JPS6329064A - Wind power driven rotary drive mechanism - Google Patents

Wind power driven rotary drive mechanism

Info

Publication number
JPS6329064A
JPS6329064A JP61173494A JP17349486A JPS6329064A JP S6329064 A JPS6329064 A JP S6329064A JP 61173494 A JP61173494 A JP 61173494A JP 17349486 A JP17349486 A JP 17349486A JP S6329064 A JPS6329064 A JP S6329064A
Authority
JP
Japan
Prior art keywords
shaft
wind
gear
wind power
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61173494A
Other languages
Japanese (ja)
Inventor
Ichiro Wada
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61173494A priority Critical patent/JPS6329064A/en
Publication of JPS6329064A publication Critical patent/JPS6329064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE:To make it possible to smoothly and satisfactorily operate a wind power driven rotary drive mechanism with a high degree of efficiency and to make the mechanism compact, by automatically selection one of input shafts in accordance with the degree of window power. CONSTITUTION:The rotary motion of a first wind power driven rotary shaft 12 is decreased in its rotational speed and is then transmitted to an output shaft 9 by revolu tion of planetary gears 22 through a gear attaching member 11 so that the load exerted to the rotary shaft 12 may be reduced. Accordingly, the rotary shaft 12 may smoothly rotate even though the wind power is lower so that output energy may be obtained from the output shaft 9. Further, during rotation of a second wind power driven rotary shaft 6 by itself, when the load on the working side increases exceeding a predeter mined value, the self-rotation of the rotary shaft 6 is interrupted, but since the rotary shaft 12 is rotated even under low wind power, the transmission of input energy is automatically changed over into the rotary shaft 12 side so that the rotation of the output shaft 9 may be continued. Thus, the output shaft 9 is rotated by the rotary shaft 12 or the rotary shaft 16 as an input shaft which is automatically selected in accordance with the degree of wind power, thereby it is possible to continuously produce output energy.

Description

【発明の詳細な説明】 (発明の背景) 本発明は風力を利用して回転駆動する回転駆動機構、さ
らに詳しくは風力で羽根を回転して出力エネルギーを得
る風力回転駆動機構であって、特に風力発電機等の駆動
用に適した風力回転機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Background of the Invention) The present invention relates to a rotational drive mechanism that rotates using wind power, more specifically, a wind rotation drive mechanism that rotates blades using wind power to obtain output energy. The present invention relates to a wind rotation mechanism suitable for driving wind power generators, etc.

風力状況は季節や風土、気象その他の要因により異なる
と共に常時変動している。
Wind conditions vary depending on the season, climate, weather, and other factors, and are constantly changing.

ところで、従来より風力発電機の回転駆動機構として種
々の凰弐のものが開発されているが、これらはいずれも
1本の軸に風力羽根を装着し、この羽根を風力で回転駆
動させて出力エネルギーを得るよ5に構成してあり、こ
の従来装置は風力の強弱に関わりな(、常に同じ状態、
同じ条件で風力を同一の羽根に受けさせて軸を回転させ
るものであるため、効率の面でロスがあると共に装置が
大掛りになる問題を有している。
By the way, various types of rotary drive mechanisms have been developed for wind power generators, but all of these have a wind blade attached to a single shaft, and the blade is rotated by wind power to generate output. This conventional device is configured to obtain energy in five ways, regardless of the strength of the wind (always in the same state,
Since the shaft is rotated by applying wind force to the same blade under the same conditions, there is a loss in efficiency and the equipment becomes large-scale.

(発明の目的) 本発明は上記の点に着目し、風力の強弱に対応して効率
良く円滑良好に作動し得ると共に装置をコンパクト化し
得る風力回転駆動機構を提供することを主たる目的とす
るものである。
(Object of the Invention) The present invention has focused on the above-mentioned points, and the main object of the present invention is to provide a wind rotation drive mechanism that can operate efficiently and smoothly in response to the strength and weakness of wind power, and that can make the device compact. It is.

(発明の構成) 本発明は上記目的達成のため、羽根を備え、固定ハウジ
ングに回転自在に支承させて配設した2・2に刃口転管
軸と、上記とは別個の羽根を備え、上記回転管軸に回転
自在に嵌挿した第1風力回転軸と、上記第2風力回転管
軸と連結した出力軸を設け、上記第1風力回転軸の回転
運動をギア減速機構を介して減速すると共にテコの原理
を応用して負荷を軽減させながら上記出力軸に伝達させ
るようにして1,1−1風力回転軸を弱い風力でも回転
可能に構成し、弱風力下においては第1風力回転軸を人
力軸として、該回転軸の回転運動を上記出力軸に伝達し
て出力軸を回転し、該出力軸の回転運動を出力エネルギ
ーとし、また、強風労化において、>2風力回転管軸が
直接回転している間は第2風力回転管軸を入力軸として
、該回転管軸の直接回転運動を出力軸に伝達して出力エ
ネルギーとするように構成したものである。
(Structure of the Invention) In order to achieve the above-mentioned object, the present invention is provided with a blade, and a blade edge turning shaft and a blade separate from the above, are provided in 2 and 2, which are rotatably supported by a fixed housing. A first wind rotary shaft rotatably inserted into the rotary tube shaft and an output shaft connected to the second wind rotary tube shaft are provided, and the rotational motion of the first wind rotary shaft is reduced through a gear reduction mechanism. At the same time, applying the lever principle, the load is transmitted to the output shaft while reducing the load, so that the 1, 1-1 wind power rotation shaft is configured to be rotatable even with a weak wind force, and under weak wind power, the first wind power rotation is When the shaft is a human-powered shaft, the rotational motion of the rotating shaft is transmitted to the output shaft to rotate the output shaft, and the rotational motion of the output shaft is used as output energy. While the rotary tube shaft is directly rotating, the second wind power rotary tube shaft is used as an input shaft, and the direct rotational motion of the rotary tube shaft is transmitted to the output shaft to generate output energy.

すなわち、本発明の構成を実施例と対応する矛/図〜オ
コ図を用いて説明すると、本発明は、(イ)内周壁面に
内歯車3を備え、所定部に支持させたハウジング1、(
ロ)端部の外周部にオ2風力羽根7を備え、上記内歯車
3と同軸線をなすと共に上記端部を上記ハウジング1外
に突出させてハウジング1に回転自在に支承させて配設
され、上記羽根7が受ける風力で回転するように構成し
た72風力回転管軸6、トラ該回転管軸6と同一軸線上
に位置させて上記ハウジング1に回転自在に支承させて
配設した出力軸9、に)上記ハウジング1内に位置づけ
されて上記回転管軸6および出力軸9に固定され、上記
回転管軸6と出力軸9を一体回転するように連結して配
設したギア取付体11、(ホ)端部に、該端部と連係し
た。?11風力根13を備え、該端部を上記回転管軸6
外に突出させて上記回転管軸6に回転自在に嵌挿支承し
て配設され、上記オ1風力羽根13が受ける風力で回転
するように構成した牙IK力回転軸12、(へ)上記内
歯車3と相対応させて上記第1風力回転軸12に固定軸
装した中継ギア21、(ト)該中継ギア21および上記
内向車3に夫々噛合させて上記ギア取付体11に回転自
在に装着され、自転しながら上記中継ギア21の外周を
公転する遊星歯車22、を備え、 上記第1風力回転軸12とオ1風力羽根13との連係部
は、該羽根13、側の回転運動は、1−1風力回転軸1
29111へ伝達するが、該軸側12の回転運動は矛1
上記牙1風力回転軸12および第2風力回転管軸60回
転運動を上記出力軸9へ伝達して出力軸9を回転するよ
うに構成したものである。
That is, to explain the configuration of the present invention with reference to FIGS. (
b) An O2 wind blade 7 is provided on the outer periphery of the end, and the wind blade 7 forms a coaxial line with the internal gear 3, and the end protrudes outside the housing 1 and is rotatably supported by the housing 1. , an output shaft 72 configured to be rotated by the wind force received by the blades 7, and an output shaft positioned on the same axis as the rotary tube shaft 6 and rotatably supported by the housing 1; 9.) A gear mounting body 11 positioned within the housing 1 and fixed to the rotary tube shaft 6 and the output shaft 9, and connected to the rotary tube shaft 6 and the output shaft 9 so as to rotate together. , (e) linked to the end. ? 11 and a wind root 13, the end of which is connected to the rotating tube shaft 6.
A fan IK force rotation shaft 12, which is arranged so as to protrude outward and be rotatably fitted and supported on the rotary tube shaft 6, and is configured to rotate by the wind force received by the O1 wind blade 13; A relay gear 21 fixedly mounted on the first wind rotation shaft 12 in correspondence with the internal gear 3; A planetary gear 22 is mounted and revolves around the outer periphery of the relay gear 21 while rotating. , 1-1 Wind rotation axis 1
29111, but the rotational movement on the shaft side 12 is transmitted to the spear 1.
The rotary motion of the fang 1 wind power rotation shaft 12 and the second wind power rotation tube shaft 60 is transmitted to the output shaft 9 to rotate the output shaft 9.

(発明の作用) 次に作用を説明する。オ・1風力回転軸6が回転すると
、この回転運動は中継ギア21を介して遊星歯車22に
、伝達されるので、遊星歯車22は中継ギア21と反対
方向に回転する。遊星歯車22が回転すると、この歯車
22はハウジング1に固定されている内歯車3と噛み合
っているので遊星歯車22は自転方向と反対方向に公転
し、この公転運動はギア取付体11を介して出力軸9に
伝達されるので、出力軸9は内歯車3と中継ギア21お
よび遊星歯車22の歯数差で定められる比率で減速され
て回転することになる。
(Operation of the invention) Next, the operation will be explained. E.1 When the wind rotation shaft 6 rotates, this rotational motion is transmitted to the planetary gear 22 via the relay gear 21, so the planetary gear 22 rotates in the opposite direction to the relay gear 21. When the planetary gear 22 rotates, this gear 22 meshes with the internal gear 3 fixed to the housing 1, so the planetary gear 22 revolves in the opposite direction to the rotation direction, and this revolution movement is transmitted through the gear mounting body 11. Since the power is transmitted to the output shaft 9, the output shaft 9 rotates while being decelerated at a ratio determined by the difference in the number of teeth between the internal gear 3, the relay gear 21, and the planetary gear 22.

このように第1風力回転軸120回転運動は、回転速度
を減速されて出力軸9に伝達されるので、第1風力回転
軸12に掛る負荷が軽減されると共に遊星歯車22の公
転運動をギア取付体11を介して出より、矛IK力回転
軸12に掛る負荷は核部においても軽減される。したが
って、第1風力回転軸12は風力が弱いときでも円滑に
回転して、この回転運動を出力軸9へ伝達し、出力軸9
の回転運動を出力エネルギーとして得ることが可能とな
る。
In this way, the rotational motion of the first wind power rotation shaft 120 is transmitted to the output shaft 9 with its rotation speed reduced, so that the load on the first wind power rotation shaft 12 is reduced and the rotational motion of the planetary gear 22 is reduced to a gear. The load exerted on the spear IK force rotating shaft 12 through the mounting body 11 is also reduced at the core. Therefore, the first wind rotation shaft 12 rotates smoothly even when the wind force is weak, transmits this rotational motion to the output shaft 9, and
It becomes possible to obtain the rotational motion of as output energy.

次に、第2風力回転管軸6は、該管軸60回転運動を出
力軸9へ直接伝達して出力エネルギーとするものである
ため、該管軸6は出力軸9側からの負荷を直接受ける。
Next, since the second wind-powered rotary tube shaft 6 directly transmits the rotational motion of the tube shaft 60 to the output shaft 9 to generate output energy, the tube shaft 6 directly transfers the load from the output shaft 9 side. receive.

したがって1.i−2風力回転管軸6は矛l風力回転軸
12との比較において風力が強くならないと独自の回転
はしないが、風力が次矛に強くなって所定値に達すると
、独自で回転し始める。そして、第2風力回転管軸6が
回転すると、該管軸60回転運動はギア取付体11を介
して出力軸9に伝達されて出力軸9を回転し、出力エネ
ルギーが得られる。
Therefore 1. The i-2 wind power rotation tube shaft 6 does not rotate independently unless the wind power becomes stronger in comparison with the spear 1 wind power rotation shaft 12, but when the wind power becomes stronger and reaches a predetermined value, it begins to rotate independently. . When the second wind rotary tube shaft 6 rotates, the rotational motion of the tube shaft 60 is transmitted to the output shaft 9 via the gear attachment 11, rotates the output shaft 9, and obtains output energy.

一方、第2風力回転管軸6が回転すると、該管軸6の回
転運動はギア取付体11を介して遊星歯車22に伝達さ
れるので、該歯車22は管軸6と同一方向に公転すると
共に内歯車3との噛合により公転と反対方向に自転する
。遊M歯車22が回転すると、この回転運動は中継ギア
21を介して矛IK力回転軸12に伝達されるので、該
軸12は前記した比率と同じ割合で逆に堆速されて回転
するか、該軸1zの回転運動は第1風力羽根13側へ伝
達しないようになっ℃いるので、軸12と羽根13は互
に干渉することなく切離されたと同様に夫々別体回転す
ることになる。
On the other hand, when the second wind rotary tube shaft 6 rotates, the rotational motion of the tube shaft 6 is transmitted to the planetary gear 22 via the gear attachment 11, so the gear 22 revolves in the same direction as the tube shaft 6. At the same time, due to meshing with the internal gear 3, it rotates in the opposite direction to the revolution. When the loose M gear 22 rotates, this rotational motion is transmitted to the spear IK force rotating shaft 12 through the relay gear 21, so that the shaft 12 is reversely accelerated and rotated at the same ratio as described above. Since the rotational motion of the shaft 1z is not transmitted to the first wind blade 13 side, the shaft 12 and the blade 13 rotate as separate bodies without interfering with each other, just as if they had been separated. .

そして、上記のように才2 Jt力回転管軸6が独自で
回転中、風力が弱くなったり、仕!#側からの負荷が所
定値以上に増大すると、オ2風力回転管軸6の独自の回
転は中断されろが、第1風力回転軸12は弱風カニでも
回転しているので、入力エネルギーは第1風力回転軸1
2側に自動的に切換えられ、該軸12かもの回転運動を
受け℃出力軸9か回転を継続し、また、風力が強(なっ
たときは再び独自で回転する。このように出力軸9は、
その時点における風力の強弱に応じて自動的に選択され
た矛IK力回転軸12又は第2風力回転管軸6を入力軸
として回転し、出カニネルキーな連続的に提供する。
As mentioned above, while the rotary tube shaft 6 is rotating on its own, the wind force may become weak or it may stop working. If the load from the # side increases to a predetermined value or more, the independent rotation of the O2 wind rotary tube shaft 6 will be interrupted, but since the first wind rotary shaft 12 is rotating even in a weak wind, the input energy will be First wind rotation axis 1
The output shaft 9 continues to rotate under the rotational movement of the shaft 12, and when the wind becomes strong, it rotates on its own again.In this way, the output shaft 9 continues to rotate by itself. teeth,
The IK force rotation shaft 12 or the second wind power rotary tube shaft 6, which is automatically selected depending on the strength of the wind force at that time, is rotated as an input shaft to continuously provide an output force.

(実施例) 以下、図面を参照して本発明の実施例につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

27図〜72図は本発明を風力発電機の駆動用に応用し
たl実施例を示す風力回転駆動機構である。これらの図
において、1は円筒の室2を有し、内周壁面に内歯車3
を備えたハウジングで、実施例のハウジング1は2ツ割
に形成し、両分割体をネジ4で内歯車3とともに固定し
である。
Figures 27 to 72 show a wind rotation drive mechanism in which the present invention is applied to drive a wind power generator. In these figures, 1 has a cylindrical chamber 2, and an internal gear 3 is mounted on the inner peripheral wall surface.
The housing 1 of the embodiment is formed into two halves, and both halves are fixed together with the internal gear 3 with screws 4.

ハウジング1は固定部に支持させるもので、実施例では
支持台5上に固定支持させたものが図示されている。こ
の場合において、ハウジング1はターンテーブルやベア
リング機構等を介して支持台5上に水平方向に回転自在
に支持させ、また、後述する発電機の後部に垂直翼を取
付けてハウジングの前面を風の方向に対面させるように
しても艮い0 6は端部の外周部にオ2風力羽根7を固定装着した第2
風力回転管軸で、該管軸6は内歯車3と同軸線をなすと
共に上記羽根7・を取付けた端部をハウジング1外に突
出させ、ベアリング8等を介してハウジング1に回転自
在に支承させて配設され、上記羽根7が受げる風力で回
転するように構成されている。実施例の管軸6は反時計
方向に回転するように構成されている。
The housing 1 is supported by a fixed part, and in the embodiment, the housing 1 is shown fixedly supported on a support base 5. In this case, the housing 1 is horizontally rotatably supported on a support base 5 via a turntable, a bearing mechanism, etc., and a vertical wing is attached to the rear of the generator to be described later, so that the front surface of the housing is protected from wind. Even if they are made to face each other in the direction, it is still possible. 0 6 is the second wind blade 7 fixedly attached to the outer periphery of the end.
In the wind rotating tube shaft, the tube shaft 6 is coaxial with the internal gear 3, and the end portion to which the blades 7 are attached protrudes outside the housing 1, and is rotatably supported in the housing 1 via a bearing 8 or the like. The blades 7 are arranged so as to be rotated by the wind force received by the blades 7. The tube shaft 6 of the embodiment is configured to rotate counterclockwise.

9は回転管軸6と同一戦線に位置させて、メタル10等
を介しハウジング1に回転自在に支承させて配設した出
力軸、11はハウジング1内に位置づけされて回転管軸
6および出力軸9に夫々固定して配設したギア取付体で
、回転管軸6と出力軸9は上記ギア取付体11により連
結され、一体回転するように構成されている。
Reference numeral 9 denotes an output shaft located on the same front as the rotary tube shaft 6 and rotatably supported by the housing 1 via a metal 10, etc.; 11 is positioned within the housing 1 and connects the rotary tube shaft 6 and the output shaft. The rotating tube shaft 6 and the output shaft 9 are connected by the gear mounting body 11, and are configured to rotate together.

12は端部に、該端部と連係した。1?1第1風力13
を備えた第1風力回転軸で、該回転軸12は上記羽根1
3と連係した端部を回転管軸6外に突出させ、ベアリン
グ14等を介して回転管軸6に嵌挿軸支して配設され、
上記羽根13が受ける風力で回転するように構成されて
いる。実施例の回転軸12は管軸6と同様に反時計方向
に回転するように構成されている。そして、上記第1風
力回転軸12と3−IK力羽根とは、羽根13側の回転
運動は軸12側へ伝達するが、軸12側の回転運動は羽
根13側へ伝達しないように連係するもので、実施例で
は、第1風力回転軸12の突出端部に取付筒体15をメ
タル16等を介して回転自在に軸装すると共に該筒体1
5の外周壁面に上記第2風力羽根13を固定装着し、ま
た、軸12の端部に2チエツト17を固定装着し、この
ラチェット17に、取付筒体15に回動自在に枢着18
シたラチェツト爪19をバネ20で押圧して係合させた
ものが図示され℃いる。これにより、取付筒体15(羽
根13)の反時計方向の回転運動を上記爪19、ラチェ
ット17を介して軸装2に伝達して軸12を回転し、軸
12の反時計方向の回転運動は取付筒体15へ伝達しな
いように構成されている。上記のように、実施例では羽
根13と軸12との連係手段としてラチェット機構を採
用したが、この連係手段はワンウェーカムクラッチその
他の機構に変えても良いもので、要は羽根13側からの
回転運動は軸12へ伝達するが、軸12側からの逆入力
を防止し、軸12に負担を掛けないでフリーに回転させ
るように構成すれば艮いものである。
12 was connected to the end. 1?1 1st wind power 13
A first wind rotation shaft 12 is provided with the blade 1.
3 protrudes outside the rotary tube shaft 6, and is fitted and supported on the rotary tube shaft 6 via a bearing 14 or the like,
The blades 13 are configured to rotate due to the wind force applied to them. The rotating shaft 12 of the embodiment is configured to rotate counterclockwise similarly to the tube shaft 6. The first wind power rotating shaft 12 and the 3-IK power blades are linked so that the rotational motion on the blade 13 side is transmitted to the shaft 12 side, but the rotational motion on the shaft 12 side is not transmitted to the blade 13 side. In this embodiment, the mounting cylinder 15 is rotatably mounted on the protruding end of the first wind rotation shaft 12 via a metal 16 or the like, and the cylinder 1 is
The second wind blade 13 is fixedly attached to the outer circumferential wall of the shaft 12, and a second chatter 17 is fixedly attached to the end of the shaft 12, and a ratchet 17 is rotatably attached to the mounting cylinder 15.
The ratchet pawl 19 is shown pressed into engagement by a spring 20. As a result, the counterclockwise rotational movement of the mounting cylinder 15 (blade 13) is transmitted to the shaft 2 via the pawl 19 and ratchet 17 to rotate the shaft 12, and the counterclockwise rotational movement of the shaft 12 is transmitted. is configured so as not to be transmitted to the mounting cylinder 15. As mentioned above, in the embodiment, a ratchet mechanism is used as a linking means between the blade 13 and the shaft 12, but this linking means may be replaced with a one-way cam clutch or other mechanism. Although the rotational motion is transmitted to the shaft 12, it would be better if it was configured to prevent reverse input from the shaft 12 side and allow the shaft 12 to rotate freely without putting any load on it.

21は内歯車3と相対応させてオr1風力回転軸12に
固定軸装した中継ギア、22は中継ギア21および内歯
車3に夫々噛合させてギア取付体11に回転自在に装着
した遊星歯車で、該遊星歯車22は自転しながら中継ギ
ア21の外局を公転するようになっ℃いる。実施例では
ギア取付体11に軸23を固定装着し、この固定軸おに
遊星歯車22をベアリング24等を介して回転自在に軸
装しであるが、歯車22を軸おに同定軸装し、この軸2
3をギア取付体11に回転自在に支承させて取付けるよ
りに構成しても艮い。
Reference numeral 21 denotes a relay gear fixedly mounted on the OR1 wind rotation shaft 12 in correspondence with the internal gear 3, and 22 a planetary gear meshed with the relay gear 21 and the internal gear 3, respectively, and rotatably mounted on the gear mounting body 11. The planetary gear 22 now revolves around the outer station of the relay gear 21 while rotating. In the embodiment, the shaft 23 is fixedly mounted on the gear mounting body 11, and the planetary gear 22 is rotatably mounted on the fixed shaft via a bearing 24, etc., but the gear 22 is mounted on the shaft with an identification shaft. , this axis 2
3 may be configured to be rotatably supported and attached to the gear mounting body 11.

また、実施例では遊星歯車22を3側設げたものが図示
(矛コ図参照)されているが、この−単220個数は任
意に増減し得るものである。
Further, in the embodiment, a configuration in which three planetary gears 22 are provided is shown (see the diagonal diagram), but the number of the planetary gears 22 can be increased or decreased as desired.

才/図において、25は回転軸26をキー27等により
出力軸9と一体的に固定してハウジング1の後部に固設
した発電機を示すものである。
In the figure, reference numeral 25 designates a generator in which a rotating shaft 26 is integrally fixed to an output shaft 9 by a key 27 or the like, and is fixedly installed at the rear of the housing 1.

実施例の風力回転駆動機構は上記のように構成したもの
で、次にその動作等につき説明する。オ1風刃口転軸氏
は第2風力回転管軸6に比べ弱い風力で回転する。そこ
で、第1風力羽根13が風力を受けて回転(反時計方向
)すると、この回転運動は取付筒体15、爪19、ラチ
ェット17を介して第1風力回転軸12に伝達されるの
で、該軸12は反時計方向へ回転する。回転軸12が回
転すると、この回転運動は中継ギア21を介して遊星歯
車22に伝達されるので遊星歯車22は時計方向に回転
する。該歯車22が回転すると、該歯車22は内歯車3
との噛合により反時計方向へ公転し、この公転運動はギ
ア取付体11を介して出力軸9に伝達されるが、中継ギ
ア210回転運動は所定の比率で減速されると共にギア
取付体11を介して出力軸9へ伝達されるので、該減速
機構およびテコの原理でパワーアップされて出力軸9へ
伝達され、この出力軸9の出力エネルギーにより発電機
250回転軸26を回転して発電機25を駆動する。
The wind rotation drive mechanism of the embodiment is constructed as described above, and its operation etc. will be explained next. The 1st wind blade rotating shaft rotates with a weaker wind force than the 2nd wind rotating pipe shaft 6. Therefore, when the first wind blade 13 rotates (counterclockwise) in response to the wind force, this rotational motion is transmitted to the first wind rotation shaft 12 via the mounting cylinder 15, pawl 19, and ratchet 17. The shaft 12 rotates counterclockwise. When the rotating shaft 12 rotates, this rotational motion is transmitted to the planetary gear 22 via the relay gear 21, so the planetary gear 22 rotates clockwise. When the gear 22 rotates, the gear 22 rotates into the internal gear 3.
The rotational movement of the relay gear 210 is decelerated at a predetermined ratio, and the rotational movement of the relay gear 210 is decelerated at a predetermined ratio, and the rotational movement of the relay gear 210 is transmitted to the output shaft 9 via the gear attachment body 11. The power is transmitted to the output shaft 9 through the reduction mechanism and the lever principle, and the power is transmitted to the output shaft 9.The output energy of the output shaft 9 rotates the generator 250 rotating shaft 26 and generates a generator. 25.

次に風力が強くなるとオ2風力回転管軸6が反時計方向
に独自で回転し始める。そして、オ2風力回転管軸6が
独自で回転すると、該管軸6の回転運動はギア取付体1
1を介して出力軸9へ伝達されるので、出力軸9は管軸
6と同速で回転し、この出力軸の出力エネルギーにより
発電機を駆動する。
Next, when the wind strength becomes stronger, the O2 wind rotation tube shaft 6 begins to rotate counterclockwise on its own. When the O2 wind rotary tube shaft 6 rotates independently, the rotational movement of the tube shaft 6 is transferred to the gear mounting body 1.
1 to the output shaft 9, the output shaft 9 rotates at the same speed as the tube shaft 6, and the output energy of this output shaft drives the generator.

一方、第2風力回転管軸6が独自で回転すると、該管軸
6の回転運動はギア取付体11を介して遊星歯車22に
伝達されるので、該歯車22は反時計方向に公転すると
共に内歯車3との噛合により時計方向へ自転する。遊星
歯車22が自転すると、この自転運動は中継ギア21を
介してオ/風力回転軸12に・伝達されるので、該軸1
2は前記減速比率と同じ割合で逆に増速されて反時計方
向に回転するが、該軸12の回転運動はラチェット部で
開放され、ラチェット17が爪19に摺接しながら羽根
13側と切離されてフリー回転する。
On the other hand, when the second wind rotary tube shaft 6 rotates independently, the rotational motion of the tube shaft 6 is transmitted to the planetary gear 22 via the gear attachment body 11, so that the gear 22 revolves counterclockwise and It rotates clockwise due to engagement with the internal gear 3. When the planetary gear 22 rotates, this rotational motion is transmitted to the wind/air rotation shaft 12 via the relay gear 21.
2 is accelerated at the same rate as the deceleration ratio and rotates counterclockwise, but the rotational movement of the shaft 12 is released at the ratchet part, and the ratchet 17 slides against the pawl 19 while cutting with the blade 13 side. It is released and rotates freely.

そして、上記のように、172風力回転管軸6が独自で
回転中、風力が弱くなったり、或いは発電機25の回転
軸26からの抵抗が所定値以上に増大すると、第2風力
回転管軸6の独自の回転は中継されるが、第1風力回転
軸12は弱風カニでも回転しているので、入力エネルギ
ーは矛1風力回転軸12側に自動的に切換わり、該回転
軸12からの回転運動を受けて出力軸9は回転を継続し
て出力エネルギーを供給し、また、再び風力が強くなっ
たとき、人力エネルギーは再び矛2に刃口転管軸6側に
自動的に切換わる。
As described above, when the wind power becomes weak while the 172 wind power rotary tube shaft 6 is independently rotating, or the resistance from the rotation shaft 26 of the generator 25 increases beyond a predetermined value, the second wind power rotary tube shaft 6 rotates independently. 6's own rotation is relayed, but since the first wind rotating shaft 12 is rotating even in a weak wind, the input energy is automatically switched to the spear 1 wind rotating shaft 12 side, and the input energy is transferred from the rotating shaft 12. The output shaft 9 continues to rotate and supplies output energy in response to the rotational motion of Change.

このように、出力軸9は、その時点における風力の強弱
に応じて自動的に選択された第1風力回転軸12又は第
2風力回転管軸6を入力軸として回転し、出力エネルギ
ーを連続的に提供する。
In this way, the output shaft 9 rotates using the first wind rotary shaft 12 or the second wind rotary tube shaft 6, which is automatically selected depending on the strength of the wind force at that time, as an input shaft, and continuously outputs the output energy. Provided to.

(発明の効果) 本発明は上記のように構成したので、本発明によれば、
風力の強弱に対応して効率良く円滑良好に回転駆動する
と共に装置をコンパクト化し得る風力回転駆動機構を提
供することができる。
(Effects of the Invention) Since the present invention is configured as described above, according to the present invention,
It is possible to provide a wind rotation drive mechanism that rotates efficiently and smoothly in response to the strength of wind power and can be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

矛/図は本発明に係る風力回転駆動機構を風力発電機の
駆動用に応用した1実施例を示す縦断面図、12図は矛
/図の1−1線断面図である。 台、6・・・・・・オ2風力回転管軸、7・・・・・・
第2風力羽根、9・・・・・・出力軸、11・・・・・
・ギア取付体、12・・・・・・第1風力回転軸、13
・・・・・・牙1ノ虱力羽根、17・・・・・・ラチェ
ット、19・・・・・・ラチェツト爪、21・・・・・
・中継ギア、22・・・・・・遊星歯車、25・・・・
・・発電機、2b・・・・・・発電機の回転軸。
Figure 1 is a longitudinal sectional view showing one embodiment in which the wind rotation drive mechanism according to the present invention is applied to drive a wind power generator, and Figure 12 is a sectional view taken along line 1-1 of Figure 1. Stand, 6...O2 Wind rotation tube shaft, 7...
Second wind blade, 9... Output shaft, 11...
・Gear mounting body, 12...First wind rotation shaft, 13
・・・・・・Fang 1 talus blade, 17・・・Ratchet, 19・・・Ratchet claw, 21・・・・・・
・Relay gear, 22... Planetary gear, 25...
... Generator, 2b... Rotating shaft of the generator.

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)内周壁面に内歯車を備え、所定部に支持さ
せたハウジング、(ロ)端部の外周部に第2風力羽根を
備え、上記内歯車と同軸線をなすと共に上記端部を上記
ハウジング外に突出させてハウジングに回転自在に支承
させて配設され、上記羽根が受ける風力で回転するよう
に構成した第2風力回転管軸、(ハ)該回転管軸と同一
軸線上に位置させて上記ハウジングに回転自在に支承さ
せて配設した出力軸、(ニ)上記ハウジング内に位置づ
けされて上記回転管軸および出力軸に固定され、上記回
転管軸と出力軸を一体回転するように配設したギア取付
体、(ホ)端部に、該端部と連係した第1風力羽根を備
え、該端部を上記回転管軸外に突出させて上記回転管軸
に回転自在に嵌挿支承して配設され、上記第1風力羽根
が受ける風力で回転するように構成した第1風力回転軸
、(ヘ)上記内歯車と相対応させて上記第1風力回転軸
に固定軸装した中継ギア、(ト)該中継ギアおよび上記
内歯車に夫々噛合させて上記ギア取付体に回転自在に装
着され、自転しながら上記中継ギアの外周を公転する遊
星歯車、を備え、上記第1風力回転軸と第1風力羽根と
の連係部は、該羽根側の回転運動は第1風力回転軸側へ
伝達するが、該軸側の回転運動は第1風力羽根側へ伝達
しないように構成されており、上記第1風力回転軸およ
び第2風力回転管軸の回転運動を上記出力軸へ伝達して
出力軸を回転するように構成したことを特徴とする風力
回転駆動機構。
(1) (A) A housing provided with an internal gear on the inner circumferential wall surface and supported at a predetermined part, (B) A second wind blade provided on the outer periphery of the end, coaxial with the internal gear and at the end (c) a second wind-powered rotary tube shaft, which is disposed so as to be rotatably supported by the housing with a portion protruding from the housing, and is configured to rotate by the wind force received by the blades; (d) an output shaft positioned on a line and rotatably supported by the housing; (d) an output shaft positioned within the housing and fixed to the rotary tube shaft and the output shaft; A gear attachment body arranged to rotate, (e) having a first wind blade linked to the end at the end, the end protruding outside the rotating tube axis to rotate on the rotating tube axis; (f) a first wind rotation shaft configured to be freely fitted and supported and rotated by the wind force received by the first wind blade; (f) a first wind rotation shaft in correspondence with the internal gear; a fixed shaft-mounted relay gear; (g) a planetary gear that is rotatably mounted on the gear mounting body and meshes with the relay gear and the internal gear, respectively, and revolves around the outer periphery of the relay gear while rotating; The linking portion between the first wind rotation shaft and the first wind blade transmits the rotational motion of the blade to the first wind rotation shaft, but does not transmit the rotational motion of the shaft to the first wind blade. A wind rotation drive mechanism, characterized in that the rotational motion of the first wind rotation shaft and the second wind rotation tube shaft is transmitted to the output shaft to rotate the output shaft.
JP61173494A 1986-07-22 1986-07-22 Wind power driven rotary drive mechanism Pending JPS6329064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173494A JPS6329064A (en) 1986-07-22 1986-07-22 Wind power driven rotary drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173494A JPS6329064A (en) 1986-07-22 1986-07-22 Wind power driven rotary drive mechanism

Publications (1)

Publication Number Publication Date
JPS6329064A true JPS6329064A (en) 1988-02-06

Family

ID=15961549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173494A Pending JPS6329064A (en) 1986-07-22 1986-07-22 Wind power driven rotary drive mechanism

Country Status (1)

Country Link
JP (1) JPS6329064A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339852A (en) * 2001-05-16 2002-11-27 Taishin Kogyo Kk Wind power generation device
JP2003524742A (en) * 1999-12-23 2003-08-19 ローマン ウント シュトルターフォート ゲーエムベーハー Gear transmission, especially for wind power installations
WO2010025622A1 (en) * 2008-09-05 2010-03-11 Zhang Yunlong A compound rotor system of wind powered engine
GB2487302A (en) * 2011-01-14 2012-07-18 Romax Technology Ltd Dual rotor wind or water turbine with a planetary gearbox
CN103321859A (en) * 2013-06-06 2013-09-25 山东科技大学 Lifting force and resistance combined vertical axis wind turbine
CN103670924A (en) * 2012-08-30 2014-03-26 周登荣 Wind power generation device
US9562512B2 (en) 2012-07-17 2017-02-07 Aurora Limited Dual rotor wind or water turbine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524742A (en) * 1999-12-23 2003-08-19 ローマン ウント シュトルターフォート ゲーエムベーハー Gear transmission, especially for wind power installations
JP4694078B2 (en) * 1999-12-23 2011-06-01 ローマン ウント シュトルターフォート ゲーエムベーハー Gear transmission for wind power generation equipment
JP2002339852A (en) * 2001-05-16 2002-11-27 Taishin Kogyo Kk Wind power generation device
WO2010025622A1 (en) * 2008-09-05 2010-03-11 Zhang Yunlong A compound rotor system of wind powered engine
AU2009290026B2 (en) * 2008-09-05 2013-10-03 Shanghai Forevoo Windpower Technology Co. Ltd. Compound Rotor System Of Wind Energy Conversion System (WECS) and WECS
US8777557B2 (en) 2008-09-05 2014-07-15 Shanghai Forevoo Windpower Technology Co., Ltd. Compound rotor system of wind energy conversion system (WECS) and WECS
GB2487302A (en) * 2011-01-14 2012-07-18 Romax Technology Ltd Dual rotor wind or water turbine with a planetary gearbox
GB2487302B (en) * 2011-01-14 2017-02-22 Romax Tech Ltd Dual rotor wind or water turbine
US9562512B2 (en) 2012-07-17 2017-02-07 Aurora Limited Dual rotor wind or water turbine
CN103670924A (en) * 2012-08-30 2014-03-26 周登荣 Wind power generation device
CN103321859A (en) * 2013-06-06 2013-09-25 山东科技大学 Lifting force and resistance combined vertical axis wind turbine

Similar Documents

Publication Publication Date Title
JP3080992B2 (en) Multi-unit rotating blade system integrated wind turbine
US4574659A (en) Precision drive for positioning solar energy apparatus
RU98116814A (en) DEVICE FOR ELECTRIC POWER SIGNAL GENERATION BASED ON THE USE OF WIND POWER
JPH06520B2 (en) Counter-rotating propeller drive for marine
HU223039B1 (en) Planetary gear for a wind station
GB2312403A (en) Bicycle equipped with electrical driving device
CA2233049A1 (en) Electric shaver
JPS6329064A (en) Wind power driven rotary drive mechanism
EP0211687A1 (en) A gear mechanism
JPS6020621B2 (en) Device with planetary gears
JPS621690A (en) Variable pitch propeller
CN114992288A (en) Flexible transmission planetary reducer
JP4550459B2 (en) Generator with rotation speed increasing function
JPH06280731A (en) Method and device for conversion outputting reciprocating rotational input
JPH078794Y2 (en) Rotation drive for winding tube
JP2519899B2 (en) Wind power rotation drive mechanism
JPH04166698A (en) Contrarotating axial fan
JPS6329066A (en) Wind power driven rotary drive mechanism
JPS6322159Y2 (en)
JPH04102750A (en) Concentric two-output shaft reduction gear
JPS6388346A (en) Differential epicyclic gearing
JPH09329204A (en) Full automatic continuously variable transmission with built-in rear wheel hub
JPH102385A (en) Reduction gear
JPS6125705A (en) Speed change mechanism of electric drill
JPH026673B2 (en)