JPS63290957A - Ultrasonic flaw detection method for stainless steel - Google Patents

Ultrasonic flaw detection method for stainless steel

Info

Publication number
JPS63290957A
JPS63290957A JP62126427A JP12642787A JPS63290957A JP S63290957 A JPS63290957 A JP S63290957A JP 62126427 A JP62126427 A JP 62126427A JP 12642787 A JP12642787 A JP 12642787A JP S63290957 A JPS63290957 A JP S63290957A
Authority
JP
Japan
Prior art keywords
stainless steel
flaw detection
probe
ratio
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62126427A
Other languages
Japanese (ja)
Inventor
Akio Takahashi
昭夫 高橋
Toshibumi Fukuda
福田 俊文
Yasuhiko Tanaka
田中 保彦
Takumi Horikiri
巧 堀切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62126427A priority Critical patent/JPS63290957A/en
Publication of JPS63290957A publication Critical patent/JPS63290957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable flaw detection of a ferrite-austenite two-phase stainless steel and austenitic stainless steel by setting the incident direction of ultrasonic waves having 2.5-4.5MHz flaw detection frequency and 40-50 angle of refraction at 0-15 deg. or 75-90 deg. direction with the rolling direction of a material. CONSTITUTION:The reason for limiting the flaw detection frequency of a probe lies in that sufficiently high S/N is obtainable in this range with the ferrite- austenite two-phase stainless steel and austenitic stainless steel. While the S/N is smaller with the two-phase stainless steel than with carbon steel, the sufficiently high S/N is obtainable in the 2.5-4.5MHz range. The reason for limiting the angle of refraction of the probe at 40-50 deg. lies in that the high S/N is obtainable at the angle of refraction within this range.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はフェライト・オーステナイト二相ステンレス
鋼、オーステナイト系ステンレス鋼の溶接部の超音波探
傷方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for ultrasonic flaw detection of welded parts of ferritic-austenitic duplex stainless steels and austenitic stainless steels.

従来技術とその問題点 鋼板等の溶接部の超音波探傷は周知の通り、斜角法によ
り行なわれるのが一般的である。例えば炭素鋼の場合に
おける探傷条件としては、狭帯域型探触子と狭帯域型ア
ンプを用い、周波数2〜4)IH2,屈折角約70度、
横波使用、ビーム路程1.5スキツプ(54〜74mm
)または2.0スキツプ(75〜95mm)で行なうの
が一般的である。
Prior art and its problems As is well known, ultrasonic flaw detection of welded parts of steel plates, etc., is generally performed by the oblique angle method. For example, in the case of carbon steel, the flaw detection conditions include using a narrowband probe and narrowband amplifier, frequency 2 to 4) IH2, refraction angle approximately 70 degrees,
Uses transverse waves, beam path 1.5 skips (54-74mm)
) or 2.0 skips (75 to 95 mm).

しかるに、被検材がフェライト・オーステナイト二相ス
テンレス鋼やオーステナイト系ステンレス鋼の場合、そ
の材料特性から周波数帯域が狭帯域型では超音波の減衰
度が太きく S/N比が悪いため、上記のようなステン
レス鋼の鋼板や鋼管の溶接部(SAW 、 丁IG 、
 MIG溶接等による)の探傷には、一般に使用されて
いる狭帯域型の超音波探傷方法をそのまま適用すること
ができなかった。
However, when the material to be tested is ferritic-austenitic duplex stainless steel or austenitic stainless steel, due to the material properties, if the frequency band is narrow, the attenuation of the ultrasonic wave is large and the S/N ratio is poor, so the above-mentioned Welded parts of stainless steel plates and pipes such as SAW, DIG,
It has not been possible to directly apply the generally used narrowband ultrasonic flaw detection method to flaw detection (by MIG welding, etc.).

この発明は上記のようなステンレス鋼材料の溶接部の超
音波探傷を可能とする方法を提案せんとするものである
The present invention proposes a method that enables ultrasonic flaw detection of welded parts of stainless steel materials as described above.

問題点を解決するための手段 この発明は従来の一般的な超音波探傷方法を適用できな
いフエライ1へ・オーステナイト二相ステンレス鋼、オ
ーステナイト系ステンレス鋼の超音波探傷方法として、
中帯域型探触子(波数5〜6波)と広帯域型アンプを用
い、探傷周波数2.5〜4.5MHz 、屈折角40〜
50度、超音波の入射方向を圧延材料の圧延方向に対し
0〜15度または75〜90度で入射する方法を提案す
るものである。
Means for Solving the Problems This invention is an ultrasonic flaw detection method for Fe-1, austenitic duplex stainless steel, and austenitic stainless steel to which conventional general ultrasonic flaw detection methods cannot be applied.
Using a medium band probe (5 to 6 waves) and a wide band amplifier, the flaw detection frequency is 2.5 to 4.5 MHz, and the refraction angle is 40 to 40.
The present invention proposes a method in which the incident direction of ultrasonic waves is incident at 0 to 15 degrees or 75 to 90 degrees with respect to the rolling direction of the rolled material.

以下、この発明について詳細に説明する。This invention will be explained in detail below.

まず、この発明の対象とするステンレス鋼としては、一
般的にCr2O〜30%、Ni4〜8%1M。1〜5%
、フェライト量40〜60%の二相ステンレス鋼、ある
いはオーステナイト系ステンレス鋼である。
First, the stainless steel that is the subject of this invention generally contains Cr2O to 30% and Ni4 to 8% 1M. 1-5%
, duplex stainless steel with a ferrite content of 40 to 60%, or austenitic stainless steel.

中帯域型探触子としては、第1図に示す構造の斜角探触
子が多く用いられている。図中、(1)は磁器振動子、
(2)はアクリル樹脂のくさび、(3)は吸音材、(4
)はダンパ材、(5)は接栓である。この斜角探触子の
場合は、振動子(1)をダンパ材(4)に接着するとき
の強度を加減することによって波数の異なる周波数帯域
を有する探触子を得ることができる。
As a medium band type probe, an angle probe having a structure shown in FIG. 1 is often used. In the figure, (1) is a magnetic vibrator;
(2) is an acrylic resin wedge, (3) is a sound absorbing material, (4
) is the damper material, and (5) is the plug. In the case of this angle probe, a probe having frequency bands with different wave numbers can be obtained by adjusting the strength when adhering the vibrator (1) to the damper material (4).

この発明において、探傷プローブとして波数5〜6波の
中帯域型探触子と広帯域型アンプを採用したのは、以下
に示す理由による。
In this invention, the reason why a medium band type probe with a wave number of 5 to 6 and a wide band type amplifier are adopted as the flaw detection probe is as follows.

第2図(A)は中帯域型探触子の波数と周波数帯域を示
す。なあ、比較のため、同図(B)には広帯域型探触子
の波数と周波数帯域を、同図(C)には狭帯域型探触子
の波数と周波数帯域をそれぞれ示す。
FIG. 2(A) shows the wave number and frequency band of a medium band type probe. For comparison, the wave number and frequency band of a broadband type probe are shown in FIG.

一般的にダンピング特性を高めることは、帯域特性は広
がるため、分解能を重視する用途には広帯域高ダンピン
グの広帯域型探触子(図B)を用い、感度を重視する用
途には狭帯域型探触子(図C)が用いられる。□ しかし、減衰の大きい月利を探傷する場合は高い周波数
成分はど減衰されるため広帯域のものが有利になり、逆
に狭帯域のものよりS/N比がよくなることがある。こ
こで、広帯域型(図B)、狭帯域型(図C)のそれぞれ
の特徴を生かしたのが中帯域型探触子(図へ)である。
In general, increasing the damping characteristics will broaden the band characteristics, so use a broadband high damping wideband probe (Figure B) for applications where resolution is important, and use a narrowband probe (Figure B) for applications where sensitivity is important. A feeler (Figure C) is used. □ However, when detecting monthly defects with large attenuation, a wide band is advantageous because high frequency components are attenuated, and conversely the S/N ratio may be better than a narrow band. Here, a medium-band type probe (see figure) takes advantage of the characteristics of both the broadband type (Figure B) and the narrow band type (Figure C).

第3図(A)(B)はそれぞれ狭帯域型プローブ(従来
型)と中帯域型プローブ(本発明)を用いた場合の二相
系ステンレス鋼のビーム路程と減衰度の関係、ビーム路
程とS/N比の関係を示す図である。この図は、肉厚1
0mmの溶接部に1.6mmφのドリルホールを人工的
に形成し、屈折角度45度の条件で調べた結果である。
Figures 3 (A) and (B) show the relationship between the beam path length and attenuation of duplex stainless steel when using a narrow band probe (conventional type) and a medium band probe (the present invention), respectively. It is a figure showing the relationship of S/N ratio. This figure shows a wall thickness of 1
The results were obtained by artificially forming a 1.6 mm diameter drill hole in a 0 mm welded part and using a refraction angle of 45 degrees.

すなわち、第3図(A) (B)より明らかなごとく、
従来型プローブ(狭帯域型探触子・狭帯域型アンプ)の
場合は減衰が太きく S/N比が悪いため、斜  。
That is, as is clear from Figure 3 (A) and (B),
In the case of conventional probes (narrowband probes and narrowband amplifiers), the attenuation is large and the S/N ratio is poor.

角探傷としてビーム路程を長くとれず、通常は80mm
以下で行なわれる。
For corner flaw detection, the beam path cannot be long, usually 80mm.
This will be done below.

これに対し、波数が5〜6波の中帯域型探触子と広帯域
型アンプを組合せて用いた場合は、減衰が緩和されるこ
とにより減衰材料の探傷が可能となり、ビーム路程は図
示のこと(130mmまでS/N比良好に探傷すること
ができる。なお、溶接部には余盛が存在するため、ビー
ム路程の下限は通常40mmとされる。
On the other hand, when a medium-band probe with a wave number of 5 to 6 is used in combination with a wide-band amplifier, the attenuation is relaxed, making it possible to detect defects in attenuated materials, and the beam path is as shown in the figure. (Flaws can be detected up to 130 mm with a good S/N ratio. Since there is excess material in the weld, the lower limit of the beam path is usually 40 mm.

次に、探触子の探傷周波数を2.5〜4.5MHzに限
定したのは、二相ステンレス鋼等ではこの範囲において
十分高いS/N比を得ることができるためでおる。
Next, the flaw detection frequency of the probe is limited to 2.5 to 4.5 MHz because a sufficiently high S/N ratio can be obtained in this range for duplex stainless steel and the like.

第4図は二相ステンレス鋼と炭素鋼にお【プる探触子の
周波数とS/N比との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the frequency and S/N ratio of the probe for duplex stainless steel and carbon steel.

この図は、肉厚10mmの溶接部に1.6mmφのドリ
ルホールを人工的に形成し、ビーム路程60mm、屈折
角度45度の条件にて調べた結果である。
This figure shows the results of an investigation in which a drill hole of 1.6 mmφ was artificially formed in a welded part with a wall thickness of 10 mm, and the beam path length was 60 mm and the refraction angle was 45 degrees.

二相ステンレス鋼では炭素鋼に比べS/N比が小さいも
のの、2.5〜4.5MHzの範囲では十分高いS/N
比が得られることがわかる。したがって、この発明では
上記周波数範囲を採用することとしたのである。
Although duplex stainless steel has a lower S/N ratio than carbon steel, it has a sufficiently high S/N ratio in the 2.5 to 4.5 MHz range.
It can be seen that the ratio can be obtained. Therefore, in the present invention, the above frequency range is adopted.

また、探触子の屈折角を40〜50度に限定したのは、
この範囲の屈折角において高いS/N比が得られるから
である。
In addition, the refraction angle of the probe was limited to 40 to 50 degrees because
This is because a high S/N ratio can be obtained in this range of refraction angles.

第5図は第3図の試験条件において、周波数を4HHZ
として、屈折角を変えることによってS/N比を調べた
結果である。この図より、二相ステンレス鋼の場合は屈
折角40〜50度においてS/N比が高いことがわかる
Figure 5 shows the frequency set to 4HHZ under the test conditions in Figure 3.
This is the result of examining the S/N ratio by changing the refraction angle. From this figure, it can be seen that in the case of duplex stainless steel, the S/N ratio is high at a refraction angle of 40 to 50 degrees.

さらに、この発明において超音波の入射方向を月利の圧
延方向に対して0〜15度または75〜90度に限定し
たのは、ステンレス鋼に特有の硯象として、材料の圧延
方向が減衰度に影響するとの知見より、第3図と同じ試
験条件で圧延方向に対する超音波の進行方向(入射角)
と減衰度の関係を調べた結果、第6図に示すごとく、材
料の圧延方向に対して0〜15度または75〜90度の
方向から超音波を入射するのが、減衰度を小さくする上
で重要であることが判明したことによる。
Furthermore, in this invention, the incident direction of the ultrasonic waves is limited to 0 to 15 degrees or 75 to 90 degrees with respect to the rolling direction of the monthly yield, because the rolling direction of the material has a degree of attenuation. Based on the knowledge that the ultrasonic wave propagation direction (incident angle) relative to the rolling direction was
As a result of investigating the relationship between the degree of attenuation and the degree of attenuation, as shown in Figure 6, it is best to inject the ultrasonic waves from a direction of 0 to 15 degrees or 75 to 90 degrees with respect to the rolling direction of the material in order to reduce the degree of attenuation. This is due to the fact that it was found to be important.

実  施  例 第1図に示す構造で第2図(A)に示す波形と周波数帯
域を得た中帯域型探触子と広帯域型アンプを用い、フェ
ライト・オーステナイト二相ステンレス鋼、カーボンス
チール、313304の各溶接部(肉厚10mm)の探
傷を行なったときのビーム路程と探傷感度の関係を第7
図に、ビーム路程とS/N比の関係を第8図にそれぞれ
従来型プローブ(狭帯域型プローブ)と比較して示す。
Example Using a medium-band probe and a wide-band amplifier with the structure shown in Fig. 1 and the waveform and frequency band shown in Fig. 2 (A), ferrite-austenite duplex stainless steel, carbon steel, 313304 The relationship between the beam path and the flaw detection sensitivity when testing each welded part (thickness 10 mm) is shown in the 7th table.
The relationship between the beam path and the S/N ratio is shown in FIG. 8 in comparison with a conventional probe (narrowband probe).

本実施例における第7図および第8図中のプロットマー
クの種別を下表に示す。
The types of plot marks in FIGS. 7 and 8 in this example are shown in the table below.

以下余白 第7図および第8図より明らかなごとく、本発明法によ
れば、探傷感度およびS/N比ともに良好な結果が得ら
れた。この結果より、この発明の中帯域型探触子と広帯
域型アンプの組合せによる減衰材料の超音波探傷の有効
性が確認された。
As is clear from the margins of FIGS. 7 and 8 below, according to the method of the present invention, good results were obtained in both flaw detection sensitivity and S/N ratio. These results confirmed the effectiveness of ultrasonic flaw detection of attenuating materials using the combination of the medium band type probe and wide band type amplifier of the present invention.

発明の効果 以上の説明より明らかなごとく、この発明方法によれば
、従来の一般的な超音波探傷を適用できなかったフエラ
イj〜・オーステナイト二相ステンレス鋼やオーステナ
イトステンレス鋼の探傷が可能となる。
Effects of the Invention As is clear from the above explanation, according to the method of the invention, it is possible to detect flaws in ferrite-austenitic duplex stainless steel and austenitic stainless steel, to which conventional general ultrasonic flaw detection could not be applied. .

また、この発明の中帯域型探触子と広帯域型アンプの組
合せの場合、減衰材料の周波数が異なった場合でも十分
受信できるので、S/N比を損うことなく精度よく減衰
材料を検査できる利点がある。
Furthermore, in the case of the combination of the medium band type probe and wide band type amplifier of the present invention, sufficient reception is possible even when the frequencies of the attenuating materials are different, so the attenuating materials can be inspected with high accuracy without compromising the S/N ratio. There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明で使用する中帯域型探触子の構造例を
示す断面図である。 第2図(八)は中帯域型探触子の波数と周波数帯域を示
す図、同図(B)は広帯域型探触子の波数と周波数帯域
を示す図、同図(C)は狭帯域型探触子の波数と周波数
帯域を示す図である。 第3図(A)は狭帯域型プローブ(従来型プローブ)と
中帯域型プローブ(本発明)を用いた場合の二相系ステ
ンレス鋼のビーム路程と減衰度の関係を示す図、同図(
B)は同上ステンレス鋼のビーム路程とS/N比の関係
を示す図である。 第4図は二相ステンレス鋼と炭素鋼における探触子の周
波数とS/N比の関係を示す図である。 第5図は同上における探触子の屈折角とS/N比の関係
を示す図である。 第6図は同上における超音波の入射角と減衰度の関係を
示す図である。 第7図はこの発明の実施例におけるビーム路程と探傷感
度の関係を示ず図である。 第8図は同上実施例におCブるビーム路程とS/N比の
関係を示す図である。 1・・・磁器振動子     2・・・くさび3・・・
吸音材       4・・・ダンパ材5・・・接栓 特許出願人  住友金属工業株式会社 (8p)面¥襲 く (UP) N/s a)Q ヒーム路程(鵡) 第 (A) ヒ一ム路程CM) 8図 (B) ビーム路程(M) ビーム路程(wn)
FIG. 1 is a sectional view showing an example of the structure of a medium band type probe used in the present invention. Figure 2 (8) is a diagram showing the wave number and frequency band of a medium band type probe, Figure 2 (B) is a diagram showing the wave number and frequency band of a broadband type probe, and Figure 2 (C) is a diagram showing the wave number and frequency band of a broadband type probe. FIG. 3 is a diagram showing wave numbers and frequency bands of a type probe. Figure 3 (A) is a diagram showing the relationship between the beam path length and attenuation of duplex stainless steel when using a narrow band probe (conventional probe) and a medium band probe (the present invention);
B) is a diagram showing the relationship between the beam path length and the S/N ratio of the same stainless steel. FIG. 4 is a diagram showing the relationship between probe frequency and S/N ratio in duplex stainless steel and carbon steel. FIG. 5 is a diagram showing the relationship between the refraction angle of the probe and the S/N ratio in the same as above. FIG. 6 is a diagram showing the relationship between the angle of incidence of ultrasonic waves and the degree of attenuation in the same as above. FIG. 7 is a diagram not showing the relationship between beam path length and flaw detection sensitivity in an embodiment of the present invention. FIG. 8 is a diagram showing the relationship between the beam path length and the S/N ratio in the same embodiment. 1...Magnetic vibrator 2...Wedge 3...
Sound-absorbing material 4... Damper material 5... Connection patent applicant Sumitomo Metal Industries, Ltd. (8p) Surface ¥ attack (UP) N/s a)Q Heam path (Parrot) No. (A) Heam Path length (CM) Figure 8 (B) Beam path (M) Beam path (wn)

Claims (1)

【特許請求の範囲】[Claims] フェライト・オーステナイト二相ステンレス鋼、オース
テナイト系ステンレス鋼の超音波探傷方法において、中
帯域型探触子(波数5〜6波)と広帯域型アンプを用い
、探傷周波数2.5〜4.5MHz、屈折角40〜50
度の超音波の入射方向を材料の圧延方向に対し0〜15
度または75〜90度の方向から入射することを特徴と
するステンレス鋼の超音波探傷方法。
In the ultrasonic flaw detection method of ferrite-austenitic duplex stainless steel and austenitic stainless steel, a medium band probe (wave number 5 to 6) and a wide band amplifier are used, the flaw detection frequency is 2.5 to 4.5 MHz, and the refraction Corner 40-50
The direction of incidence of ultrasonic waves is 0 to 15 degrees relative to the rolling direction of the material.
An ultrasonic flaw detection method for stainless steel characterized by incidence from a direction of 75 to 90 degrees.
JP62126427A 1987-05-22 1987-05-22 Ultrasonic flaw detection method for stainless steel Pending JPS63290957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62126427A JPS63290957A (en) 1987-05-22 1987-05-22 Ultrasonic flaw detection method for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62126427A JPS63290957A (en) 1987-05-22 1987-05-22 Ultrasonic flaw detection method for stainless steel

Publications (1)

Publication Number Publication Date
JPS63290957A true JPS63290957A (en) 1988-11-28

Family

ID=14934915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62126427A Pending JPS63290957A (en) 1987-05-22 1987-05-22 Ultrasonic flaw detection method for stainless steel

Country Status (1)

Country Link
JP (1) JPS63290957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145200A1 (en) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
CN106841393A (en) * 2016-12-25 2017-06-13 大连理工大学 The method for setting up relation between ferrite crystal grain feature and ultrasound signal signatures in cast austenitic stainless

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145200A1 (en) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
JPWO2007145200A1 (en) * 2006-06-13 2009-10-29 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP4816731B2 (en) * 2006-06-13 2011-11-16 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
CN106841393A (en) * 2016-12-25 2017-06-13 大连理工大学 The method for setting up relation between ferrite crystal grain feature and ultrasound signal signatures in cast austenitic stainless
CN106841393B (en) * 2016-12-25 2019-06-25 大连理工大学 The method for establishing relationship between ferrite crystal grain feature and ultrasound signal signatures in cast austenitic stainless

Similar Documents

Publication Publication Date Title
Achenbach et al. Self-calibrating ultrasonic technique for crack depth measurement
JPS6241344B2 (en)
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
JP2638001B2 (en) Angle Beam Ultrasonic Testing and Probes
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
Nishino et al. Precise measurement of pipe wall thickness in noncontact manner using a circumferential Lamb wave generated and detected by a pair of air-coupled transducers
Kupperman et al. Ultrasonic NDE of cast stainless steel
US4760737A (en) Procedure for flaw detection in cast stainless steel
JPS63290957A (en) Ultrasonic flaw detection method for stainless steel
EP0981047B1 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
Bendec et al. Ultrasonic Lamb wave method for sizing of spot welds
Erhard et al. Characterization of defects in austenitic pipe gird welds
Gauthier et al. EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection
Yoneyama Ultrasonic flaw detection in austenitic welds
Matsui et al. Development of New Inspection Method for LSAW Pipes Using Matrix Phased Array UT
JPS5946553A (en) Angle beam ultrasonic flaw inspection
Vinogradov et al. APPLICATIONS OF LINEAR SCANNING MAGNETOSTRICTIVE TRANSDUCERS (MST) FOR FINDING OF HARD TO DETECT ANOMALIES IN STRUCTURAL COMPONENTS
JPH11287790A (en) Ultrasonic flaw detection method
JPS62197761A (en) Ultrasonic flaw detection of two phase stainless steel
Rose et al. Pipe Elbow Inspection with Guided Waves
Gauthier et al. EMAT generation of polarized shear waves for pipe inspection
Smith et al. Ultrasonic C-scan standardization for polymer-matrix composites-Acoustic considerations
Lei et al. Time-of-flight diffraction technique for Pressure Equipment
Willems et al. Ultrasonic attenuation measurement using backscattering technique