraft by temperature measurement are conventional (・.

一般に、被測定物の存在を検出する場合には、被測定物
が計測エリア内に存在しな(・場合のレベルと、被測定
物が計測エリア内に存在する場合のレベルとのレベル差
を検出し、該レベル差が一定の閾値以上である場合に被
測定物が存在すると判定する。ループコイルを用いた電
磁方式などがその例であり一部空港内を地上送行する航
空機の管制システムに用いられている。
Generally, when detecting the presence of an object to be measured, the difference in level between the level when the object is not present in the measurement area and the level when the object is present in the measurement area is If the level difference is above a certain threshold, it is determined that the object to be measured exists.An example is an electromagnetic method using a loop coil, which is used in some control systems for aircraft that are grounded within airports. It is used.

発明が解決しようとする問題点 前述のループコイル方式などの電磁方式の場合は、前記
閾値を予め決定することは容易であり、また天候其他の
空港内での環境変化等tこよる測定値の時間的変化は急
激でなく、自動補正も比較的容易である。
Problems to be Solved by the Invention In the case of an electromagnetic method such as the above-mentioned loop coil method, it is easy to determine the threshold value in advance, and it is easy to determine the threshold value in advance, and the measurement value can be easily determined due to weather or other environmental changes within the airport. The temporal change is not sudden, and automatic correction is relatively easy.

しかしながら、空港内等の外気温度を対象とするような
温度計測のシステムにお(・ては、外気温度の時間的変
化が急激でありかつその変化幅も大キ<、そのため閾値
の自動補正は容易ではない。
However, in temperature measurement systems that target outside air temperature, such as in airports, the outside air temperature changes rapidly over time and the range of change is large. It's not easy.

また、完全自動化システムを考えた場合、測定開始のた
めの検出装置の起動時、所謂システム立上げ時に、被測
定物が既に計測エリアに存在するような場合ンこは、前
記閾値を決めることすら困難である。
Furthermore, when considering a fully automated system, if the object to be measured is already present in the measurement area at the time of starting up the detection device to start measurement, so-called system start-up, it may be difficult to even determine the threshold value. Have difficulty.

まして温度計測により航空機の機種を識別することは更
に困難であった。
Furthermore, it was even more difficult to identify the type of aircraft based on temperature measurements.

問題点を解決するための手段 本発明は、前述の問題点を考慮し、航空機が確実に通過
するエリアに照準を合わせた赤外線放射温度計のごとき
非接触温度センサと、航空機が確実に通過しないエリア
に照準を合わせた同様の非接触温度センサとを用意し、
両温度センサにより検出されるレベルの差から、測定し
即座に航空機の存在を検出する手段により解決するもの
である。
Means for Solving the Problems The present invention takes the aforementioned problems into account and provides a non-contact temperature sensor, such as an infrared radiation thermometer, which is aimed at an area where an aircraft will definitely pass through, and a non-contact temperature sensor, such as an infrared radiation thermometer, that is aimed at an area where an aircraft will definitely pass through. and a similar non-contact temperature sensor aimed at the area.
This problem is solved by measuring the difference in the levels detected by both temperature sensors and immediately detecting the presence of an aircraft.

また、航空機は機種によって構造的特徴を有し、特に温
度パタンの面から見ると、「エンジン基数」、「エンジ
ンの相対位置」、および「エンジン間の相対距離」に大
きな特徴がある。本発明では前述の諸点に着眼し、前記
諸特徴点を抽出することにより、航空機の存在を検出す
る手段から進んで、航空機の機種を識別する装置を提供
しようとするものである。
In addition, aircraft have structural characteristics depending on the model, and in particular, from the perspective of temperature patterns, there are major characteristics in "number of engines,""relative positions of engines," and "relative distances between engines." The present invention focuses on the above-mentioned points and attempts to provide a device that goes beyond the means of detecting the presence of an aircraft to identify the model of the aircraft by extracting the various characteristic points.

即ち、非接触温度センサを用い航空機の通過する部分の
温度変化を検出する対象温度検出部と、非接触温度セン
サを用い航空機の通過しない部分の温度を検出する背景
温度検出部と、前記対象温度検出部から出力される対象
温度信号と前記背景温度検出部から出力される背景温度
信号との差分演算を行う差分演算部とが具備され、航空
機が存在する場合にのみ前記差分演算部より差分温度信
号が出力される構成の装置により航空機の存在を検出す
るものであり、更に、非接触温度センサを用い航空機の
通過する部分の温度変化を検出する対像温度検出部と非
接触温度センサを用い航空機の通過しない部分の温度を
検出する背景温度検出部と前記対象温度検出部から出力
される対象温度信号と前記背景温度検出部から出力され
る背景温度信号との差分演算を行う差分演算部とが具備
され航空機が存在する場合にのみ前記差分演算部より差
分温度信号が出力される構成とされている航空機検出部
と、該航空機検出部よりの出力差分温度信号を量子化し
て記憶する温度記憶部と、該温度記憶部から出力される
時系列温度データにより該当する航空機の温度パタンを
形成する温度パタン形成部と、該温度パタン形成部より
出力される温度パタンを航空機の存在時間について正規
化する正規化処理部と、該正規化処理部から出力される
正規化温度パタンから航空機の温度につ(・ての特徴量
であるピーク数を求めるピーク数計測部と前記正規化温
度パタンからピークの位置を求めるピーク位置計測部と
前記正規化温度パタンから複数のピークが存在する場合
に前記ピーク間の距離を求めるピーク間距離計測部とか
らなる特徴抽出部と、予め航空機の機種毎の基準特徴デ
ータを記憶しておく既知パタン記憶部と、該既知パタン
記憶部からの既知の基準特徴データと前記特徴抽出部か
らの特徴データとを比較して航空機の機種を判定する機
種判定部とを具備する構成の装置により航空機の機種も
識別せんとするものである。
That is, a target temperature detection section that uses a non-contact temperature sensor to detect temperature changes in a portion where an aircraft passes through, a background temperature detection section that uses a non-contact temperature sensor to detect temperature changes in a portion that an aircraft does not pass through, and a background temperature detection section that uses a non-contact temperature sensor to detect temperature changes in a portion that an aircraft does not pass through; A difference calculation unit that calculates a difference between the target temperature signal output from the detection unit and the background temperature signal output from the background temperature detection unit is provided, and only when an aircraft is present, the difference temperature is calculated by the difference calculation unit. The system detects the presence of an aircraft using a device that outputs a signal, and also uses a non-contact temperature sensor and an object temperature detection unit that detects temperature changes in the area where the aircraft passes. a background temperature detection unit that detects the temperature of a portion where the aircraft does not pass; a difference calculation unit that calculates a difference between a target temperature signal output from the target temperature detection unit and a background temperature signal output from the background temperature detection unit; an aircraft detection unit configured to output a differential temperature signal from the difference calculation unit only when an aircraft is present; and a temperature memory that quantizes and stores the output differential temperature signal from the aircraft detection unit. a temperature pattern forming section that forms a temperature pattern of a corresponding aircraft based on the time-series temperature data output from the temperature storage section; and a temperature pattern forming section that normalizes the temperature pattern output from the temperature pattern forming section with respect to the time of existence of the aircraft. a normalization processing unit that calculates the number of peaks, which is a feature quantity, of the aircraft from the normalized temperature pattern output from the normalization processing unit; a feature extraction unit consisting of a peak position measurement unit that calculates the position of the peak position, and a peak-to-peak distance measurement unit that calculates the distance between the peaks when a plurality of peaks exist from the normalized temperature pattern; a known pattern storage section that stores feature data; and an aircraft type determination section that compares the known reference feature data from the known pattern storage section with the feature data from the feature extraction section to determine the model of the aircraft. It is intended that the model of the aircraft can also be identified by the device that is included.

作   用 航空機の検出のみに用いる場合には、航空機の通過する
部分に照準を合わせた対像温度検出部よりの対象温度信
号と、航空機の通過しない部分に照準を合わせた背景温
度検出部よりの背景温度信号とを差分演算部に入力し、
航空機検出装置より、差分温度信号を出力し航空機の有
無を検出する。
When used only to detect active aircraft, the target temperature signal from the object temperature detection unit aimed at the area where the aircraft passes, and the background temperature signal from the background temperature detection unit aimed at the area where the aircraft does not pass. Input the background temperature signal to the difference calculation section,
The aircraft detection device outputs a differential temperature signal to detect the presence or absence of an aircraft.

また、航空機の機種の識別まで行う場合には前述の航空
機検出装置を航空機検出部とし、該航空機検出部よりの
アナジグの差分温度信号を温度記憶部に入力し、該温度
記憶部で前記差分温度信号をA/D変換後、時系列の航
空機温度データとして記憶する。該時系列航空機温度デ
ータを温度パタン形成部に入力し、前記時系列温度デー
タからノイズを除去し、検出すべき航空機の温度パタン
を作成し出力する。該温度パタンを正規化処理部に入力
し前記温度パタンな、航空機の機種如何に拘らず、移動
する航空機の存在時間が一定になるように、同一時間長
に正規化して、当該航空機の正規化温度パタンを作成す
る。該正規化温度−パタンを特徴抽出部に入力し、前記
正規化温度パタンから、例えば、航空機の構造上の特徴
であるエンジンの数9位置に相当するピーク数、ピーク
位置。
In addition, when identifying the type of aircraft, the above-mentioned aircraft detection device is used as the aircraft detection section, and the Anajig differential temperature signal from the aircraft detection section is input to the temperature storage section, and the temperature storage section stores the difference temperature. After the signal is A/D converted, it is stored as time series aircraft temperature data. The time-series aircraft temperature data is input to a temperature pattern forming section, noise is removed from the time-series temperature data, and a temperature pattern of the aircraft to be detected is created and output. The temperature pattern is input to the normalization processing unit, and the temperature pattern is normalized to the same time length so that the existence time of the moving aircraft is constant regardless of the type of aircraft, and the aircraft is normalized. Create a temperature pattern. The normalized temperature pattern is input to the feature extraction unit, and from the normalized temperature pattern, for example, the number of peaks and the peak position corresponding to the number 9 positions of the engine, which are structural characteristics of the aircraft, are obtained.

ピーク間距離等の特徴を抽出する。Extract features such as distance between peaks.

前記特徴抽出部で抽出された航空機の特徴を、予め用意
しである航空機の機種毎の基準特徴パタンと比較し、機
種判定部で当該航空機の機種を識別する。
The aircraft features extracted by the feature extraction section are compared with a reference feature pattern prepared in advance for each aircraft model, and the model determination section identifies the model of the aircraft.

実  施  例 以下、図面に示す実施例につき説明する。Example The embodiments shown in the drawings will be described below.

特許請求の範囲第1項に示す航空機検出装置の実施例は
、第1図に示す如く、対象温度検出部1aと、背景温度
検出部1bと差分演算部ICとよりなる航空機検出部1
のみよりなる。
As shown in FIG. 1, the embodiment of the aircraft detection device set forth in claim 1 includes an aircraft detection section 1 comprising a target temperature detection section 1a, a background temperature detection section 1b, and a difference calculation section IC.
Consists only of

前記対象温度検出部1aは、第4図に示す如く、航空機
8の通過する検出エリアAの温度を検出する部分で、非
接触温度センサとしては、通常、赤外線放射温度計を用
いる。前記検出エリアAは航空機8のうち最も高温とな
るエンジン部分9を含むように照準設定される。
As shown in FIG. 4, the target temperature detection section 1a is a section that detects the temperature of a detection area A through which the aircraft 8 passes, and usually uses an infrared radiation thermometer as a non-contact temperature sensor. The detection area A is aimed to include the engine part 9 of the aircraft 8 which is the hottest.

前記背景温度検出部1bは、第4図に示す如く、航空機
8の通過しない背景の検出エリアBの温度を検出する部
分で、非接触温度センサとしては、通常、前述同様赤外
線放射温度計を用(・る。前記検出エリアBは航空機8
の機体の通過しない空の部分に照準設定される。
As shown in FIG. 4, the background temperature detection section 1b is a section that detects the temperature of a background detection area B through which the aircraft 8 does not pass, and as a non-contact temperature sensor, an infrared radiation thermometer is usually used as described above. (・The detection area B is the aircraft 8
The target is set to a part of the sky that the aircraft does not pass through.

前記差分演算部1cは、前記対像温度検出部1aから出
力される対象温度信号と、前記背景温度検出部1bから
出力される背景温度信号とがそれぞれ入力され、両温度
信号の差分演算を行う部分であり、前記検出エリアAに
航空機8が存在するときのみ前記差分演算部1cから差
分温度信号を出力する。
The difference calculation unit 1c receives the target temperature signal output from the object temperature detection unit 1a and the background temperature signal output from the background temperature detection unit 1b, and calculates the difference between the two temperature signals. Only when the aircraft 8 is present in the detection area A, the difference calculation unit 1c outputs a difference temperature signal.

前述の対象温度検出部1aと背景温度検出部1bとを設
け、雨検出部1a、lbからの温度信号の差分演算を行
う構成とすることにより、時間経過、天候変化等による
背景温度のドリフトによる影響は除去され、航空機8の
存在のみが検出され、全自動化による航空機8の検出が
可能となる。従って、例えば、本装置の起動時に既に航
空機が検出エリアに存在して(・る場合でも、航空機の
検出が可能である。
By providing the above-mentioned target temperature detection section 1a and background temperature detection section 1b, and calculating the difference between the temperature signals from the rain detection sections 1a and 1b, it is possible to prevent the drift of the background temperature due to the passage of time, weather changes, etc. The influence is removed and only the presence of the aircraft 8 is detected, allowing a fully automated detection of the aircraft 8. Therefore, for example, even if an aircraft is already present in the detection area when the device is activated, it is possible to detect the aircraft.

次に特許請求の範囲第2項に示す航空機検出装置の実施
例は、第2図に示す構成とされている。前述と同じく第
1図に示す如き対像温度検出部1aと、背景温度検出部
1bと、差分演算部1cとよりなる航空機検出部1と、
該航空機検出部1より出力される差分温度信号を量子化
して記憶する温度記憶部2と、該温度記憶部2から出力
される時系列温度データにより該当する航空機8の温度
パタンを形成する温度パタン形成部3と、該温度パタン
形成部3より出力される温度パタンを航空機8の検出存
在時間について正規化する正規化処理部4と、該正規化
処理部4から出力される正規化温度パタンから特徴デー
タを抽出、出力する特徴抽出部5と、予め航空機の機種
毎の基準特徴データを記憶しておく既知パタン記憶部6
と、該既知パタン記憶部6からの既知の基準特徴データ
と前記特徴抽出部5からの特徴データとを比較して航空
機の機種を判定する機種判定部7とよりなり、前記特徴
抽出部5は、第3図に示す如く、前記正規化処理部4か
ら出力される正規化温度パタンから航空機8の温度につ
いての特徴量であるピーク数を求めるピーク数計測部5
aと、前記正規化温度パタンからピークの位置を求める
ピーク位置計測部5bと、前記正規化温度パタンから複
数のピークが存在する場合に前記ピーク間の距離を求め
るピーク間距離計測部5Cとからなって(・る。
Next, an embodiment of the aircraft detection device set forth in claim 2 has a configuration shown in FIG. As described above, an aircraft detection section 1 includes an object temperature detection section 1a, a background temperature detection section 1b, and a difference calculation section 1c as shown in FIG.
A temperature storage unit 2 that quantizes and stores the differential temperature signal output from the aircraft detection unit 1; and a temperature pattern that forms a temperature pattern of the corresponding aircraft 8 based on the time-series temperature data output from the temperature storage unit 2. a forming section 3; a normalizing processing section 4 that normalizes the temperature pattern output from the temperature pattern forming section 3 with respect to the detected presence time of the aircraft 8; and a normalizing temperature pattern output from the normalizing processing section 4. A feature extraction unit 5 that extracts and outputs feature data, and a known pattern storage unit 6 that stores reference feature data for each aircraft model in advance.
and an aircraft type determination unit 7 that compares the known reference feature data from the known pattern storage unit 6 with the feature data from the feature extraction unit 5 to determine the model of the aircraft. As shown in FIG. 3, a peak number measuring section 5 calculates the number of peaks, which is a feature quantity regarding the temperature of the aircraft 8, from the normalized temperature pattern output from the normalization processing section 4.
a, a peak position measurement unit 5b that calculates the position of a peak from the normalized temperature pattern, and an inter-peak distance measurement unit 5C that calculates the distance between the peaks when a plurality of peaks exist from the normalized temperature pattern. Became(・ru)

前記温度記憶部2は前記航空機検出部1から入力された
アナログの差分温度信号をA/D変換し、時系列の温度
データとして記憶しておく部分であり、前記温度データ
の記憶は予め定めである一定時間間隔で行う。該一定時
間間隔は、航空機検出システムの要求する処理時間に応
じて決定されるもので、時間間隔の下限値は非接触温度
センサである赤外線放射温度計の応答速度で決まる。前
記温度パタン形成部3に入力される前記温度記憶部2か
らの時系列温度データには各種のノイズが含まれること
があり、前記温度パタン形成部3において、前記ノイズ
を除去した後、当該航空機8の先頭10および末尾11
を検出し、先頭10から末尾11に至る当該航空機8の
温度パタンを形成する。
The temperature storage section 2 is a section that A/D converts the analog differential temperature signal input from the aircraft detection section 1 and stores it as time series temperature data, and the storage of the temperature data is predetermined. It is done at certain fixed time intervals. The fixed time interval is determined according to the processing time required by the aircraft detection system, and the lower limit of the time interval is determined by the response speed of the infrared radiation thermometer, which is a non-contact temperature sensor. The time-series temperature data from the temperature storage unit 2 that is input to the temperature pattern forming unit 3 may contain various types of noise, and after removing the noise, the temperature pattern forming unit 3 removes the noise. First 10 and last 11 of 8
is detected, and a temperature pattern of the aircraft 8 from the leading end 10 to the trailing end 11 is formed.

前記ノイズの原因と考えられるものとしては、温度パタ
ンの割れ、感知時間の短いもの等によるものがあるが、
そハぞれオフディレィ処理、オンディレィ処理により除
去される。
Possible causes of the noise include cracks in the temperature pattern, short sensing times, etc.
These are removed by off-delay processing and on-delay processing, respectively.

前記正規化処理部4においては、機体長の異なる種々の
航空機を、温度パタン形成部3より入力される温度パタ
ンにより識別するために、航空機8の先頭10から末尾
11に至る温度パタンの時間軸方向の正規化処理が必要
となる。正規化処理とは第5図、第6図に示す如く、温
度パタン形成部3で得られた温度パタンを機種を異にす
る航空機のいずれの存在時間も一定になるように時間軸
処理を行うものであり、この処理により、第5図に示す
如く同一機種B −747の場合、NLl、&2.Na
、3の航空機を異にしてもB−747の特徴のある正規
化温度パタンか得られ、また第6図に示す如く、機種を
異にするA−300,B−767、DC−9の各航空機
の特徴を明示する正規化温度パタンか得られる。
In the normalization processing section 4, in order to identify various aircraft having different body lengths by the temperature patterns inputted from the temperature pattern forming section 3, the time axis of the temperature pattern from the head 10 to the tail 11 of the aircraft 8 is calculated. Direction normalization processing is required. As shown in FIGS. 5 and 6, the normalization process performs time axis processing on the temperature pattern obtained by the temperature pattern forming section 3 so that the existence time of all aircraft of different types is constant. By this process, as shown in FIG. 5, in the case of the same model B-747, NLl, &2. Na
, 3, a normalized temperature pattern characteristic of the B-747 can be obtained, and as shown in Fig. A normalized temperature pattern is obtained that characterizes the aircraft.

前記特徴抽出部5に入力される前記正規化温度パタンは
、前述の如く、航空機の機種によって各種の構造的特徴
を有しているが、航空機8を機体長方向に先頭10から
末尾11まで検査した場合の温度パタンに最も影響を与
え、かつ機種毎に相違するものは、最も高温となるエン
ジン部分の構造である。故に本発明の特徴抽出部5にお
いては、前述の通り、ピーク数計測部5a、ピーク位置
計測部5b、およびピーク間距離計測部5cを具備し、
それぞれ前記入力される正規化温度パタンよりエンジン
基数、エンジンの相対位置およびエンジン間の相対距離
の各特徴を計測する。
As mentioned above, the normalized temperature pattern input to the feature extraction unit 5 has various structural characteristics depending on the aircraft model, but when the aircraft 8 is inspected from the leading end 10 to the trailing end 11 in the longitudinal direction of the aircraft 8, The thing that has the biggest influence on the temperature pattern when the engine is heated, and that differs from model to model, is the structure of the engine part that reaches the highest temperature. Therefore, as described above, the feature extraction unit 5 of the present invention includes a peak number measurement unit 5a, a peak position measurement unit 5b, and an inter-peak distance measurement unit 5c,
The characteristics of the number of engines, the relative positions of the engines, and the relative distances between the engines are measured from the input normalized temperature patterns.

前述のエンジン基数の計測は第5図、第6図に示す如く
、正規化温度パタンのピーク数の計測により行われる。
The aforementioned measurement of the number of engine bases is performed by measuring the number of peaks in the normalized temperature pattern, as shown in FIGS. 5 and 6.

正規化温度パタンは、走査したエンジン基数と同数のピ
ークを有するものであり、ピーク数により以下の如き分
類が可能である。
The normalized temperature pattern has the same number of peaks as the number of engines scanned, and can be classified as follows based on the number of peaks.

ピーク数Oの場合・・・・・・走査した検出エリアにエ
ンジンが存在しない 小型機である。
When the number of peaks is O... It is a small aircraft with no engine in the scanned detection area.

ピーク数1の場合・・・・・・左右に1基宛のエンジン
が存在する2発機で ある。
If the number of peaks is 1, it is a two-engine aircraft with one engine on the left and right.

ピーク数2の場合・・・・・・左右及び尾部にエンジン
が存在する3発機ま たは左右に2基宛のエ ンジンが存在する4発 機である。
If the number of peaks is 2, it is a three-engine aircraft with engines on the left and right and in the tail, or a four-engine aircraft with two engines on the left and right.

第4図はピーク数2の場合の機種のものである。FIG. 4 shows a model with two peaks.

前述のエンジンの相対位置の計測は、前記正規化温度パ
タンのピーク位置の計測によって行われる。
The above-mentioned relative position of the engine is measured by measuring the peak position of the normalized temperature pattern.

正規化温度パタンは、エンジンの相対位置に応じたピー
クを有するものであり、エンジンの相対位置の相違に基
づくピーク位置の相違により次の如ぎ分類が可能である
The normalized temperature pattern has a peak depending on the relative position of the engine, and can be classified as follows based on the difference in peak position based on the difference in the relative position of the engine.

ピーク位置が正規化温度パタンの前中部にあるものは主
翼エンジンがあることを示す。
A peak position in the front center of the normalized temperature pattern indicates the presence of a main wing engine.

ピーク位置が正規化温度パタンの後部にあるものは尾翼
エンジンがあることを示す。
A peak position at the rear of the normalized temperature pattern indicates the presence of a tail engine.

前述のエンジン間の相対距離の計測は、前記正規化温度
パタンのピーク間距離の計測によって行われる。
The above-described relative distance between the engines is measured by measuring the distance between peaks of the normalized temperature pattern.

3基以上のエンジンを有する航空機の分類には、エンジ
ン間の相対距離の計測が有効である。
Measuring the relative distance between engines is effective for classifying aircraft with three or more engines.

即ち、前記正規化温度パタンで複数のピークが存在する
場合ピーク間の距離を求めて機種を分類する。例えば、 第1、第2ピーク間の距離が大である場合・・・3発機
である。即ち主翼エンジンと尾翼エンジンとを具備する
That is, when a plurality of peaks exist in the normalized temperature pattern, the model is classified by determining the distance between the peaks. For example, if the distance between the first and second peaks is large...there are three engines. That is, it has a main wing engine and a tail engine.

第1、第2ピーク間の距離が小である場合・・・4発機
である、即ち主翼エンジンが左右に各2基具備されてい
る。
If the distance between the first and second peaks is small...the aircraft has four engines, that is, two main wing engines are provided on each side.

前記既知パタン記憶部には、前述のエンジン基数、エン
ジンの相対位置、エンジンの間の相対距離に対応する機
種別の既知の基準特徴データが記憶さハている。
The known pattern storage section stores known reference characteristic data for each model corresponding to the number of engines, the relative positions of the engines, and the relative distances between the engines.

前述の如く機種を異にする航空機はエンジン部分の構造
の相違に大きな特徴がある。本発明の装置では前記に特
徴を利用して機種を識別せんとするものであり、前述の
通り、エンジンに関する情報は、前記正規化温度パタン
のピークに関する情報で求めることができる。
As mentioned above, different types of aircraft are characterized by differences in the structure of their engine parts. The device of the present invention attempts to identify the model by utilizing the above-mentioned characteristics, and as described above, information regarding the engine can be obtained from information regarding the peak of the normalized temperature pattern.

前記既知パタン記憶部には機種別の各航空機毎の「ピー
ク数」、「ピーク位置」、「ピーク間距離」の基準特徴
データを記憶しておく。
The known pattern storage section stores reference characteristic data of "number of peaks", "peak position", and "distance between peaks" for each aircraft by model.

前記機種判定部は、前記正規化温度パタンより前記特徴
抽出部で抽出された「ピーク数」、「ピーク位置」、「
ピーク間距離」の各特徴データと、前記既知パタン記憶
部に予め記憶されている基準特徴データとを入力比較し
て該当する航空機の機種を識別する。
The model determination section extracts "peak number", "peak position", and "peak position" extracted by the feature extraction section from the normalized temperature pattern.
Each feature data of "distance between peaks" and reference feature data stored in advance in the known pattern storage section are input and compared to identify the model of the corresponding aircraft.

発明の効果 本発明は、非接触温度センサを2個使用し、航空機が確
実に通過するエリアと、航空機が確実に通過しないエリ
アとにそハぞれ照準を合わせ、航空機の存在の有無を定
めうる閾値を何等考慮することなく、両非接触温度セン
サの検出レベルの差から測定開始の際の航空機の存否如
何に拘らず、即座に航空機の存在を検出することができ
るものであり、更に存在する航空機の機種の構造的特徴
を検出、抽出し、航空機の機種を即座に識別することが
でき、時々刻々の空港内を移動する航空機の存否、識別
に役立つ。
Effects of the Invention The present invention uses two non-contact temperature sensors to aim at an area where an aircraft will definitely pass and an area where an aircraft will definitely not pass, thereby determining the presence or absence of an aircraft. It is possible to immediately detect the presence of an aircraft from the difference in the detection levels of both non-contact temperature sensors, regardless of whether or not there is an aircraft at the time of starting the measurement, without considering any possible threshold value. It is possible to detect and extract the structural characteristics of aircraft models and instantly identify the aircraft model, which is useful for identifying the presence or absence of aircraft moving within an airport at any given time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は航空機検出部実施例の構造説明図、第2図は航
空機の機種を識別しうる実施例の構成説明図、第3図は
同上特徴抽出部の構成説明図、第4図は航空機と検出エ
リアとの関係位置説明図、第5図、第6図は機種別の正
規化温度パタン線図である。 ■=航空機検出部、1a:対象温度検出部、1b=背景
温度検出部、1c:差分演算部、2:温度記憶部、3:
温度パタン形成部、4:正規化処理部、5:特徴抽出部
、6:既知パタン記憶部、7二機種判定部、8:航空機
Fig. 1 is an explanatory diagram of the structure of an embodiment of the aircraft detection unit, Fig. 2 is an explanatory diagram of the arrangement of an embodiment capable of identifying the type of aircraft, Fig. 3 is an explanatory diagram of the configuration of the feature extraction unit same as above, and Fig. 4 is an explanatory diagram of the structure of the embodiment of the aircraft detection unit. 5 and 6 are normalized temperature pattern diagrams for each model. ■=Aircraft detection section, 1a: Target temperature detection section, 1b=Background temperature detection section, 1c: Difference calculation section, 2: Temperature storage section, 3:
Temperature pattern forming section, 4: Normalization processing section, 5: Feature extraction section, 6: Known pattern storage section, 7 Two model determination section, 8: Aircraft.

Claims (2)

【特許請求の範囲】[Claims] (1)非接触温度センサを用い航空機の通過する部分の
温度変化を検出する対象温度検出部 と、非接触温度センサを用い航空機の通過しない部分の
温度を検出する背景温度検出部 と、前記対象温度検出部から出力される対象温度信号と
前記背景温度検出部から出力される背景温度信号との差
分演算を行う差分演算部とが具備され、航空機が存在す
る場合にのみ前記差分演算部より差分温度信号が出力さ
れることを特徴とする航空機検出装置
(1) A target temperature detection unit that uses a non-contact temperature sensor to detect a temperature change in a part where an aircraft passes, a background temperature detection unit that uses a non-contact temperature sensor to detect a temperature in a part that an aircraft does not pass, and the target temperature A difference calculation unit that calculates a difference between the target temperature signal output from the temperature detection unit and the background temperature signal output from the background temperature detection unit is provided, and the difference calculation unit calculates the difference only when an aircraft is present. An aircraft detection device characterized by outputting a temperature signal
(2)非接触温度センサを用い航空機の通過する部分の
温度変化を検出する対象温度検出部と非接触温度センサ
を用い航空機の通過しない部分の温度を検出する背景温
度検出部と前記対象温度検出部から出力される対象温度
信号と前記背景温度検出部から出力される背景温度信号
との差分演算を行う差分演算部とが具備され航空機が存
在する場合にのみ前記差分演算部より差分温度信号が出
力される構成とされている航空機検出部と、該航空機検
出部より出力される差分温度信号を量子化して記憶する
温度記憶部と、該温度記憶部から出力される時系列温度
データにより該当する航空機の温度パタンを形成する温
度パタン形成部と、該温度パタン形成部より出力される
温度パタンを航空機の存在時間について正規化する正規
化処理部と、該正規化処理部から出力される正規化温度
パタンから航空機の温度についての特徴量であるピーク
数を求めるピーク数計測部と前記正規化温度パタンから
ピークの位置を求めるピーク位置計測部と前記正規化温
度パタンから複数のピークが存在する場合に前記ピーク
間の距離を求めるピーク間距離計測部とからなる特徴抽
出部と、予め航空機の機種毎の基準特徴データを記憶し
ておく既知パタン記憶部と、該既知パタン記憶部からの
既知の基準特徴データと前記特徴抽出部からの特徴デー
タとを比較して航空機の機種を判定する機種判定部とを
具備することを特徴とする航空機検出装置。
(2) A target temperature detection unit that uses a non-contact temperature sensor to detect temperature changes in the area where the aircraft passes, a background temperature detection unit that uses a non-contact temperature sensor to detect the temperature of the area that the aircraft does not pass, and the target temperature detection unit. and a difference calculation unit that calculates a difference between the target temperature signal output from the background temperature detection unit and the background temperature signal output from the background temperature detection unit, and only when an aircraft is present, the difference temperature signal is output from the difference calculation unit. An aircraft detection section configured to output temperature signals, a temperature storage section that quantizes and stores the differential temperature signal output from the aircraft detection section, and time-series temperature data output from the temperature storage section. A temperature pattern forming section that forms a temperature pattern of an aircraft, a normalization processing section that normalizes the temperature pattern output from the temperature pattern formation section with respect to the existence time of the aircraft, and a normalization processing section output from the normalization processing section. A peak number measuring unit that calculates the number of peaks, which is a feature quantity regarding the temperature of an aircraft, from the temperature pattern; a peak position measuring unit that calculates the position of the peak from the normalized temperature pattern; and a case where there are multiple peaks from the normalized temperature pattern. a feature extraction unit comprising a peak-to-peak distance measurement unit that calculates the distance between the peaks; a known pattern storage unit that stores reference feature data for each aircraft model in advance; An aircraft detection device comprising: an aircraft type determination unit that compares reference feature data and feature data from the feature extraction unit to determine the type of aircraft.
JP62125589A 1987-05-22 1987-05-22 Aircraft detector Pending JPS63291173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125589A JPS63291173A (en) 1987-05-22 1987-05-22 Aircraft detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125589A JPS63291173A (en) 1987-05-22 1987-05-22 Aircraft detector

Publications (1)

Publication Number Publication Date
JPS63291173A true JPS63291173A (en) 1988-11-29

Family

ID=14913911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125589A Pending JPS63291173A (en) 1987-05-22 1987-05-22 Aircraft detector

Country Status (1)

Country Link
JP (1) JPS63291173A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224552A (en) * 1975-08-20 1977-02-24 Mitsubishi Heavy Ind Ltd Unit for discriminating the type of a vehicle
JPS5844999A (en) * 1981-09-10 1983-03-16 Meinou Kikai Seisakusho:Kk Method and device for preventing noise of press machine
JPS59111006A (en) * 1982-12-16 1984-06-27 Omron Tateisi Electronics Co Vehicle height measuring apparatus
JPS62204381A (en) * 1986-03-04 1987-09-09 Mitsubishi Heavy Ind Ltd Ship image recognition device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224552A (en) * 1975-08-20 1977-02-24 Mitsubishi Heavy Ind Ltd Unit for discriminating the type of a vehicle
JPS5844999A (en) * 1981-09-10 1983-03-16 Meinou Kikai Seisakusho:Kk Method and device for preventing noise of press machine
JPS59111006A (en) * 1982-12-16 1984-06-27 Omron Tateisi Electronics Co Vehicle height measuring apparatus
JPS62204381A (en) * 1986-03-04 1987-09-09 Mitsubishi Heavy Ind Ltd Ship image recognition device

Similar Documents

Publication Publication Date Title
US9880278B2 (en) Object determination using a radar sensor
CN105549023B (en) Article detection device and its method of work
CN107850670B (en) Object detecting method and article detection device
US6492935B1 (en) Peripheral monitoring sensor
JP4991473B2 (en) Object detection system and method
JPH05225490A (en) Vehicle type discriminating device
CN107103275B (en) Wheel-based vehicle detection and tracking using radar and vision
CN104318688A (en) Multi-sensor fire early-warning method based on data fusion
KR20130096702A (en) Method and device for monitoring the surroundings of a vehicle
KR20160118830A (en) Method for recognizing object using pressure sensor
CN111580116A (en) Method for evaluating target detection performance of vehicle-mounted system and electronic equipment
CN111736172B (en) Air target detection method based on atmospheric disturbance coherent laser detection
CN105447444A (en) OTDR event analysis algorithm based on difference window and template matching
US11474535B2 (en) Method of processing data, apparatus for processing data, and system for controlling vehicle
CN109285381A (en) For detecting the method and system of the free area in parking lot
CN114296095A (en) Method, device, vehicle and medium for extracting effective target of automatic driving vehicle
CN103984040A (en) Biological recognition method based on infrared sensor array algorithm
JP2008052539A (en) Vehicle model distinction device, vehicle model distinction system, vehicle model distinction method and vehicle model distinction program
JP2005114588A (en) Tracking device
JPS63291173A (en) Aircraft detector
CN111881874A (en) Parking space identification method, equipment and system
US20220058421A1 (en) System for extracting outline of static object and method thereof
Chu et al. Research on multi-source data fusion and mining based on big data
JP2833313B2 (en) Authenticator for fingerprint feature points
KR102602766B1 (en) A system for sensing a fluid using motion propensity and a method for sensing a fluid