JPS6329101B2 - - Google Patents

Info

Publication number
JPS6329101B2
JPS6329101B2 JP58074348A JP7434883A JPS6329101B2 JP S6329101 B2 JPS6329101 B2 JP S6329101B2 JP 58074348 A JP58074348 A JP 58074348A JP 7434883 A JP7434883 A JP 7434883A JP S6329101 B2 JPS6329101 B2 JP S6329101B2
Authority
JP
Japan
Prior art keywords
rotation speed
idle
actuator
engine
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58074348A
Other languages
Japanese (ja)
Other versions
JPS59200036A (en
Inventor
Sho Nakamura
Kunio Fujiwara
Masaaki Myazaki
Mitsuaki Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Motors Corp filed Critical Mitsubishi Electric Corp
Priority to JP58074348A priority Critical patent/JPS59200036A/en
Publication of JPS59200036A publication Critical patent/JPS59200036A/en
Publication of JPS6329101B2 publication Critical patent/JPS6329101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、自動車などに用いる内燃機関のアイ
ドル回転数制御装置に関するものである。 〔従来技術〕 自動車においては、アイドル時に機関回転数と
アイドル目標回転数とを比較し、その偏差に応じ
てスロツトル弁開度を変えて機関回転数を目標回
転数に制御することにより、アイドル時の燃費低
減を図るようにしたアイドル回転数制御装置を装
備したものがある。 ところで、自動車においてはアクセルペダルを
離して高速走行状態から低速走行状態に移行する
際の減速時には、機関側が車輪側から駆動される
状態となるのであるが、この時スロツトル弁開度
は停車中のアイドル時と同じ開度となつているた
め、スロツトル弁上流側からは依然として一定量
の燃料が供給される。このため、このような減速
走行が継続して繰返されると、機関燃焼室に供給
される燃料が過剰気味となつて不完全燃焼を起
し、その不完全燃焼ガスが三元触媒中で燃焼して
三元触媒の温度を異常に上昇させ、ついにはその
機能を破壊してしまうという問題が生じる。 ところが、このような減速時における空燃比制
御については従来のアイドル回転数制御装置はそ
の制御対象としておらず、同じスロツトル弁開度
を被制御対象としていながらも減速時専用の制御
装置によつて制御されていた。このため、機関の
制御系が複雑化し、コスト高になるという問題点
があつた。 〔発明の概要〕 本発明は上記のような問題点を解決するために
なされたもので、その目的は安価な構成で、アイ
ドル時の機関回転数を目標回転数に設定すると共
に減速時における三元触媒の異常昇温も防止し得
る内燃機関のアイドル回転数制御装置を提供する
ことにある。 このために本発明は、スロツトル弁開度を可変
制御するアクチユエータの他に該アクチユエータ
の駆動位置を検出する位置検出手段を設け、アイ
ドル時には上記アクチユエータを機関回転数が目
標回転数に収束するように駆動し、減速時には上
記位置検出手段の検出出力によりスロツトル弁開
度が三元触媒の許容温度に関連して定められたア
イドル時より小さい最適開度になるように上記ア
クチユエータを駆動するように構成したものであ
る。 〔発明の実施例〕 第1図は本発明の一実施例を示す構成図であ
る。同図において、まず機関側の構成を説明する
と、1はピストン,2はシリンダ、3は吸気弁,
4は排気弁,5は排気管,6は三元触媒コンバー
タ,7は吸気管、8はスロツトル弁であり、スロ
ツトル弁8の上流側にはベンチユリ9およびエア
クリーナ10が設けられ、フロート室11内の燃
料はエアクリーナ10を経て吸入された吸入空気
がベンチユリ9を通過する際にメイン燃料通路1
2を経て吸引されて霧化され、吸入空気との混合
気となつてスロツトル弁8および吸気管7を介し
てシリンダ2内に導かれる。 この場合、メイン燃料通路12の途中にはメイ
ンエアブリード13が設けられ、フロート室11
内の燃料はベンチユリ9の上流側に設けたメイン
エアブリード通路14からの吸入空気により予め
微細化された後霧化される。 一方、スロツトル弁8の下流側にはアイドルポ
ート15が設けられ、またベンチユリ9の上流側
にはスローエアブリード通路16が設けられ、メ
イン燃料通路12の燃料はこのスローエアブリー
ド通路16からの吸入空気によりスローエアブリ
ード17において微細化されてアイドルポート1
5から吐出される。これにより、スロツトル弁8
の開度がほぼ全閉状態となつているアイドル時の
燃料が確保される。この場合、アイドルポート1
5から吐出させる燃料量はスローアジヤストスク
リユー18によつて調整される。 ここで、スロツトル弁8はアクセルペダル(図
示せず)に連結されており、走行中においてはア
クセルペダルの踏込量に応じた開度となり、アク
セルペダルを離したアイドル時にはアイドル運転
状態を維持する上で必要な開度となる。また、こ
のスロツトル弁8にはその回転軸にレバー19が
設けられ、このレバー19を後述するアクチユエ
ータ20により駆動することによつてアイドル時
の開度が可変される。 次に、アイドル回転数制御系の構成について説
明すると、20は直流電動機21と歯車機構22
とから成り、直流電動機21の回転運動を歯車機
構22においてプランジヤ23の直線運動に変
え、この直線運動によつてレバー19を駆動して
スロツトル弁8の開度を可変するアクチユエータ
であり、直流電動機21には制御回路30から所
定パルス幅の正回転制御パルスUと逆回転制御パ
ルスDが与えられる。この場合、アクチユエータ
20内にはプランジヤ23の先端がレバー19に
当接している状態の時、すなわちアクセルペダル
を離したアイドル時にオン(閉成)するアイドル
状態検出スイツチ24が設けられている。また、
スロツトル弁8の開度が三元触媒コンバータ6の
許容温度に関連して定められたアイドル時より小
さい開度θ(例えば2度)以上ではオン(閉成)
するプランジヤ23の位置検出スイツチ(以下、
MP・SWと略記)31が設けられている。 次に、25は機関回転数を検出する回転数検出
器であり、ここでは点火コイル26と断続器27
との接続点から機関回転数Nに対応した周期の回
転パルス信号を取出している。28は機関負荷の
1つである空気調和装置の作動開始スイツチ(以
下、A/C・SWと略記)、29は変速機(図示
せず)がニユートラル位置にあることまたはクラ
ツチ(図示せず)がオン(踏込み)されたこと即
ち機関と車輪とが切離されたことを検出する変速
スイツチ、30はアイドル状態を検出するアイド
ルスイツチ24,回転数検出器25,A/C・
SW28,変速スイツチ29および位置検出スイ
ツチ31の出力信号に基づきアイドル時および減
速時のスロツトル弁開度を制御し、機関回転数を
目標回転数Npに収束させると共に、減速時の空
燃比制御を行う制御回路である。 制御回路30は、第2図に示すように演算処理
装置(以下、CPUと略記)300と、アイドル
回転数制御を行うためのプログラムや定数等を記
憶したリードオンリメモリ(以下、ROMと略
記)301と、演算途中の結果などを記憶するラ
ンダムアクセスメモリ(以下、RAMと略記)3
02と、上記の各種スイツチとアクチユエータ2
0との信号送受用のインタフエース回路(以下、
IFCと略記)303とから構成されている。 次に以上のような構成に係る動作について第3
図および第4図に示すフローチヤートを用いて説
明する。 まず機関が始動されると、CPU300はROM
301に記憶されたプログラムに従つて第3図に
示すような処理を実行する。すなわち、CPU3
00は回転検出器27からの出力信号を取込み該
信号の周期を計測することにより現在の機関回転
数Nを検出し(ステツプ100)、次にアイドル
時の目標回転数Npを算出する(ステツプ10
1)。アイドル時の目標回転数Npは空気調和装置
が作動状態の時と非作動状態の時とで異なり、例
えば第1表に示すように定められている。
[Technical Field of the Invention] The present invention relates to an idle speed control device for an internal combustion engine used in an automobile or the like. [Prior art] In automobiles, the engine speed during idle is compared with the target idle speed, and the throttle valve opening is changed according to the deviation to control the engine speed to the target speed. Some vehicles are equipped with an idle speed control device designed to reduce fuel consumption. By the way, in a car, when the accelerator pedal is released and the vehicle is decelerating from a high-speed driving state to a low-speed driving state, the engine side is driven from the wheel side. Since the opening is the same as when idling, a constant amount of fuel is still supplied from the upstream side of the throttle valve. Therefore, if such deceleration driving continues and is repeated, the fuel supplied to the engine combustion chamber becomes slightly excessive, causing incomplete combustion, and the incomplete combustion gas is combusted in the three-way catalyst. This causes a problem in that the temperature of the three-way catalyst rises abnormally, eventually destroying its function. However, conventional idle speed control devices do not control the air-fuel ratio during deceleration, and although the same throttle valve opening is controlled, a dedicated control device for deceleration does not. It was controlled. As a result, the engine control system became complicated and the cost increased. [Summary of the Invention] The present invention has been made to solve the above-mentioned problems.The purpose of the present invention is to provide an inexpensive structure, set the engine rotation speed at idle to a target rotation speed, and set the engine rotation speed at the time of deceleration to a An object of the present invention is to provide an idle rotation speed control device for an internal combustion engine that can also prevent abnormal temperature rise of a main catalyst. To this end, the present invention provides, in addition to an actuator that variably controls the throttle valve opening, a position detection means that detects the drive position of the actuator, and when idling, the actuator is configured to control the actuator so that the engine speed converges to the target rotation speed. The actuator is configured to drive the actuator so that during deceleration, the throttle valve opening is set to an optimum opening, which is smaller than when idling, based on the detection output of the position detection means, which is determined in relation to the allowable temperature of the three-way catalyst. This is what I did. [Embodiment of the Invention] FIG. 1 is a configuration diagram showing an embodiment of the present invention. In the same figure, first, the configuration of the engine side will be explained. 1 is a piston, 2 is a cylinder, 3 is an intake valve,
4 is an exhaust valve, 5 is an exhaust pipe, 6 is a three-way catalytic converter, 7 is an intake pipe, and 8 is a throttle valve. A bench lily 9 and an air cleaner 10 are provided on the upstream side of the throttle valve 8. The fuel enters the main fuel passage 1 when the intake air taken in through the air cleaner 10 passes through the bench lily 9.
The air is drawn into the cylinder 2 through the throttle valve 8 and the intake pipe 7, where it is atomized and becomes a mixture with intake air. In this case, a main air bleed 13 is provided in the middle of the main fuel passage 12, and the float chamber 11
The fuel inside is atomized in advance by intake air from a main air bleed passage 14 provided upstream of the bench lily 9, and then atomized. On the other hand, an idle port 15 is provided on the downstream side of the throttle valve 8, and a slow air bleed passage 16 is provided on the upstream side of the bench lily 9, and the fuel in the main fuel passage 12 is drawn from the slow air bleed passage 16. Air is atomized in slow air bleed 17 and idle port 1
It is discharged from 5. As a result, the throttle valve 8
Fuel is secured during idling when the opening is almost fully closed. In this case, idle port 1
The amount of fuel discharged from the fuel pump 5 is adjusted by a slow adjust screw 18. Here, the throttle valve 8 is connected to an accelerator pedal (not shown), and its opening degree corresponds to the amount of depression of the accelerator pedal while driving, and when the throttle valve 8 is idling after releasing the accelerator pedal, it is necessary to maintain the idling state. The required opening is obtained. Further, the throttle valve 8 is provided with a lever 19 on its rotating shaft, and by driving this lever 19 with an actuator 20, which will be described later, the opening degree during idling can be varied. Next, to explain the configuration of the idle rotation speed control system, 20 is a DC motor 21 and a gear mechanism 22.
It is an actuator that converts the rotational movement of the DC motor 21 into linear movement of the plunger 23 in the gear mechanism 22, and uses this linear movement to drive the lever 19 to vary the opening degree of the throttle valve 8. 21 is supplied with a forward rotation control pulse U and a reverse rotation control pulse D having a predetermined pulse width from the control circuit 30. In this case, the actuator 20 is provided with an idle state detection switch 24 that is turned on (closed) when the tip of the plunger 23 is in contact with the lever 19, that is, when the accelerator pedal is released and the vehicle is idle. Also,
When the opening degree of the throttle valve 8 is greater than or equal to the opening degree θ (for example, 2 degrees), which is smaller than the idling time determined in relation to the allowable temperature of the three-way catalytic converter 6, it is turned on (closed).
The position detection switch of the plunger 23 (hereinafter referred to as
(abbreviated as MP/SW) 31 is provided. Next, 25 is a rotation speed detector that detects the engine rotation speed, and here, an ignition coil 26 and an interrupter 27
A rotation pulse signal with a period corresponding to the engine rotation speed N is extracted from the connection point with the engine rotation speed N. Reference numeral 28 indicates an operation start switch (hereinafter abbreviated as A/C SW) for the air conditioner, which is one of the engine loads, and 29 indicates that the transmission (not shown) is in the neutral position or the clutch (not shown). 30 is an idle switch 24 that detects an idle state, a rotation speed detector 25, an A/C/C.
The throttle valve opening during idling and deceleration is controlled based on the output signals of the SW 28, the speed change switch 29, and the position detection switch 31, and the engine speed converges to the target rotation speed Np , and the air-fuel ratio is controlled during deceleration. This is the control circuit that does this. As shown in FIG. 2, the control circuit 30 includes an arithmetic processing unit (hereinafter abbreviated as CPU) 300 and a read-only memory (hereinafter abbreviated as ROM) that stores programs, constants, etc. for controlling the idle rotation speed. 301, and a random access memory (hereinafter abbreviated as RAM) 3 that stores results etc. during calculations.
02, the various switches and actuator 2 mentioned above
Interface circuit for transmitting and receiving signals with 0 (hereinafter referred to as
It consists of 303 (abbreviated as IFC). Next, the third section regarding the operation related to the above configuration is explained.
This will be explained using the flowchart shown in FIG. First, when the engine is started, the CPU 300
According to the program stored in 301, processing as shown in FIG. 3 is executed. In other words, CPU3
00 receives the output signal from the rotation detector 27 and measures the period of the signal to detect the current engine rotation speed N (step 100), and then calculates the target rotation speed Np at idle (step 100). 10
1). The target rotational speed N p during idling differs depending on whether the air conditioner is in an operating state or in a non-operating state, and is determined, for example, as shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、スロツトル弁開
度を可変制御するアクチユエータの他に該アクチ
ユエータの駆動位置を検出する位置検出手段を設
け、アイドル時には上記アクチユエータを機関回
転数が目標回転数に収束するように駆動し、減速
時には上記位置検出手段の検出出力によりスロツ
トル弁開度が三元触媒の許容温度に関連して定め
られたアイドル時より小さい最適開度になるよう
に上記アクチユエータを駆動するように構成した
ものである。このため、安価な構成で、アイドル
回転数を制御できると共に減速時における三元触
媒の異常昇温も防止することができ、燃費の改善
と共に三元触媒の耐用年数の増大も図ることがで
きるという効果がある。
As explained above, in addition to the actuator that variably controls the throttle valve opening, the present invention includes a position detection means for detecting the drive position of the actuator, and when the actuator is idling, the engine rotation speed converges to the target rotation speed. During deceleration, the actuator is driven so that the throttle valve opening becomes an optimum opening, which is smaller than when idling, based on the detection output of the position detection means, which is determined in relation to the allowable temperature of the three-way catalyst. It is composed of Therefore, with an inexpensive configuration, it is possible to control the idle speed and prevent abnormal temperature rise of the three-way catalyst during deceleration, improving fuel efficiency and extending the service life of the three-way catalyst. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図は制御回路の詳細構成を示すブロツク図、第3
図および第4図は制御回路の動作内容を示すフロ
ーチヤート、第5図は目標回転数と機関回転数と
の偏差に対するアクチユエータの駆動時間の一例
を示すグラフ、第6図は空気調和装置の作動開始
時に発生される制御パルスの一例を示すタイムチ
ヤート、第7図は減速時の動作内容を示すフロー
チヤートである。 1……ピストン、2……シリンダ、3……吸気
弁、6……三元触媒コンバータ、7……吸気管、
8……スロツトル弁、9……ベンチユリ、10…
…エアクリーナ、11……フロート室、19……
レバー、20……アクチユエータ、21……直流
電動機、22……歯車機構、23……プランジ
ヤ、24……アイドルスイツチ、25……回転数
検出器、28……A/C・SW、29……変速ス
イツチ、31……位置検出スイツチ、30……制
御回路、300……演算処理装置、301……リ
ードオンリメモリ、302……ランダムアクセス
メモリ、303……インタフエース回路。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a block diagram showing the detailed configuration of the control circuit.
Figure 4 and Figure 4 are flowcharts showing the operation details of the control circuit, Figure 5 is a graph showing an example of actuator drive time with respect to the deviation between the target rotation speed and the engine rotation speed, and Figure 6 is the operation of the air conditioner. FIG. 7 is a time chart showing an example of the control pulses generated at the start, and FIG. 7 is a flow chart showing the operation details during deceleration. 1... Piston, 2... Cylinder, 3... Intake valve, 6... Three-way catalytic converter, 7... Intake pipe,
8... Throttle valve, 9... Bench lily, 10...
...Air cleaner, 11...Float chamber, 19...
Lever, 20... Actuator, 21... DC motor, 22... Gear mechanism, 23... Plunger, 24... Idle switch, 25... Rotation speed detector, 28... A/C/SW, 29... Speed change switch, 31...Position detection switch, 30...Control circuit, 300...Arithmetic processing unit, 301...Read only memory, 302...Random access memory, 303...Interface circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 排気通路に触媒コンバータを有する内燃機関
の回転数を検出する回転数検出手段と、アイドル
目標回転数を設定する目標回転数設定手段と、ア
イドル時のスロツトル弁開度を可変制御するアク
チユエータと、このアクチユエータの駆動位置を
検出する位置検出手段と、上記回転数検出手段お
よび目標回転数設定手段の検出出力を受けアイド
ル時の機関回転数が目標回転数に収束するように
上記アクチユエータを駆動するフイードバツク制
御手段と、機関の減速時に上記スロツトル弁の開
度が上記触媒コンバータの許容温度に関連して定
められた最適開度になるように上記位置検出手段
の検出出力に基づいて上記アクチユエータを駆動
する制御手段とを備えてなる内燃機関のアイドル
回転数制御装置。
1. A rotation speed detection means for detecting the rotation speed of an internal combustion engine having a catalytic converter in an exhaust passage, a target rotation speed setting means for setting an idle target rotation speed, and an actuator for variably controlling the throttle valve opening during idle. Position detection means for detecting the drive position of the actuator, and feedback for driving the actuator so that the engine speed at idle converges to the target rotation speed in response to the detection outputs of the rotation speed detection means and target rotation speed setting means. and a control means for driving the actuator based on the detection output of the position detection means so that the opening degree of the throttle valve becomes an optimum opening degree determined in relation to the permissible temperature of the catalytic converter when the engine is decelerated. An idle speed control device for an internal combustion engine, comprising a control means.
JP58074348A 1983-04-26 1983-04-26 Idling speed control device for internal-combustion engine Granted JPS59200036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58074348A JPS59200036A (en) 1983-04-26 1983-04-26 Idling speed control device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074348A JPS59200036A (en) 1983-04-26 1983-04-26 Idling speed control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59200036A JPS59200036A (en) 1984-11-13
JPS6329101B2 true JPS6329101B2 (en) 1988-06-10

Family

ID=13544519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074348A Granted JPS59200036A (en) 1983-04-26 1983-04-26 Idling speed control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59200036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463035U (en) * 1990-10-12 1992-05-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463035U (en) * 1990-10-12 1992-05-29

Also Published As

Publication number Publication date
JPS59200036A (en) 1984-11-13

Similar Documents

Publication Publication Date Title
SU1176848A3 (en) Carburettor for internal combustion engine
US4611560A (en) Idling speed control system of an internal combustion engine
JPH0730837B2 (en) Torque converter slip controller
KR0149512B1 (en) Internal combustion engine air supply system
US6295967B1 (en) Powertrain output monitor
US4729354A (en) Fuel supply control system for use in engine
JPS6329101B2 (en)
JPS6357614B2 (en)
JPH11166439A (en) Engine controller for vehicle
JPS5913153A (en) Controller of automatic transmission in car mounting cylinder number variable engine
JPS6328218B2 (en)
JPS6328219B2 (en)
JPS6329100B2 (en)
JP3355679B2 (en) Rotation speed control device for internal combustion engine for vehicle
JPS5813099Y2 (en) Fuel control device during deceleration
JPS59200035A (en) Idling speed contol device for internal-combustion engine
JPS61272443A (en) Idle revolution speed controller for internal-combustion engine
KR100305792B1 (en) Device and method for controlling air amount of engine according to load of torque converter
JPH0454820B2 (en)
JPS6224781Y2 (en)
JPH0739702Y2 (en) Automatic traveling device
JP2815229B2 (en) Engine throttle valve controller
JPS58187565A (en) Speed reduction control device of internal-combustion engine for vehicle
JPH07246857A (en) Cruise control device for internal combustion engine
JPH1122530A (en) Electric throttle valve control device