JPS63290934A - Measuring instrument for optical fiber transmission characteristic - Google Patents

Measuring instrument for optical fiber transmission characteristic

Info

Publication number
JPS63290934A
JPS63290934A JP12594987A JP12594987A JPS63290934A JP S63290934 A JPS63290934 A JP S63290934A JP 12594987 A JP12594987 A JP 12594987A JP 12594987 A JP12594987 A JP 12594987A JP S63290934 A JPS63290934 A JP S63290934A
Authority
JP
Japan
Prior art keywords
optical fiber
measured
light
measurement
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12594987A
Other languages
Japanese (ja)
Inventor
Eiichi Ono
栄一 小野
Hiroshi Ishizaki
宏 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Original Assignee
OCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp filed Critical OCC Corp
Priority to JP12594987A priority Critical patent/JPS63290934A/en
Publication of JPS63290934A publication Critical patent/JPS63290934A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve measurement accuracy by adding an aligning mechanism to a connection terminal of an optical fiber to be measured and aligning the optical fiber to be measured and a fiber core on a measuring instrument side with each other before the start of measurement. CONSTITUTION:The optical fiber 25 to be measured is connected to the connection connector 24 of the measuring instrument. A switch 30 is switched to a side (b) prior to the level measurement of reflected light. Laser beam from a laser beam source 21 is guided to the optical fiber 25 to be measured through the connection connector 24 and backward scattered light from this optical fiber is light-received by a light receiving device 26 through a directional coupler 23. Then aligning mechanisms 31-33 are so driven that the level of the backward scattered light detected by the light receiving device 26 is maximum, thereby aligning the connection terminal of the optical fiber 25 to be measured. In this state, the switch 30 is switched to a side (a) and the measurement is started. Consequently, the maximum incident light is guided to the optical fiber 25 to be measured at the time of the measurement and the dynamic range of the backward scattered light to be measured becomes wide, so the accuracy of the measurement is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光ファイバの伝送特性を後方散乱光によっ
て測定する際に有用な光ファイバ伝送特性測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber transmission characteristic measuring device useful for measuring the transmission characteristics of an optical fiber using backscattered light.

〔発明の概要〕[Summary of the invention]

本発明の光ファイバ伝送特性の測定装置は、光方向性結
合器を介して被測定光ファイバにパルス状のレーザ光を
供給し、その後方散乱光から光ファイバの伝送特性を測
定するような装置において、被測定光ファイバの接続端
子に2軸の調心モータによって駆動される調心機構を付
加し、この調心機構を接続端子からの反射光を除去した
後方散乱光のレベルによって測定開始前に制御するよう
にしているから、被測定光ファイバへの入射レベルが一
定になり、かつ、測定値のダイナミックレンジを大きく
することができるようになる。
The optical fiber transmission characteristic measuring device of the present invention is a device that supplies pulsed laser light to an optical fiber to be measured via an optical directional coupler and measures the transmission characteristics of the optical fiber from the backscattered light. In this method, an alignment mechanism driven by a two-axis alignment motor is added to the connection terminal of the optical fiber to be measured, and this alignment mechanism is controlled by the level of backscattered light after removing the reflected light from the connection terminal before starting the measurement. Since the optical fiber is controlled to have a constant level of incidence on the optical fiber to be measured, the dynamic range of the measured value can be increased.

〔従来の技術〕[Conventional technology]

光ファイバの重要な測定項目の一つとして、光損失、伝
送帯域などを知る伝送特性の測定がある。
One of the important measurement items for optical fibers is the measurement of transmission characteristics, which determines optical loss, transmission band, etc.

伝送特性の測定方法としては、一般に、透過法による光
損失の測定と、後方散乱光による光損失の測定方法が知
られているが、後方散乱光による測定方法は被測定光フ
ァイバのコア内で生しるフレネル反射とレイリー後方散
乱光を検出することによって局所的な光損失、及び接続
損失等を比較的簡単な作業で知ることができる。
Generally speaking, methods for measuring transmission characteristics include measuring optical loss using the transmission method and measuring optical loss using backscattered light. By detecting the resulting Fresnel reflection and Rayleigh backscattered light, local optical loss, connection loss, etc. can be determined with a relatively simple operation.

第4図は、かかる後方散乱光によって光ファイバの伝送
特性の測定を行う装置lOの概要図を示したもので、1
1はレーザ発光源、12はレーザ発光源の駆動回路、1
3は光方向性結合器を示し、この光方向性結合器13は
入力端13Aから入射されたレーザ光を第1の出力端1
3Bに通過し、この第1の出力端13Bから入射された
反射光は第2の出力端13Cに通過させるような光学系
によって構成されている。
FIG. 4 shows a schematic diagram of an apparatus lO that measures the transmission characteristics of an optical fiber using such backscattered light.
1 is a laser emission source; 12 is a drive circuit for the laser emission source; 1
3 indicates an optical directional coupler, and this optical directional coupler 13 converts the laser beam incident from the input end 13A to the first output end 1.
3B and reflected light incident from the first output end 13B is configured by an optical system that allows the reflected light to pass through the second output end 13C.

14は被測定光ファイバ15を接続するための接続コネ
クタ、16は受光器、17は受光器で検出された反射光
の信号を増幅するアンプ、18は演算回路を示し、この
演算回路18は反射光のレベルをサンプリングして、所
定のレベルの信号に変換して計測すると共に、表示装置
19に供給するものである。
14 is a connector for connecting the optical fiber 15 to be measured; 16 is a light receiver; 17 is an amplifier for amplifying the reflected light signal detected by the light receiver; 18 is an arithmetic circuit; It samples the light level, converts it into a signal of a predetermined level, measures it, and supplies it to the display device 19.

従来の光ファイバの伝送特性測定値は」二連したような
構造によって形成されているから、駆動回路12によっ
てレーザ発光源11をドライブし、レーザ発光源11か
らの光パルス信号を光方向性結合器13を介して接続コ
ネクタ14に接続されている被測定光ファイバ15に入
射する。
Conventional transmission characteristic measurements of optical fibers are formed by a double-stranded structure, so the laser light source 11 is driven by the drive circuit 12, and the optical pulse signals from the laser light source 11 are optically directionally coupled. The light enters the optical fiber 15 to be measured, which is connected to the connector 14 via the device 13.

すると、光ファイ/へ内のコアの長手方向に存在する局
所的な屈折率の段差によって生じるフレネル反射と、コ
ア内部に存在する波長以下の微弱な屈折率のゆらぎによ
って生じるレイリー散乱光の一部が光ファイバの入射端
側に反射され、これらの反射光が接続コネクタ14から
光方向性結合器13を介して受光器16へ入力される。
Then, a part of the Rayleigh scattered light is generated by Fresnel reflection caused by the local refractive index step existing in the longitudinal direction of the core inside the optical fiber, and by the weak refractive index fluctuation below the wavelength that exists inside the core. is reflected to the input end side of the optical fiber, and these reflected lights are input from the connection connector 14 to the optical receiver 16 via the optical directional coupler 13.

そこで、この受光された反射光の強度を演算回路によっ
て解析することにより、被測定光ファイバ15の伝送特
性を測定するものである。
Therefore, the transmission characteristics of the optical fiber 15 to be measured are measured by analyzing the intensity of the received reflected light using an arithmetic circuit.

〔発明が解決しようとする聞題点〕[Problem that the invention attempts to solve]

従来の後方散乱光による測定方法は、」二連したように
被測定光フγイハ15から入射端側に戻る反射光を測定
対象としているが、この反射光の一部には接続コネクタ
の不整合によって反射された光が含まれることになるた
め、実際の被測定光ファイバの伝送損失より大きな測定
値が計測されるという問題があった。
In the conventional measurement method using backscattered light, the measurement target is the reflected light that returns from the measured light frame 15 to the incident end side in a double series, but some of this reflected light is due to the missing connector. Since the light reflected by the matching is included, there is a problem in that the measured value is larger than the actual transmission loss of the optical fiber to be measured.

又、接続コネクタの不整合性によって被測定光ファイバ
への入射光レベルが小さくなると、測定器のダイナミッ
クレンジが小さくなり、測定誤差が大きくなるという問
題があった。
Furthermore, if the level of light incident on the optical fiber to be measured decreases due to mismatching of the connectors, the dynamic range of the measuring instrument decreases, causing a problem of increased measurement errors.

さらに、接続コネクタで軸ずれが完全にとれるようにす
るためには、高精度のコネクタが必要になり、又、この
コネクタの入念な心合わせのために測定作業に時間がか
かるという問題もあった。
Furthermore, in order to completely eliminate axis misalignment with the connecting connector, a high-precision connector is required, and there is also the problem that measurement work takes time due to careful alignment of the connector. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点にかんがみてなされたもので、
測定装置と被測定光ファイバを接続する光ファイバ接続
端子に2軸の調心モータによって心合わせを行うことが
できる調心機構を設け、この調心機構によって測定開始
前に被測定光ファイバと測定装置側の光ファイバの心合
わせが行われるようにしたものである。
The present invention has been made in view of these problems.
The optical fiber connection terminal that connects the measuring device and the optical fiber under test is equipped with an alignment mechanism that can perform alignment using a two-axis alignment motor, and this alignment mechanism allows the optical fiber to be measured to be aligned with the optical fiber under measurement before starting measurement. This allows alignment of the optical fibers on the device side.

〔作用〕[Effect]

測定装置のファイバ接続コネクタに対して被測定光ファ
イバを接続し測定を開始する前に、光方向性結合器、又
はタイムゲート装置を作動して測定装置の接続端子から
の反射光が受光器に入射されないようにする。そしてこ
のときに得られる被測定光ファイバからの後方散乱光の
レベルを検出し、この検出レベルが最大となるように接
続装置の調心機構を制御する。この調心制御によって、
被測定光ファイバのコア中心と、測定装置側のファイバ
コア中心が合致するように心合わせが行われるから、こ
の心合わせの終了後は最大の入射光が被測定光ファイバ
に供給させることになり、測定すべき後方散乱光のダイ
ナミックレンジを太きくすることができる。
Before connecting the optical fiber to be measured to the fiber connector of the measurement device and starting measurement, activate the optical directional coupler or time gate device to ensure that the reflected light from the connection terminal of the measurement device reaches the receiver. Prevent it from entering. Then, the level of backscattered light from the optical fiber to be measured obtained at this time is detected, and the alignment mechanism of the connecting device is controlled so that this detected level becomes the maximum. With this alignment control,
Alignment is performed so that the core center of the optical fiber under test and the fiber core center on the measurement device side match, so after this alignment is completed, the maximum amount of incident light will be supplied to the optical fiber under test. , it is possible to widen the dynamic range of backscattered light to be measured.

〔実施例〕〔Example〕

第1図は、本発明の一実施例を示す光ファイバの伝送特
性を測定するための概要図であって、21.22はレー
ザ発光源とその駆動回路、23は光方向性結合器を示し
、例えば超音波光偏向素子、光ビーム分離プリズム等に
よって構成されている。そして第1の入力端23Aから
入射された光パルスは第1の出力端23Bに伝送され、
この第1の出力端23Bから入射された反射光は、第2
の出力端23Cへ伝送されるように構成されている。
FIG. 1 is a schematic diagram for measuring the transmission characteristics of an optical fiber showing an embodiment of the present invention, in which 21 and 22 indicate a laser emission source and its driving circuit, and 23 indicates an optical directional coupler. , for example, an ultrasonic light deflection element, a light beam separation prism, etc. The optical pulse input from the first input end 23A is transmitted to the first output end 23B,
The reflected light incident from the first output end 23B is transmitted to the second output end 23B.
The signal is configured to be transmitted to the output terminal 23C of.

又、電気入力端子23Dから供給される制御信号によっ
て超音波光偏向素子を動作させることにより、第1の出
力端23Bからの反射光を任意の時間だけ第2の出力端
23Cに伝送することができるタイムゲート機能を有し
ている。
Furthermore, by operating the ultrasonic optical deflection element using a control signal supplied from the electrical input terminal 23D, it is possible to transmit the reflected light from the first output terminal 23B to the second output terminal 23C for an arbitrary period of time. It has a time gate function that can be used.

24は本発明の光ファイバ伝送特性測定装置に採用され
ている調心機横付の接続コネクタを示し、後述するよう
に2軸のモータ駆動部によって被測定光ファイバ25と
測定装置の光ファイバ(P2)の心合わせを行う。
Reference numeral 24 indicates a connector attached to the side of the aligner which is adopted in the optical fiber transmission characteristic measuring device of the present invention, and as described later, the optical fiber to be measured 25 and the optical fiber of the measuring device (P2 ).

26は反射光のレベルを検出する受光器(Ge−APD
)、27は増幅器、28は演算回路、29は表示装置を
示し、これらは前述した装置に使用されているものであ
る。
26 is a light receiver (Ge-APD) that detects the level of reflected light.
), 27 is an amplifier, 28 is an arithmetic circuit, and 29 is a display device, which are used in the device described above.

30は通常、測定開始前に切り換えられるスイッチを示
し、このスイッチ30がb接点のときは反射光のレベル
を示す電気信号が調心回路31へ入力される。そして調
心回路31の出力はモータドライブ回路32に入力され
、接続コネクタ24において反射されるレーザ光がもっ
とも少なくなるように、つまり、入射光がもっとも大き
くなるようにX−Y軸方向に調心mmを駆動する2軸の
モータ33A、34Aを制御する。
Reference numeral 30 indicates a switch that is normally switched before starting measurement, and when this switch 30 is in the b contact, an electrical signal indicating the level of reflected light is input to the alignment circuit 31. Then, the output of the alignment circuit 31 is input to the motor drive circuit 32, and the laser beam is aligned in the X-Y axis direction so that the amount of laser light reflected at the connection connector 24 is minimized, that is, the incident light is maximized. The two-axis motors 33A and 34A that drive the mm are controlled.

なお、34は光方向性結合器23に対してタイムゲート
機能を付加する信号を供給するための方向性結合器ドラ
イブ回路を示す。
Note that 34 represents a directional coupler drive circuit for supplying a signal for adding a time gate function to the optical directional coupler 23.

第2図は調心機構の概要を示したもので、被測定光ファ
イバの接続コネクタ24Aに対してX−Y方向に移動で
きる接続コネクタ24Bが対接されている。
FIG. 2 shows an outline of the alignment mechanism, in which a connecting connector 24B movable in the X-Y direction is in contact with a connecting connector 24A of the optical fiber to be measured.

接続コネクタ24BはY軸基台24Gに固定され、ネら
にこのY軸基台24CはX軸方向のガイド24Dに搭載
されているX軸基台24Eに摺動可能に結合されている
The connecting connector 24B is fixed to a Y-axis base 24G, and the Y-axis base 24C is slidably coupled to an X-axis base 24E mounted on a guide 24D in the X-axis direction.

そして図示されていない2軸のモータ33A。And a two-axis motor 33A (not shown).

33Bによって前記YilI基台24C,X輛基台24
Eはそれぞれ直交するY軸方向、及びX軸方向に移動可
能とされている。
33B, the YilI base 24C, the X vehicle base 24
E is movable in the Y-axis direction and the X-axis direction, which are orthogonal to each other.

以下、本発明の光ファイバの伝送特性の測定方法を説明
する。
Hereinafter, a method for measuring transmission characteristics of an optical fiber according to the present invention will be explained.

被測定光ファイバ25を測定装置の接続コネクタ24に
接続してレーザ発光源21からの光パルスを光線路PI
  、光方向性結合器23.光線路P2を介して入射す
ると、前述したように被測定光ファイバ25の後方散乱
光が接続コネクタ24、光線路P2  、光方向性結合
器23.光線路P3を介して受光器26で検出される。
The optical fiber 25 to be measured is connected to the connector 24 of the measuring device, and the optical pulse from the laser emission source 21 is connected to the optical path PI.
, optical directional coupler 23. When incident through the optical path P2, the backscattered light from the optical fiber 25 to be measured is transmitted to the connector 24, the optical path P2, the optical directional coupler 23 . It is detected by the light receiver 26 via the optical path P3.

この後方散乱光は、例えば第3図に示すように横軸の伝
播時間(距離)に対して反射光のパワー(dB)が徐々
に減衰するレベルで検出される。
This backscattered light is detected, for example, at a level where the power (dB) of the reflected light gradually attenuates with respect to the propagation time (distance) on the horizontal axis, as shown in FIG.

最初のピーク点Q1は入射端における反射レベルを示し
、次のピーク点Q2は被測定光ファイバ25に接続点が
あるときの反射光のレベルを示す。
The first peak point Q1 indicates the reflection level at the input end, and the next peak point Q2 indicates the level of reflected light when the optical fiber 25 to be measured has a connection point.

又、最後のピーク点Q3は被測定光ファイバ25の出射
端における反射光のレベルを示している。
Further, the last peak point Q3 indicates the level of the reflected light at the output end of the optical fiber 25 to be measured.

本発明は、かかる反射光のレベルの測定に先立って、ス
イッチ30をb接点側に切り換え、伝播時間の成る時間
を以後の反射光のみが光方向性結合器23の第2の出力
端23Cに出力するように方向性結合器ドライブ回路3
4を駆動してクイトゲートを付加する。
In the present invention, before measuring the level of the reflected light, the switch 30 is switched to the b contact side, and only the reflected light after the propagation time is transmitted to the second output terminal 23C of the optical directional coupler 23. Directional coupler drive circuit 3 to output
Drive 4 to add a quit gate.

そして、このときに受光器26で検出される後方散乱光
のレベルが最大となるように2軸のモータ33A、33
Bをドライブすることによって調心機構を駆動し、被測
定光ファイバ25の1a続端子の心合わせを行う。
At this time, two-axis motors 33A and 33 are operated so that the level of backscattered light detected by the light receiver 26 is maximized.
By driving B, the alignment mechanism is driven, and the 1a connection terminal of the optical fiber 25 to be measured is aligned.

すると、この心合わせによって、レーザ発光源21から
の光パルスの入射量が最大となるように制御され、又、
コネクタの入射端における反射光が最小になるように制
御されるから、この状態でスイッチ30をa接点側に切
り換えてかつ、タイムゲート機能を解除して測定を開始
する。
Then, by this alignment, the amount of incident light pulses from the laser emission source 21 is controlled to be maximum, and
Since the reflected light at the input end of the connector is controlled to be minimized, in this state, switch 30 is switched to the a contact side, the time gate function is canceled, and measurement is started.

本発明の測定装置では、上記したように接続コネクタ2
4における心合わせか、測定前に反射光にタイムゲート
をかけることによって簡単に行なうことができるから、
測定時に被測定光ファイバの入射レベルが常に一定とな
り、測定装置が安定になる。又、ノイズ成分が少なくな
るため、測定器本来のダイナミックレンジが大きく保持
でき、測定誤差を少なくすることができるようになる。
In the measuring device of the present invention, as described above, the connecting connector 2
This can be easily done by aligning in step 4 or by applying a time gate to the reflected light before measurement.
During measurement, the incident level of the optical fiber to be measured is always constant, making the measuring device stable. Furthermore, since noise components are reduced, the original dynamic range of the measuring instrument can be maintained large, and measurement errors can be reduced.

なお、被測定光ファイバのある距離以後の後方散乱光の
みを入力するタイムゲート機能は、必ずしも光方向性結
合器23のみで行う必要はなく、例えば受光器26や増
幅器27等を電気的に制御することによって行うことも
可能である。
Note that the time gate function of inputting only the backscattered light after a certain distance of the optical fiber to be measured does not necessarily have to be performed only by the optical directional coupler 23; for example, the light receiver 26, amplifier 27, etc. can be electrically controlled. It is also possible to do this by

〔発明の効果〕〔Effect of the invention〕

以」−説明したように、本発明の光ファイバ伝送特性測
定装置は、接続コネクタに調心機構を付加し、この調心
機構を接続された被測定光ファイバからの後方散乱光に
よって自動的に制御することができるようにしているか
ら、被測定光ファイバの入射端で反射される光パルスを
最初となるように抑圧することができ、ダイナミックレ
ンジが有効に利用できる。又、被測定光ファイバを接続
するコネクタの精度が多少悪くても調心機構によって測
定の度に補正されるから、接続作業が簡単になり測定時
間が短縮できるという効果もある。
As described above, the optical fiber transmission characteristic measuring device of the present invention adds an alignment mechanism to the connecting connector, and automatically operates the alignment mechanism using backscattered light from the connected optical fiber to be measured. Since it can be controlled, the optical pulse reflected at the input end of the optical fiber to be measured can be suppressed to be the first, and the dynamic range can be used effectively. Furthermore, even if the accuracy of the connector that connects the optical fiber to be measured is somewhat poor, it is corrected each time measurement is performed by the alignment mechanism, which has the effect of simplifying the connection work and shortening the measurement time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ファイバ伝送特性測定装置の概要図
、第2図はコネクタの調心機構の一実施例を示す剥視図
、第3図は後方散乱光の一例を示すグラフ、第4図は従
来の光ファイバ伝送特性の測定装置を示す概要図である
。 図中、21はレーザ発光源、23は光方向性結金蓋、2
4は調心様構付のコネクタ、26は受光器、27は増幅
器、28は演算回路、29は表示装置、31は調心回路
、32はモータドライブ回路、33A、33Bは2軸の
調心用のモータを示す。 (日p戸tXJ/I”$J−
FIG. 1 is a schematic diagram of the optical fiber transmission characteristic measuring device of the present invention, FIG. 2 is a perspective view showing an embodiment of the alignment mechanism of the connector, and FIG. 3 is a graph showing an example of backscattered light. FIG. 4 is a schematic diagram showing a conventional measuring device for optical fiber transmission characteristics. In the figure, 21 is a laser emission source, 23 is a light directional metal lid, 2
4 is a connector with alignment configuration, 26 is a light receiver, 27 is an amplifier, 28 is an arithmetic circuit, 29 is a display device, 31 is an alignment circuit, 32 is a motor drive circuit, 33A and 33B are two-axis alignment units. Shows the motor for. (Japanese pto tXJ/I"$J-

Claims (1)

【特許請求の範囲】[Claims] パルス状のレーザ光を光方向性結合器を介して光ファイ
バ接続端子に供給し、前記光ファイバ接続端子に接続さ
れる被測定光ファイバからの後方散乱光を前記光方向性
結合器を介して受光し、受光された後方散乱光を解析す
ることによって前記被測定光ファイバの伝送特性を測定
するようにした光ファイバ伝送特性測定装置において、
前記光ファイバ接続端子に少なくとも2軸の調心モータ
によって心合わせを行なうことができる調心機構を設け
、前記調心機構が前記光ファイバ接続端子からの反射光
を除去した反射光のレベルによって調心制御されるよう
に構成されていることを特徴とする光ファイバ伝送特性
測定装置。
A pulsed laser beam is supplied to an optical fiber connection terminal through an optical directional coupler, and backscattered light from an optical fiber to be measured connected to the optical fiber connection terminal is transmitted through the optical directional coupler. In an optical fiber transmission characteristic measuring device that measures the transmission characteristics of the optical fiber to be measured by receiving light and analyzing the received backscattered light,
The optical fiber connection terminal is provided with an alignment mechanism capable of performing alignment using at least two axis alignment motors, and the alignment mechanism is adjusted by the level of reflected light from which reflected light from the optical fiber connection terminal is removed. 1. An optical fiber transmission characteristic measuring device, characterized in that it is configured to be centrally controlled.
JP12594987A 1987-05-25 1987-05-25 Measuring instrument for optical fiber transmission characteristic Pending JPS63290934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12594987A JPS63290934A (en) 1987-05-25 1987-05-25 Measuring instrument for optical fiber transmission characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12594987A JPS63290934A (en) 1987-05-25 1987-05-25 Measuring instrument for optical fiber transmission characteristic

Publications (1)

Publication Number Publication Date
JPS63290934A true JPS63290934A (en) 1988-11-28

Family

ID=14922958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12594987A Pending JPS63290934A (en) 1987-05-25 1987-05-25 Measuring instrument for optical fiber transmission characteristic

Country Status (1)

Country Link
JP (1) JPS63290934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062704A (en) * 1990-04-25 1991-11-05 Tektronix, Inc. Optical time domain reflectometer having pre and post front panel connector testing capabilities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062704A (en) * 1990-04-25 1991-11-05 Tektronix, Inc. Optical time domain reflectometer having pre and post front panel connector testing capabilities

Similar Documents

Publication Publication Date Title
JP3263095B2 (en) Failure detection device in optical fiber
US5062704A (en) Optical time domain reflectometer having pre and post front panel connector testing capabilities
JPS6252426A (en) Optical fiber reflectometer having plurality of wavelength
JPH04225132A (en) Optical-defect detecting apparatus
EP0605301B1 (en) Optical time domain reflectometer
JPS63290934A (en) Measuring instrument for optical fiber transmission characteristic
US6111635A (en) Apparatus for verifying wire gauges of multi-core optical fiber
CN114323103A (en) Detector responsivity test structure, method and device
CA1312195C (en) Endface assessment
JP2004125711A (en) Method for determining connection status of light connector and excitation light source
JP2560971B2 (en) Optical connector with connector end face monitoring device
US20240068905A1 (en) Pluggable Optical Time Domain Reflectometer
JPS63212907A (en) Method and device for contrasting optical fiber core wire
CN115250144A (en) Multi-core optical fiber visual coupling and large dynamic range crosstalk testing method and device
CN117978290A (en) Device and method for protecting DVS system receiving module and output optical connector
JP3129868B2 (en) Optical switch and optical switching method
JPH0130097B2 (en)
JPS60185132A (en) Measuring method of coupling state in nonlinear mode
JPS63313030A (en) Optical fiber testing device
JPH01155228A (en) Optical directional coupler
JPH0244225A (en) Optical pulse tester
JPS6334442B2 (en)
JPS6159237A (en) Apparatus for measuring light path
JPH0749289A (en) Reflection decay quantity measuring apparatus
JPH05126677A (en) Judging and measuring method for optical fiber connection loss