JPS63290721A - Filling method for raw material particles - Google Patents

Filling method for raw material particles

Info

Publication number
JPS63290721A
JPS63290721A JP62127568A JP12756887A JPS63290721A JP S63290721 A JPS63290721 A JP S63290721A JP 62127568 A JP62127568 A JP 62127568A JP 12756887 A JP12756887 A JP 12756887A JP S63290721 A JPS63290721 A JP S63290721A
Authority
JP
Japan
Prior art keywords
filling
raw material
material particles
pressure
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127568A
Other languages
Japanese (ja)
Inventor
Takao Suzuki
隆男 鈴木
Tsuyoshi Yamashita
剛志 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP62127568A priority Critical patent/JPS63290721A/en
Publication of JPS63290721A publication Critical patent/JPS63290721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the compressive transfer efficiency and filling efficiency of raw material particles by feeding pressurized air into the inside of a molding cavity around a filling opening of the cavity, transferring at once raw material particles brought to the filling opening into the cavity by means of pressurizing air and keeping filling, and then blowing back the surplus raw material particles remaining around the filling opening by means of pressurized air. CONSTITUTION:An introduction opening 93 of pressurized air is formed around an end opening, or a cavity opening 24, of a filling machine 9. A feeding valve 94 to control feeding of pressurized air is installed at said introduction opening 93. The introduction opening 93 is opened to be able to fill the pressurized air to the inside of a molding cavity 23 by the opening action of a pressurized air feeding valve 94. The pressurized air out of said introduction opening 93, therefore, is provided with a function to compressively transfer the raw material particles transfer compressively in one motion to the end opening section of the filling machine 9 into the molding cavity 23 through a cavity opening section 24. After the completion of filling, surplus raw material particles residing or remaining around the molding cavity opening section 24 are blown back to the side of a pressure silo 8 in cooperation with the pressure reducing suction force on the side of the pressure silo 8.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は原料粒子の充填方法に関し、より詳しくは、
発泡成形用型の型窩内へ発泡性熱可塑性樹脂粒子よりな
る原料粒子を充填するのに有用な充填方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for filling raw material particles, and more specifically,
The present invention relates to a filling method useful for filling raw material particles made of expandable thermoplastic resin particles into the cavity of a foam molding mold.

〈従来技術とその問題点〉 従来より、発泡成形においては、発泡性熱可塑性樹脂粒
子よりなる原料粒子を用いたいわゆるビーズ成形が知ら
れている。
<Prior art and its problems> Conventionally, in foam molding, so-called bead molding using raw material particles made of expandable thermoplastic resin particles has been known.

このビーズ成形では、例えば、 (1)  型窩の充填口に充填器を接続しておき、この
充填器に圧力エアーを導入してそのときに生じるベンチ
ュリー効果により、原料ホッパー等にある原料粒子を充
填器内に吸い込ませ、この圧力エアーに随伴させた状態
で、型窩内へ送り込んで充填すると共に、原料粒子の型
窩内への充填が終了すると、上記圧力エアーを原料ホッ
パー側に逆流させて、充填器中の余分の残留原料粒子を
原料ホッパーに戻すという充填方法が採られており、 (1)  また、特開昭81−268210号公報等に
開示されているものであって、減圧及び加圧可能な密閉
ホッパーを用意し、この密閉ホッパー内に供給される圧
力エアーにより、該ホッパー内の原料粒子を充填器を通
して型窩内へ圧送充填すると共に、原料粒子の型窩内へ
の充填が終了すると、減圧された密閉ホッパーによる吸
引と協働して、充填器中の余分の残留原料粒子を密閉ホ
ッパー側に戻すという充填方法がとられている。
In this bead molding, for example, (1) a filling device is connected to the filling port of the mold cavity, and pressurized air is introduced into the filling device, and the Venturi effect generated at that time causes the raw material particles in the raw material hopper etc. The raw material particles are sucked into the filling device and accompanied by this pressurized air, and then sent into the mold cavity for filling. When the filling of the raw material particles into the mold cavity is completed, the pressurized air is caused to flow back to the raw material hopper side. Therefore, a filling method is adopted in which excess residual raw material particles in the filling device are returned to the raw material hopper. A closed hopper that can be pressurized is prepared, and the raw material particles in the hopper are forced and filled into the mold cavity through the filling device by the pressurized air supplied into the closed hopper, and the raw material particles are filled into the mold cavity. When filling is completed, a filling method is used in which the remaining raw material particles in the filling device are returned to the closed hopper side in cooperation with the suction by the closed hopper under reduced pressure.

ところで、上記(1)の充填方法においては、充填器の
吸引力だけで原料ホッパー内の原料粒子を充填器まで移
送するようにしているので、上記原料ホッパーから型窩
の充填口までの間に十分な圧力差をとることができず、
例えば、原料粒子の移動速度または充填速度が遅くなり
、型窩内に原料粒子が充填されるまでの時間が長い。
By the way, in the above-mentioned filling method (1), since the raw material particles in the raw material hopper are transferred to the filling machine only by the suction force of the filling machine, there are no gaps between the raw material hopper and the filling opening of the mold cavity. It is not possible to create a sufficient pressure difference,
For example, the moving speed or filling speed of raw material particles becomes slow, and it takes a long time to fill the mold cavity with raw material particles.

しかも、型窩における排気が十分でない場合には、該傾
向が顕著となり、型窩内に原料粒子を完全に充填するこ
とができない場合が生じる。
Furthermore, if the exhaust in the mold cavity is not sufficient, this tendency becomes noticeable, and the mold cavity may not be completely filled with raw material particles.

このため、成形型間に十分なりラブキング(型窩内に導
入され原料粒子を圧送し終えた圧−カエアーを抜くため
に型間に形成されたスリット、或いは型合せ面間に設け
られた隙間)をとり、型窩内での排気を良くして、上記
圧力差を大きくとることができるようにしたものが提供
されている。しかしながら、この方法によるものでは、
型間に形成したスリットや、型合せ面間に設けた隙間な
どに原料粒子が入り込むことになって、成形品の型合わ
せ面にパリ等が発生する一方、成形品の立上がり部(側
面部)と底部との間等に比重差か生じるという問題もあ
り、充填状態が良くない。
For this reason, there is sufficient rubbing between the molds (a slit formed between the molds to remove the pressure and air that has been introduced into the mold cavity and finished pumping the raw material particles, or a gap provided between the mold mating surfaces). ) has been proposed, which improves the exhaust inside the mold cavity and makes it possible to increase the pressure difference. However, with this method,
Raw material particles enter the slits formed between the molds and the gaps between the mold mating surfaces, causing cracks etc. on the mold mating surfaces of the molded product. There is also the problem that there is a difference in specific gravity between the container and the bottom, and the filling condition is not good.

また、上記(I)の充填方法においては、密閉ホッパー
からの圧力エアーによって、原料粒子を型窩内へ直接的
に押し込めることができるので、成形型間に設けたクラ
ッキングが不十分であっても、原料粒子の充填速度を早
め、且つ排気効果をあげて原料充填不良の発生を防止し
、更に型窩内への充填を均一に行うことができるという
利点等はあるものの、密閉ホッパーから充填器を経て型
窩内に至る距離が長い場合や、大量輸送のためにパイプ
径を大きくした場合などでは、空気輸送の途中において
生じる圧損等を考慮して、密閉ホッパーに加えられる圧
力エアーを相当高圧にしておく必要がある。こうした圧
損は、原料粒子の圧送効率及び充填効率を悪くする。
In addition, in the above filling method (I), the raw material particles can be directly pushed into the mold cavity by the pressurized air from the closed hopper, so even if the cracking provided between the molds is insufficient, Although it has the advantages of increasing the filling speed of raw material particles, improving the exhaust effect and preventing the occurrence of raw material filling defects, and being able to uniformly fill the mold cavities, it is possible to When the distance to the mold cavity is long, or when the diameter of the pipe is increased for mass transportation, the pressure air applied to the closed hopper must be adjusted to a considerably high pressure to take into consideration the pressure loss that occurs during air transportation. It is necessary to keep it. Such pressure loss deteriorates the pumping efficiency and filling efficiency of raw material particles.

これでは、十分な耐圧性を備えた密閉ホッパーを用意し
なければならず、圧力エアーの圧力を強めるための関連
機器が必要となることから、装置のコストアップと設備
の複雑化を招くことになる。
This requires a sealed hopper with sufficient pressure resistance and related equipment to increase the pressure of the pressurized air, which increases the cost of the equipment and complicates the equipment. Become.

そして、上記圧力エアーによる圧送効率の悪化により、
ブローバック時における原料粒子の圧送効率をも低下さ
せるという問題も生じている。
Due to the deterioration of pumping efficiency due to the above-mentioned pressurized air,
Another problem arises in that the pumping efficiency of raw material particles during blowback is also reduced.

〈発明の目的〉 この発明は上記問題点に鑑みてなされたものであり、ク
ラッキングを省略可能として充填状態を良くすると共に
、設備の複雑化と装置のコストアップを図ることなく、
原料粒子の圧送効率及び充填効率を向上させる原料粒子
の充填方法を提供することを目的とする。
<Purpose of the Invention> This invention was made in view of the above-mentioned problems, and it improves the filling condition by making cracking omissible, and also achieves this without complicating the equipment or increasing the cost of the equipment.
It is an object of the present invention to provide a method for filling raw material particles that improves the pumping efficiency and filling efficiency of raw material particles.

く問題点を解決するための手段〉 上記目的を達成するためのこの発明の原料粒子の充填方
法としては、発泡性熱可塑性樹脂粒子よりなる原料粒子
を、発泡成形用型の型窩内へ空気輸送して充填する充填
方法において、型窩の充填口近傍に上記型窩内へ向けら
れる圧力エアーを供給し、この充填口に搬送されてきた
原料粒子を該圧力エアーにより型窩内へ一時に圧送して
なり、且つ充填完了後、上記充填口近傍に残留している
余剰の原料粒子を上記圧力エアーによりブローバックす
るものである。
Means for Solving the Problems> In order to achieve the above object, the method for filling raw material particles of the present invention includes filling raw material particles made of expandable thermoplastic resin particles into a mold cavity of a foam molding mold with air. In the filling method of transporting and filling, pressurized air directed into the mold cavity is supplied near the filling port of the mold cavity, and the raw material particles conveyed to the filling port are transported into the mold cavity at once by the pressurized air. After the filling is completed, surplus raw material particles remaining near the filling port are blown back by the pressurized air.

く作用〉 上記構成の原料粒子の充填方法によれば、型窩の充填口
近傍まで空気輸送されてきた原料粒子を、この充填口近
傍において、新規に供給した圧力エアーにより型窩内へ
強制的に圧送できるので、原料粒子の充填速度を落とす
ことなく搬送することができる。これにより、パリ発生
の原因となるクラッキングを省略することができ、型窩
内への原料粒子の充填を均一に行うことができる。
According to the method for filling raw material particles with the above configuration, the raw material particles that have been pneumatically transported to the vicinity of the filling port of the mold cavity are forced into the mold cavity by newly supplied pressurized air near the filling port. Since the raw material particles can be conveyed under pressure, the raw material particles can be conveyed without reducing the filling speed. This makes it possible to omit cracking, which causes the generation of flakes, and to uniformly fill the mold cavity with raw material particles.

しかも、充填口近傍に搬送されてきた原料粒子を型窩内
へ強く圧送するべく、新たに圧力エアーを供給すること
から、輸送途中における圧損等をこの新たな圧力エアー
の圧力゛により補填することができるので、例えば、密
閉ホッパーから充填器を経て型窩内に至る距離が長い場
合や、大量輸送のためにバイブ径を大きくした場合など
においても、原料粒子の型窩内への圧送効率及び充填効
率を支障なく向上させることができる。
Moreover, since new pressurized air is supplied in order to forcefully feed the raw material particles that have been transported near the filling port into the mold cavity, the pressure loss during transportation can be compensated for by the pressure of this new pressurized air. For example, even when the distance from the closed hopper to the filling device and into the mold cavity is long, or when the diameter of the vibrator is increased for mass transportation, the pumping efficiency and efficiency of raw material particles into the mold cavity can be improved. Filling efficiency can be improved without any problem.

また、充填口近傍に、原料粒子の圧送を効率よく行うこ
とができる圧力エアーを供給するので、原料粒子を型窩
内へ充填した後等、例えば、密閉ホッパーへの加圧解除
に応じて、効率良くブローバックを行うことができる。
In addition, since pressurized air is supplied to the vicinity of the filling port to efficiently pump the raw material particles, after filling the raw material particles into the mold cavity, for example, when the pressure on the closed hopper is released, Blowback can be performed efficiently.

〈実施例〉 次いで、この発明の実施例について、図を参照しながら
以下に説明する。なお、以下の説明の都合上、まず、こ
の発明にかかる原料粒子の充填方法に好適に用いること
ができる成形装置の概略構造について説明する。
<Example> Next, an example of the present invention will be described below with reference to the drawings. For convenience of the following explanation, first, a schematic structure of a molding apparatus that can be suitably used in the raw material particle filling method according to the present invention will be described.

第1図において、成形装置は、上述した従来の密閉ホッ
パーに相当する圧力サイロ(8)と、ビーズ成形用の成
形型(20)とを備えており、圧力サイロ(8)は、所
定の制御盤(図示せず)により例えば0.5〜8.0k
vdに加圧設定された圧力エアーを封入可能に形成され
ている。
In FIG. 1, the molding device is equipped with a pressure silo (8) corresponding to the conventional closed hopper described above and a mold (20) for bead molding, and the pressure silo (8) is controlled by a predetermined control. For example, 0.5 to 8.0k depending on the board (not shown)
It is formed to be able to enclose pressurized air set to vd.

圧力サイロ(8)には、発泡性熱可塑性樹脂粒子として
の原料粒子(又は、予備発泡された原料粒子)の供給を
制御する原料供給弁(1)、圧力サイロ(8)へ供給さ
れる圧力エアーを制御するエアー供給弁(2)、圧力サ
イロ(8)内の減圧レベルを制御する真空吸引弁(3)
、レベル計(4)、排気弁(5)及び原料排出弁(6)
等が1又は複数個装備されており、各開閉弁は、圧力サ
イロ(8)に形成された各開口部に対応して設けられて
いる。なお、図中の符号(7)は、覗き窓であり、また
、上記レベル計(4)は、例えば、圧力サイロ(8)内
に供給されてきた原料粒子が一定高さまで溜ったことを
検知して、検知信号を所定の制御盤に送るものであり、
成形型(20)への原料粒子の供給を制御できるように
している。
The pressure silo (8) includes a raw material supply valve (1) that controls the supply of raw material particles (or pre-foamed raw material particles) as expandable thermoplastic resin particles, and a pressure supplied to the pressure silo (8). Air supply valve (2) that controls air, vacuum suction valve (3) that controls the reduced pressure level in the pressure silo (8)
, level meter (4), exhaust valve (5) and raw material discharge valve (6)
The pressure silo (8) is equipped with one or more on-off valves, and each on-off valve is provided corresponding to each opening formed in the pressure silo (8). Note that the reference numeral (7) in the figure is a viewing window, and the level meter (4) detects, for example, when the raw material particles supplied into the pressure silo (8) have accumulated to a certain height. and sends a detection signal to a designated control panel.
The supply of raw material particles to the mold (20) can be controlled.

成形型(20)は、キャビティ型(21)およびコア型
(22)の一対の開閉自在な金型より構成されており、
両全型(21)(22)の間には、型窩(23)が形成
されている。そして、キャビィティ型(21)に設けら
れている型窩開口部(24)には、原料粒子を型窩(2
3)内へ圧送充填する充填器(9)が取り付けられてい
る。
The mold (20) is composed of a pair of molds, a cavity mold (21) and a core mold (22), which can be opened and closed.
A mold cavity (23) is formed between the two full molds (21) and (22). Then, raw material particles are introduced into the mold cavity opening (24) provided in the cavity mold (21).
3) A filling device (9) is attached for pressure-feeding and filling into the container.

なお、キャビィティ型(21)およびコア型(22)の
少なくとも一方には、公知の蒸気噴出用のコアベント又
はその他の蒸気孔が多数設けられている。
Note that at least one of the cavity mold (21) and the core mold (22) is provided with a large number of known core vents or other steam holes for blowing out steam.

充填器(9)は、充填用ホース(15)の接続を介して
、上記原料排出弁(6)の1つに接続される原料粒子の
供給口(90)を設け、充填器(9)の先端開口部を、
上記型窩(23)内に挿込み状に取り付けである。そし
て、充填器(9)の後端側には1.往復運動により充填
器(9)の先端開口部を開閉するシリンダ(図示せず)
が装填されており、このシリンダを切り替える充填蓋開
弁(91)と充填器間弁(92)とが取り付けられてい
る。即ち、充填蓋開弁(91)が動作することにより、
充填器(9)から型窩(23)内への原料粒子の供給が
行われ、充填器間弁(92)が動作することにより、充
填器(9)から型窩(23)内への原料粒子の供給が遮
断されることになる。
The filling device (9) is provided with a supply port (90) for raw material particles that is connected to one of the raw material discharge valves (6) through the connection of the filling hose (15). the tip opening,
It is inserted into the mold cavity (23) and attached. The filling device (9) has 1. A cylinder (not shown) that opens and closes the tip opening of the filling device (9) by reciprocating motion
is loaded, and a filling lid opening valve (91) and a filling device valve (92) for switching the cylinder are attached. That is, by operating the filling lid opening valve (91),
Raw material particles are supplied from the filling device (9) into the mold cavity (23), and by operating the inter-filler valve (92), the raw material particles are supplied from the filling device (9) into the mold cavity (23). The supply of particles will be cut off.

次いで、この発明を達成するための特徴的な構造として
は、充填器(9)の先端開口部、即ち、型窩開口部(2
4)の近傍に、圧力エアーの導入口(93)が形成され
ていると共に、この導入口(93)には、圧力エアーの
供給を制御する供給弁(94)が取り付けられているこ
とである。この場合、導入口(93)は、圧力エアー供
給弁(94)の開動作により、例えば、所定の制御盤に
より 2.0〜7.0ki4に加圧された圧力エアーを
型窩(23)内へ向けて送り出せるように開口されたも
のである。従って、この導入口(93)よりの圧力エア
ーは、充填器(9)の先端開口部にまで圧送されてきた
原料粒子を、型窩開口部(24)を経て、型窩(23)
内へ一気に圧送する機能を有するものである。そして、
充填が完了した後では、上記型窩開口部(24)の近傍
に滞留し又は残留している余剰の原料粒子を、圧力サイ
ロ[F])側の減圧吸引力と協働して、圧力サイロ3)
側へ向けて吹き戻す機能(ブローバック機能)を有する
ものである。
Next, as a characteristic structure for achieving this invention, the tip opening of the filling device (9), that is, the mold cavity opening (2
A pressure air inlet (93) is formed near 4), and a supply valve (94) for controlling the supply of pressurized air is attached to this inlet (93). . In this case, the inlet (93) supplies pressurized air pressurized to 2.0 to 7.0 ki4 by a predetermined control panel into the mold cavity (23) by the opening operation of the pressurized air supply valve (94). It has an opening so that it can be sent out towards. Therefore, the pressurized air from this inlet (93) transports the raw material particles that have been pumped to the tip opening of the filling device (9) through the mold cavity opening (24) and into the mold cavity (23).
It has the function of pumping inward all at once. and,
After filling is completed, excess raw material particles that have accumulated or remain in the vicinity of the mold cavity opening (24) are removed from the pressure silo in cooperation with the vacuum suction force on the pressure silo [F]) side. 3)
It has a function of blowing back toward the side (blowback function).

次に、このような構成をとる成形装置を用いて、この発
明に係る原料粒子の充填方法について説明する。
Next, a method for filling raw material particles according to the present invention will be described using a molding apparatus having such a configuration.

まず、第1図に示すように、圧力サイロB)内への原料
粒子の投入工程(第2図中原料粒子投入■参照)として
は、真空吸引弁(3)を開にして所定のポンプ等により
圧力サイロ(8)内を減圧する。同時に、原料供給弁(
1)を開いて、貯蔵槽(図示せず)に貯蔵されている原
料粒子を圧力サイロ(8)内に吸引させる。そして、レ
ベル計(4)の検知による所定量の原料粒子が圧力サイ
ロ(8)内へ供給されると、真空吸引弁(3)及び原料
供給弁(1)を閉じる。
First, as shown in Fig. 1, in the step of introducing raw material particles into the pressure silo B) (see raw material particle injection ■ in Fig. 2), the vacuum suction valve (3) is opened and a predetermined pump, etc. The pressure inside the pressure silo (8) is reduced. At the same time, the raw material supply valve (
1) is opened to suck raw material particles stored in a storage tank (not shown) into the pressure silo (8). Then, when a predetermined amount of raw material particles are supplied into the pressure silo (8) as detected by the level meter (4), the vacuum suction valve (3) and the raw material supply valve (1) are closed.

原料粒子としては、代表的には、ポリスチレン、ポリエ
チレン或いはポリプロピレン等の発泡性熱可塑性樹脂粒
子が使用される。
As raw material particles, expandable thermoplastic resin particles such as polystyrene, polyethylene, or polypropylene are typically used.

次いで、エアー供給弁■を開放して、所定圧の圧力エア
ーを圧力サイロ8)内に取り入れ(第2図中圧力サイロ
加圧■参照)、圧力サイロ(8)を圧力0.5〜8.0
に94の範囲内に加圧しておく。
Next, the air supply valve (2) is opened and pressure air at a predetermined pressure is introduced into the pressure silo (8) (see pressure silo pressurization (2) in Fig. 2), and the pressure air is brought into the pressure silo (8) at a pressure of 0.5 to 8. 0
Pressurize within the range of 94.

一方、キャビティ型(21)とコア型(22)について
は、後続する充填工程のために、型窩(23)にクラッ
キングを設けることなく型締めしておく。
On the other hand, the cavity mold (21) and the core mold (22) are clamped without cracking the mold cavity (23) for the subsequent filling process.

充填器。程(第2図中原料粒子充填■参照)では、引き
続き上記エアー供給弁■を開放し且つ圧力サイロ(8)
内を加圧状態にしたまま、原料排出弁(6)を開にし、
同時に、充填型開弁(91)を開いてシリンダを駆動さ
せ、充填器(9)を開となるべく駆動させ、圧力エアー
供給弁(94)を開く。これにより、圧力サイロ(8)
内の原料粒子を、充填器(9)の先端開口部、即ち型窩
開口部(24)にまで強制的に空気輸送することができ
る一方、圧力エアーの導入口(93)からの新規な圧力
エアーによりバックアップでき、型窩(23)内に圧送
充填することができる。
Filler. In the process (see raw material particle filling ■ in Figure 2), the air supply valve ■ is opened and the pressure silo (8)
While keeping the inside pressurized, open the raw material discharge valve (6),
At the same time, the filling mold opening valve (91) is opened to drive the cylinder, the filling machine (9) is driven to open as much as possible, and the pressurized air supply valve (94) is opened. This allows the pressure silo (8)
The raw material particles inside can be forcibly air-transported to the tip opening of the filling device (9), that is, the mold cavity opening (24), while the new pressure from the pressurized air inlet (93) It can be backed up with air and can be filled into the mold cavity (23) under pressure.

こうして、型窩(23)内への原料粒子の充填が完了す
ると、次に、第1ブローバツク(第2図中プローバック
■参照)及び、第2ブローバツク(第2図中プローバッ
ク■参照)を行うべく、上記エアー供給弁■を閑にし、
代って排気弁(5)を開にして圧力サイロ(8)内を例
えば大気圧レベルにする。
When the filling of the raw material particles into the mold cavity (23) is completed in this way, the first blowback (see pullback ■ in FIG. 2) and the second blowback (see pullback ■ in FIG. 2) are completed. To do this, leave the above air supply valve ■ open,
Instead, the exhaust valve (5) is opened to bring the inside of the pressure silo (8) to the atmospheric pressure level, for example.

第1ブローバツクでは、充填型開弁(91)及び圧力エ
アー供給弁(94)を開けたままにしておき、同じく開
けられたままとなっている圧力エアー供給弁(94)よ
りの圧力エアーにより、充填器(9)の先端開口部、即
ち型窩開口部(24)近傍に溜まっている余分の残留原
料粒子を圧力サイロ(8)内に戻す。
In the first blowback, the filling type opening valve (91) and the pressure air supply valve (94) are kept open, and the pressure air from the pressure air supply valve (94), which is also kept open, causes Excess residual raw material particles accumulated near the tip opening of the filling device (9), ie, the mold cavity opening (24), are returned to the pressure silo (8).

そして、充填中、開の状態にあった充填型開弁(91)
を閉ることにより、第1ブローバツクを終了する。
Then, the filling mold opening valve (91) which was in the open state during filling.
The first blowback is completed by closing.

第2ブローバツクでは、充填器閉弁(92)を駆動して
上記充填器(9)を閉じさせ、一旦、型窩(23)内に
圧送充填した原料粒子を圧力エアー供給弁(94)より
の圧力エアー等により充填器θ)の先端開口部、即ち型
窩開口部(24)近傍にこぼれ出ないようにしておく。
In the second blowback, the filling device closing valve (92) is driven to close the filling device (9), and the raw material particles once filled into the mold cavity (23) are released from the pressurized air supply valve (94). Pressurized air or the like is used to prevent it from spilling into the vicinity of the tip opening of the filling device θ), that is, the mold cavity opening (24).

次いで、開状態にある圧力エアー供給弁(94)をその
ままにして、この圧力エアー供給弁(94)よりの圧力
エアーにより、第1ブローバツクでもれた充填器(9)
の先端開口部、即ち型窩開口部(24)近傍に溜まった
余分の残留原料粒子を圧力サイロ(8)内に戻す。
Next, with the pressure air supply valve (94) in the open state, the pressure air from the pressure air supply valve (94) causes the filling device (9) to leak in the first blowback.
Excess residual raw material particles accumulated near the tip opening, ie, the mold cavity opening (24), are returned to the pressure silo (8).

この後、排気弁■、原料粒子排出弁(6)及び圧力エア
ー供給弁(94)を閉じることにより、第2ブローバツ
クが終了する。これと同時に、原料粒子の充填が全部終
了することになる。
Thereafter, the second blowback is completed by closing the exhaust valve (1), the raw material particle discharge valve (6), and the pressurized air supply valve (94). At the same time, the filling of raw material particles is completely completed.

なお、充填後、直に充填型開弁(91)の駆動を停止さ
せ、直接第2ブローバツクを行うことにより、第1ブロ
ーバツクを省略しても良い。また、圧力サイロ(8)へ
の原料粒子投入及び、圧力サイロ(8)の加圧中におい
ては1、充填型開弁(91)を予め開けておいても良い
し、更に、充填時、圧力サイロ(8)内の圧力が十分に
上がったものとなっていれば、エアー供給弁■を閉にし
ておいても良い。
Note that the first blowback may be omitted by stopping the driving of the filling type opening valve (91) immediately after filling and directly performing the second blowback. In addition, during charging of raw material particles into the pressure silo (8) and pressurizing the pressure silo (8), the filling type opening valve (91) may be opened in advance; As long as the pressure inside the silo (8) has risen sufficiently, the air supply valve (2) may be kept closed.

そしてまた、第1ブローバツク及び、第2ブローバツク
で排気弁(5)を開放することに代えて、真空吸引弁(
3)を開けるようにし、圧力サイロ(8)内を減圧状態
に設けておくことも好ましい。これによれば、圧力サイ
ロ(8)側に減圧吸引機能を持たせることができる。
Also, instead of opening the exhaust valve (5) during the first blowback and the second blowback, the vacuum suction valve (
3) It is also preferable to open the pressure silo (8) and provide the inside of the pressure silo (8) in a reduced pressure state. According to this, the pressure silo (8) side can have a reduced pressure suction function.

なお、以上述べた充填方法では、ノークラッキング状態
で行ったことについて説明したが、場合により、成形型
(20)の両金型(50)(51)を完全には型締めせ
ず、一定量のクラッキングをとっておいて行っても良い
In addition, in the above-mentioned filling method, it was explained that it was carried out in a non-cracking state, but in some cases, both molds (50) and (51) of the molding mold (20) are not completely clamped, and a certain amount is filled. You can save the cracking.

上記原料粒子の充填時のタイムチャートを第2図に示す
。なお、図中、両矢印直線は各弁の開状態を示す。
A time chart during filling of the raw material particles is shown in FIG. In addition, in the figure, the double-headed straight line indicates the open state of each valve.

次に、この発明による具体例と従来法による比較例とを
対比させて説明する。
Next, a specific example according to the present invention and a comparative example according to the conventional method will be compared and explained.

例えば、肉厚2.6Mの成形品を得るべく、〔具体例1
〕 具体例1では、粒径0 、5〜l 、 Omm s発泡
倍率18倍の発泡ポリスチレンよりなる原料粒子を、圧
力2 、 OkcJ4に設定した圧力サイロから所定の
成形型に向けて圧送し、この成形型の型窩の充填開口部
の近傍にて、圧力5 、0 kg 4に設定した圧力エ
アーを新規に供給することによって、ここまで搬送され
てきた原料粒子を、更に強制的に型窩内へ圧送した。こ
の場合、クラブキングは省略した。
For example, in order to obtain a molded product with a wall thickness of 2.6M, [Specific Example 1]
] In specific example 1, raw material particles made of expanded polystyrene with a particle size of 0.5 to 1 Omm s and an expansion ratio of 18 times are pumped from a pressure silo set at a pressure of 2 and OkcJ4 to a predetermined mold, and By newly supplying pressurized air at a pressure of 5 to 0 kg near the filling opening of the mold cavity, the raw material particles that have been transported up to this point are further forced into the mold cavity. It was pumped to. In this case, Crab King was omitted.

〔具体例2〕 具体例2では、粒径1.0〜2.0M、発泡倍率56倍
の発泡ポリスチレンよりなる原料粒子を、圧力t、oh
4に設定した圧力サイロから所定の成形型に向けて圧送
し、この成形型の型窩開口部の近傍にて、圧力4.0k
i4に設定した圧力エアーを新規に供給することによっ
て、ここまで搬送されてきた原料粒子を、具体例1と同
様に型窩内へ圧送した。そして、この場合もクラッキン
グは省略した。
[Specific Example 2] In Specific Example 2, raw material particles made of expanded polystyrene with a particle size of 1.0 to 2.0 M and an expansion ratio of 56 times were heated to a pressure of t, oh.
The pressure is fed from a pressure silo set at 4 to a predetermined mold, and a pressure of 4.0 k is applied near the mold cavity opening of this mold.
By newly supplying pressurized air set to i4, the raw material particles that had been conveyed up to this point were forced into the mold cavity in the same manner as in Example 1. And in this case too, cracking was omitted.

〔比較例1〕 比較例1としては、上記具体例1に比べ、圧力サイロの
圧力を例えば大気圧レベルにし、型窩開口部の近傍に導
入する圧力エアーを圧力4.0に94に設定した。また
、成形型間に2 、0 mmのクラッキングを設けた。
[Comparative Example 1] In Comparative Example 1, compared to the above-mentioned Specific Example 1, the pressure in the pressure silo was set to, for example, the atmospheric pressure level, and the pressure air introduced near the mold cavity opening was set to a pressure of 4.0 to 94. . Moreover, a crack of 2.0 mm was provided between the molds.

〔比較例2〕 比較例2としては、上記具体例1に比べ、圧力サイロの
圧力を同じく大気圧レベルにし、型窩開口部の近傍に導
入する圧力エアーを圧力4.0kcJ4に設定した。但
し、この場合は、具体例1と同様にクラブキングを省略
した。
[Comparative Example 2] In Comparative Example 2, compared to Specific Example 1, the pressure in the pressure silo was similarly set to the atmospheric pressure level, and the pressure air introduced near the mold cavity opening was set at a pressure of 4.0 kcJ4. However, in this case, as in Example 1, the crab king was omitted.

〔比較例3〕 比較例3としては、上記具体例2に比べ、圧力サイロの
圧力を同じく大気圧レベルにし、型窩開口部の近傍に導
入する圧力エアーを圧力2.0に’!Jに設定した。ま
た、成形型間に2.0mmのクラッキングを設けた。
[Comparative Example 3] In Comparative Example 3, compared to Specific Example 2, the pressure in the pressure silo was also set to the atmospheric pressure level, and the pressure air introduced near the opening of the mold cavity was set to a pressure of 2.0! It was set to J. Moreover, a crack of 2.0 mm was provided between the molds.

〔比較例4〕 比較例4としては、上記具体例2に比べ、圧力サイロの
圧力を同じく大気圧レベルにし、型窩開口部の近傍に導
入する圧力エアーを圧力2.0に94に設定した。但し
、この場合の成形型については、具体例1と同様にクラ
ブキングを省略した。以上の結果を第1表に示した。
[Comparative Example 4] In Comparative Example 4, compared to Specific Example 2, the pressure in the pressure silo was also set to the atmospheric pressure level, and the pressure air introduced near the mold cavity opening was set at a pressure of 2.0 to 94. . However, as in Example 1, the club king was omitted from the mold in this case. The above results are shown in Table 1.

(以下、余白) 次いで、例えば、肉厚25mmの成形品を得るべく、〔
具体例3〕 具体例3では、粒径2 、 O〜3 、0 mm 、発
泡倍率40倍の発泡ポリスチレンよりなる原料粒子を、
圧力i、ok13aに設定した圧力サイロから所定の成
形型に向けて圧送し、この成形型の型窩開口部の近傍に
て、圧力4.0h4に設定した圧力エアーを新規に供給
することによって、ここまで搬送されてきた原料粒子を
、更に強制的に型窩内へ圧送した。
(Hereinafter, blank space) Next, for example, in order to obtain a molded product with a wall thickness of 25 mm,
Specific Example 3] In Specific Example 3, raw material particles made of expanded polystyrene with a particle size of 2.0 to 3.0 mm and an expansion ratio of 40 times,
By force-feeding air from a pressure silo set at a pressure of 13a to a predetermined mold, and newly supplying pressurized air at a pressure of 4.0h4 near the mold cavity opening of this mold, The raw material particles that had been transported up to this point were further forcibly fed into the mold cavity.

この場合、クラッキングは省略し、また、充填器の口径
を20.0I+1171とした。
In this case, cracking was omitted, and the diameter of the filling device was set to 20.0I+1171.

〔具体例4〕 具体例4では、粒径2.0〜3.0唖、発泡倍率40倍
の発泡ポリスチレンよりなる原料粒子を、圧力3.0−
櫂に設定した圧力サイロから所定の成形型に向けて圧送
し、この成形型の型窩開口部の近傍にて、圧力4.0k
lj、iに設定した圧力エアーを新規に供給することに
よって、ここまで搬送されてきた原料粒子を、具体例3
と同様に型窩内へ圧送した。この場合も、クラッキング
は省略し、また、充填器の口径を14.0皿とした。
[Specific Example 4] In Specific Example 4, raw material particles made of expanded polystyrene having a particle size of 2.0 to 3.0 kg and an expansion ratio of 40 times were heated to a pressure of 3.0-
It is fed under pressure from a pressure silo set on a paddle toward a predetermined mold, and a pressure of 4.0 k is applied near the mold cavity opening of this mold.
By newly supplying pressure air set to lj, i, the raw material particles that have been transported up to this point are
It was pumped into the mold cavity in the same manner as above. In this case as well, cracking was omitted, and the diameter of the filling device was set to 14.0 mm.

〔比較例5〕 比較例5としては、上記具体例3に比べ、圧力サイロの
圧力を大気圧レベルにし、型窩開口部の近傍に導入する
圧力エアーを圧力4.01q4に設定した。但し、この
場合、具体例3と同様に、クラッキングを省略した。
[Comparative Example 5] In Comparative Example 5, compared to Specific Example 3, the pressure in the pressure silo was set to the atmospheric pressure level, and the pressure air introduced near the mold cavity opening was set at a pressure of 4.01q4. However, in this case, as in Specific Example 3, cracking was omitted.

〔比較例6〕 比較例6としては、上記具体例4に比べ、圧力サイロの
圧力を大気圧レベルにし、型窩開口部の近傍に導入する
圧力エアーを圧力4.ohJに設定した。但し、この場
合も、具体例4と同様に、クラッキングを省略した。以
上の結果を第2表に示した。
[Comparative Example 6] In Comparative Example 6, compared to Specific Example 4, the pressure in the pressure silo was set to the atmospheric pressure level, and the pressure air introduced near the mold cavity opening was set to a pressure of 4. It was set to ohJ. However, in this case as well, cracking was omitted as in Specific Example 4. The above results are shown in Table 2.

(以下、余白) かくして、上記第1表から分るように、従来の充填方法
(比較例1.3)では、例えば、2.0mmのクラッキ
ングを必要としたのに対し、具体例1.2においては、
ノークラッキング状態での充填を可能とし、パリ発生の
1つの原因を除去できると共に、均一な充填を行うこと
ができることから、その充填状態を良好にし、しかも、
充填時間をほぼ1/4以下に短縮することができた。な
お、クラブキングを省略した比較例2.4については、
充填状態は、不良であり充填時間の計D1は省略された
(Hereinafter, blank space) Thus, as can be seen from Table 1 above, the conventional filling method (Comparative Example 1.3) required cracking of, for example, 2.0 mm, whereas Specific Example 1.2 In,
It enables filling in a non-cracking state, eliminates one of the causes of paris occurrence, and enables uniform filling, which improves the filling state.
The filling time could be reduced to approximately 1/4 or less. Regarding Comparative Example 2.4 in which Club King was omitted,
The filling condition was poor and the total filling time D1 was omitted.

また、上記第2表から分るように、各側における原料粒
子の充填状態は良好となるが、充填器口径の大きさによ
って、それぞれの充填時間が異なっている。具体例3.
4の加圧充填による充填時間については、対応する各比
較例5.6の充填時間に比べて、はぼl/2〜1110
に短縮することができた。
Further, as can be seen from Table 2 above, although the filling state of the raw material particles on each side is good, the filling time for each side differs depending on the size of the filler diameter. Specific example 3.
Regarding the filling time by pressurized filling in No. 4, compared to the filling time in each corresponding comparative example No. 5.6, the filling time was about 1/2 to 1110
could be shortened to.

〈発明の効果〉 以上のごとく構成された原料粒子の充填方法によれば、
原料粒子の充填速度を落とすことなく充填できるので、
型窩内への原料粒子の充填を均一に行うことができ、し
かも、輸送途中における圧損をこの新たな圧力エアーの
圧力により補填することができることから、例えば、密
閉ホッパーから充填器を経て型窩内に至る距離が長い場
合や、大量輸送のためにパイプ径を大きくした場合など
においては、原料粒子の型窩内への圧送効率及び充填効
率を支障なく向上させることができ、成形型間に形成さ
れるクラッキングを省略可能として充填状態を良くする
ことができる。
<Effects of the Invention> According to the method for filling raw material particles configured as described above,
Since it can be filled without reducing the filling speed of raw material particles,
The raw material particles can be uniformly filled into the mold cavity, and the pressure loss during transportation can be compensated for by the pressure of this new pressurized air. In cases where the distance between the molds is long or the diameter of the pipe is increased for mass transportation, it is possible to improve the pumping efficiency and filling efficiency of the raw material particles into the mold cavity without any problems. Cracks that are formed can be omitted and the filling condition can be improved.

また、充填口近傍側に、原料粒子の圧送を効率よく行う
ことができる圧力エアーを供給するので、原料粒子を型
窩内へ充填した後等、例えば、圧力サイロの加圧解除に
応じて、効率の良いブローバックを行うことができ、各
関連装置の、耐圧性を増強させる必要がなくなり、上記
効果と併せて、設備の複雑化と装置のコストアップを図
ることなく、原料粒子の圧送効率及び充填効率を向上さ
せることができる等、種々特有の効果を奏する。
In addition, since pressurized air is supplied to the side near the filling port to efficiently pump the raw material particles, after filling the raw material particles into the mold cavity, for example, when the pressure of the pressure silo is released, Efficient blowback can be performed, there is no need to increase the pressure resistance of each related device, and in addition to the above effects, the pumping efficiency of raw material particles can be improved without complicating the equipment or increasing the cost of the equipment. It has various unique effects, such as being able to improve filling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる原料粒子の充填方法に好適に
用いることができる成形装置の模式的説明図、 第2図は原料粒子の充填時のタイムチャート。 (9)・・・充填器    (20)・・・成形型(2
1)・・・キャビティ型 (22)・・・コア型   (23)・・・型窩(94
)・・・圧力エアー供給弁 特許出願人  積水化成品工業株式会社代  理  人
   弁理士  亀  井  弘  勝(ほか3名)
FIG. 1 is a schematic explanatory diagram of a molding apparatus that can be suitably used in the raw material particle filling method according to the present invention, and FIG. 2 is a time chart during filling of raw material particles. (9)... Filler (20)... Molding mold (2
1)...Cavity type (22)...Core type (23)...Mold cavity (94
)...Pressure air supply valve patent applicant Sekisui Plastics Co., Ltd. Representative Patent attorney Hiroshi Kamei (and 3 others)

Claims (1)

【特許請求の範囲】 1、発泡性熱可塑性樹脂粒子よりなる原料 粒子を、発泡成形用型の型窩内へ空気輸 送して充填する充填方法において、型窩 の充填口近傍に上記型窩内へ向けられる 圧力エアーを供給し、この充填口に搬送 されてきた原料粒子を該圧力エアーによ り型窩内へ一時に圧送してなり、且つ充 填完了後、上記充填口近傍に残留してい る余剰の原料粒子を上記圧力エアーによ りブローバックすることを特徴とする原 料粒子の充填方法。[Claims] 1. Raw material consisting of expandable thermoplastic resin particles Particles are air transported into the cavity of the foam mold. In the filling method of sending and filling, the mold cavity is Directed into the mold cavity near the filling port of Supply pressurized air and transport it to this filling port The raw material particles that have been It is pumped into the cavity at once and filled. After filling is completed, there is no residue left near the filling port. Excess raw material particles are removed using the above pressure air. The material is characterized by blowback. How to fill the material particles.
JP62127568A 1987-05-25 1987-05-25 Filling method for raw material particles Pending JPS63290721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127568A JPS63290721A (en) 1987-05-25 1987-05-25 Filling method for raw material particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127568A JPS63290721A (en) 1987-05-25 1987-05-25 Filling method for raw material particles

Publications (1)

Publication Number Publication Date
JPS63290721A true JPS63290721A (en) 1988-11-28

Family

ID=14963263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127568A Pending JPS63290721A (en) 1987-05-25 1987-05-25 Filling method for raw material particles

Country Status (1)

Country Link
JP (1) JPS63290721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056931A1 (en) * 1998-04-30 1999-11-11 Daisen Industry Co., Ltd. Device and method for synthetic resin internal die foam molding and internal die foam molded product obtained by these device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176747A (en) * 1984-02-22 1985-09-10 Japan Styrene Paper Co Ltd Manufacture of polyolefinic resin item foamed and molded in mold
JPS6179625A (en) * 1984-09-28 1986-04-23 Japan Styrene Paper Co Ltd Production device of thermoplastic resin in-mold foam molding body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176747A (en) * 1984-02-22 1985-09-10 Japan Styrene Paper Co Ltd Manufacture of polyolefinic resin item foamed and molded in mold
JPS6179625A (en) * 1984-09-28 1986-04-23 Japan Styrene Paper Co Ltd Production device of thermoplastic resin in-mold foam molding body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056931A1 (en) * 1998-04-30 1999-11-11 Daisen Industry Co., Ltd. Device and method for synthetic resin internal die foam molding and internal die foam molded product obtained by these device and method
US7070720B2 (en) 1998-04-30 2006-07-04 Daisen Industry Co., Ltd. Die-expanded molding apparatus and method for synthetic resin, and die-expanded molded foam obtained thereby

Similar Documents

Publication Publication Date Title
EP1954476B1 (en) Tool for a resin transfer moulding method
US6635200B2 (en) Process and device for producing plastic moldings from a flowable reaction mixture
US20030150583A1 (en) Method of producing pulp moldings
JP2871466B2 (en) Slurry casting apparatus and molding method
JPS63290721A (en) Filling method for raw material particles
JPH05507458A (en) Method and device for filling a package with filling material
JPS58145334A (en) Method and device for blast-molding core, etc. by using plunger cleaning type sand-blast box proper to rapid curing casting sand
US2208536A (en) Apparatus for the manufacture of rubber plates
JP2006347051A (en) Injection molding system
CN111479620B (en) Material conveying equipment and material conveying method thereof
JP2734313B2 (en) Casting method and apparatus for rubber products
KR0115125Y1 (en) Kr/ auto-molding apparatus for styropole
CN207841873U (en) A kind of blade bottler placer buffer
JP3295309B2 (en) Injection molding method and injection molding device
CN208854968U (en) One kind being suitable for plastic cement products vacuum breathing apparatus
CN210190400U (en) Feeding device of bottle cap injection molding machine
CN213260700U (en) Distribution device for bead curing
CN219235971U (en) Injection molding machine with desiccator
CN219400895U (en) Glue barrel for mouth-connecting glue of cigarette making machine
JPH1158457A (en) Injection molding machine
JPS5830902A (en) Vacuum deairing type filler
JP3740651B2 (en) Closed injection method for molds for foam molding
JPS6141281B2 (en)
CN104942227A (en) V-method vacuum-forming method for side-concave or inwards-concave heavy casting sand mold
JPH0763807B2 (en) Mold for cold box molding