JPS63290301A - Exhaust-heat recovery boiler - Google Patents

Exhaust-heat recovery boiler

Info

Publication number
JPS63290301A
JPS63290301A JP12496987A JP12496987A JPS63290301A JP S63290301 A JPS63290301 A JP S63290301A JP 12496987 A JP12496987 A JP 12496987A JP 12496987 A JP12496987 A JP 12496987A JP S63290301 A JPS63290301 A JP S63290301A
Authority
JP
Japan
Prior art keywords
evaporator
exhaust gas
heat recovery
recovery boiler
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12496987A
Other languages
Japanese (ja)
Other versions
JPH086883B2 (en
Inventor
土本 信孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP62124969A priority Critical patent/JPH086883B2/en
Publication of JPS63290301A publication Critical patent/JPS63290301A/en
Publication of JPH086883B2 publication Critical patent/JPH086883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分!!?) 本発明は、ガスタービン・コージェネレーションシステ
ムに於いて利用されるものであり、ガスタービンからの
排ガス熱を回収する排熱回収ボイラの改良に関するもの
である。
[Detailed description of the invention] (Industrial use!!?) The present invention is used in a gas turbine cogeneration system, and is an exhaust heat recovery boiler that recovers exhaust gas heat from a gas turbine. This is related to the improvement of.

(従来の技術) ガスタービン発電設備と排熱回収ボイラとを組合せ1.
電気エネルギーと蒸気エネルギーを同時に供給するよう
にした所用熱併給発電設備には、様々なシステム構成の
ものが提案されている。第3図はその代表例を示すもの
であり、圧縮機lで加圧した高圧燃焼用空気を燃焼器2
内へ導入し、この中へ燃料Fを噴射して高温・高圧の燃
焼ガスを発生させ、これをガスタービン3内へ供給し、
その回転軸動力により、減速装置4を介して発電機5が
回転される。ガスタービン3からの排ガスGは、排ガス
ダクト7を通して排熱回収ボイラCへ送られ、ボイラC
及び節炭器9等で熱回収の後、煙突10から大気中へ排
出されて行く。
(Conventional technology) Combination of gas turbine power generation equipment and exhaust heat recovery boiler 1.
Various system configurations have been proposed for combined heat and power generation equipment that simultaneously supplies electrical energy and steam energy. Figure 3 shows a typical example, in which high-pressure combustion air pressurized by compressor
into the gas turbine 3, inject the fuel F into this to generate high-temperature, high-pressure combustion gas, and supply this into the gas turbine 3,
The power of the rotating shaft rotates the generator 5 via the speed reduction device 4 . The exhaust gas G from the gas turbine 3 is sent to the exhaust heat recovery boiler C through the exhaust gas duct 7.
After the heat is recovered by the economizer 9 or the like, it is discharged into the atmosphere from the chimney 10.

一方、蒸気負荷側の要求により、排熱回収ボイラCの蒸
気発生量を増加する必要がある場合には、助燃装置11
が作動され、排ガスGを燃焼用空気の代替として使用す
るバーナ助燃が行なわれる。尚、ガスタービン3からの
排ガスGには、約15%の02量が残存するうえ、含塵
鷹も約0.05fr/Nm’程度と比較的少なく、助燃
用空気として十分に活用可能である。
On the other hand, if it is necessary to increase the amount of steam generated by the exhaust heat recovery boiler C due to a request from the steam load side, the auxiliary combustion device 11
is activated, and burner auxiliary combustion is performed using exhaust gas G as a substitute for combustion air. In addition, about 15% of 02 remains in the exhaust gas G from the gas turbine 3, and the dust content is relatively small at about 0.05 fr/Nm', so it can be fully utilized as auxiliary combustion air. .

また、逆に、一定の電気出力は必要であるが、蒸気発生
量は少なくて良いという場合には、ダンパー12及びダ
ンパー13の開度を制御し、バイパスライン14を通し
て余剰排ガスGをバイパス煙突15から大気中へ排出さ
せる。
Conversely, if a certain electrical output is required but only a small amount of steam generation is required, the opening degrees of the dampers 12 and 13 are controlled, and the excess exhaust gas G is passed through the bypass line 14 to the bypass chimney 15. into the atmosphere.

ところで、前記ガスタービン3からの排ガス温度は約5
00℃であり、その中には、通常約250 p pm(
灯油燃料、02濃度4%換算値)程度のNOxが含まれ
ており、燃焼器2に於いて蒸気噴射や水噴射等の低NO
x対策が採られている場合でも、約1100pp程度の
NOxが存在する。従って、公害規制の厳しい場合には
、排ガスGのラインに脱硝装置を設けて一層の低NOx
化を図る必要があり、通常はアンモニヤを環元ガスとし
て利用する接触環元式の乾式脱硝装置16が排熱回収ボ
イラ棒内に組み込まれ、これによってNOxの除去が行
なわれている。
By the way, the exhaust gas temperature from the gas turbine 3 is about 5
00°C, which typically contains about 250 ppm (
The combustor 2 contains low NOx such as steam injection or water injection.
Even when x countermeasures are taken, approximately 1100 pp of NOx still exists. Therefore, in cases where pollution regulations are strict, a denitrification device is installed in the exhaust gas G line to further reduce NOx.
Normally, a catalytic cyclic type dry denitrification device 16 that uses ammonia as a cyclic gas is built into the exhaust heat recovery boiler rod, thereby removing NOx.

尚、前記乾式脱硝装置16は、排ガスG内へアンモニヤ
ガス(NH3)を均一に混合して触媒層を通過させ、下
記の如き所謂NOxの還元反応(反応可能温度:約25
00〜400℃)によってNOxを分解除去するもので
あり、脱硝効率を高めるためには、4 NHs + 4
 NO+ 02  →4 Nx  + 6 HsO8N
Hz + 6  N(h     →7 Ng  + 
12 HzO排ガス温度を300℃〜400℃位いに保
持するのが必須の要件となる。
The dry denitrification device 16 uniformly mixes ammonia gas (NH3) into the exhaust gas G and passes it through the catalyst layer to perform the so-called NOx reduction reaction (reaction temperature: approx.
00 to 400℃) to decompose and remove NOx, and in order to increase the denitrification efficiency, 4 NHs + 4
NO+ 02 →4 Nx + 6 HsO8N
Hz + 6 N (h → 7 Ng +
It is an essential requirement to maintain the 12 HzO exhaust gas temperature at about 300°C to 400°C.

しかし乍ら、従前の熱併給発電設備の排熱回収ボイラに
於いては、助燃装置11を作動して蒸気発生塩を増大せ
しめたような場合に、乾式脱硝装置へ流入する排ガス温
度が大きく変動し、脱硝効率が著しく悪化するという問
題がある。
However, in the conventional exhaust heat recovery boiler of combined heat and power generation equipment, when the auxiliary combustion device 11 is operated to increase the amount of steam generated salt, the temperature of the exhaust gas flowing into the dry denitrification device fluctuates greatly. However, there is a problem that the denitrification efficiency is significantly deteriorated.

また、逆に、蒸気発生量を押えるために、余剰排ガスG
′をバイパス煙突から排出せしめた様な場合には、未処
理排ガスが放出されることになり、環境汚染等の問題を
引き起こすという重点がある。
Conversely, in order to suppress the amount of steam generated, excess exhaust gas G
If the exhaust gas is discharged from a bypass chimney, untreated exhaust gas will be released, causing problems such as environmental pollution.

(発明が解決しようとする問題点) 本件発明は、従前のガスタービンを用いた熱併給発電設
備に於ける上述の如き問題、即ちげ)蒸気負荷の変動等
によ°り脱硝処理すべき排ガスの温度が大きく変動し、
脱硝効率が悪化し易いこと、(O)蒸気発生量を押えた
際に、未処理排ガスの排出1が増大し、環境汚損を生じ
易いこと等の問題を解決せんとするものであり、排ガス
を燃焼用空気の代替とする助燃を行なう場合に於いても
、或いは、排熱回収ボイラ側の発生蒸気量のみを減少せ
しめる場合に於いても、常に脱硝装置へ流入する排ガス
温度を最適範囲に保持できると共に、ガスタービンから
の全排ガスを常時脱硝処理できるようにした、排熱回収
ボイラを提供するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems in conventional combined heat and power generation equipment using gas turbines. temperature fluctuates greatly,
This is intended to solve problems such as denitrification efficiency tends to deteriorate, and when the amount of (O) steam generated is suppressed, untreated exhaust gas emissions 1 increase, which tends to cause environmental pollution. Even when performing auxiliary combustion as a substitute for combustion air, or when reducing only the amount of steam generated on the exhaust heat recovery boiler side, the temperature of the exhaust gas flowing into the denitrification equipment is always maintained within the optimal range. It is an object of the present invention to provide an exhaust heat recovery boiler that is capable of denitrating all exhaust gas from a gas turbine at all times.

(問題点を解決するための手段) 本件第1発明は、ガスタービンを用いる熱併給発電設備
の排熱回収ボイラに於いて、ボイラ伝熱部を形成する1
次蒸発器と2次蒸発器との間に乾式脱硝装置を配設し、
前記1次蒸発器に排ガスのバイパスダクトを設けると共
に、1次蒸発器の入口側とバイパスダクトにガス温度制
御装置により開閉制御されるダンパー装置を夫々設け、
排ガスのバイパス景を調整することにより前記乾式脱硝
装置の入口側排ガス温度を所定値に制御することを発明
の基本構成とするものである。
(Means for Solving the Problems) The first invention provides a heat recovery boiler for a combined heat and power generation facility using a gas turbine.
A dry denitrification device is installed between the secondary evaporator and the secondary evaporator,
A bypass duct for exhaust gas is provided in the primary evaporator, and a damper device is provided on the inlet side of the primary evaporator and in the bypass duct, the opening and closing of which is controlled by a gas temperature control device, respectively.
The basic structure of the invention is to control the temperature of the exhaust gas at the inlet side of the dry denitrification device to a predetermined value by adjusting the bypass pattern of the exhaust gas.

又、本件第2発明は、ガスタービンを用いた熱併給発電
設備の排熱回収ボイラに於いて、ボイラ伝熱部を形成す
る1次蒸発器と2次蒸発器との間に乾式脱硝装置を配設
し、前記1次蒸発器と2次蒸発器の夫々に排ガスのバイ
パスダクトを設けると共に、1次蒸発器の入口側と1次
蒸発器のバイパスダクトに夫々ガス温度制御装置により
開閉制御されるダンパー装置を、また、前記2次蒸発器
の入口側と2次蒸発器のバイパスダクトに夫々蒸気負荷
制御装置により1閉制御されるダンパー装置を設け、ガ
ス温度制御装置により1次蒸発器のバイパスダクトの排
ガス量を調整して乾式脱硝装置の入口側排ガス温度を所
定値に制御すると共に、蒸気負荷制御装置により2次蒸
発器のバイパスダクトの排ガス量や助燃装置の作動を調
整し、発寥蒸気量を所定値に制御することを発明の基本
構成とするものである。
In addition, the second invention of the present invention provides a dry denitrification device between a primary evaporator and a secondary evaporator that form a boiler heat transfer section in an exhaust heat recovery boiler of a combined heat and power generation facility using a gas turbine. A bypass duct for exhaust gas is provided in each of the primary evaporator and the secondary evaporator, and the opening and closing of the primary evaporator inlet side and the primary evaporator bypass duct are respectively controlled by a gas temperature control device. A damper device is provided on the inlet side of the secondary evaporator and a bypass duct of the secondary evaporator, each of which is controlled to be closed by a steam load control device, and a damper device is provided on the inlet side of the secondary evaporator and a bypass duct of the secondary evaporator, respectively, and the damper device is controlled to be closed once by a vapor load control device. The amount of exhaust gas in the bypass duct is adjusted to control the exhaust gas temperature on the inlet side of the dry denitrification equipment to a predetermined value, and the steam load control device adjusts the amount of exhaust gas in the bypass duct of the secondary evaporator and the operation of the auxiliary combustion device. The basic structure of the invention is to control the amount of steam to a predetermined value.

(作用) ガスタービンからの排ガスは、排ガスダクトを通して1
次蒸発器内へ送られ、゛乾式脱硝装置で処理された後、
2次蒸発器及び節炭器の順で熱回収され、煙突より外部
へ排出されて行く。
(Function) Exhaust gas from the gas turbine passes through the exhaust gas duct.
After being sent to the next evaporator and treated with a dry denitrification device,
Heat is recovered in the secondary evaporator and economizer, and then exhausted to the outside through the chimney.

乾式脱硝装置の入口側に於ける排ガス温度は、温度検出
器により検出され、ガス温度制御装置へ入力されている
。ガス温度制御装置からは、ダンパー装置へ開・閉制御
信号が送られ、これによって、1次蒸発器のバイパスダ
クトを流通する排ガス量(即ち1次蒸発器を流通する排
ガス量)を調整することにより、脱硝装置へ流入する排
ガス温度が設定直に呆持される。
The exhaust gas temperature at the inlet side of the dry denitrification device is detected by a temperature detector and input to the gas temperature control device. The gas temperature control device sends an open/close control signal to the damper device, thereby adjusting the amount of exhaust gas flowing through the bypass duct of the primary evaporator (that is, the amount of exhaust gas flowing through the primary evaporator). As a result, the temperature of the exhaust gas flowing into the denitrification device is maintained immediately after setting.

一方、主蒸気管の蒸気圧力は、圧力検出装置によって検
出され、蒸気負荷制御装置へ入力されている。該蒸気負
荷制御装置からは、ダンパー装置や助燃料調節弁へ制御
信号が送られ、2次蒸気発生器のバイパスダクトを流通
する排ガス量(即ち2次蒸発器9節炭器等を流通する排
ガス量)や助燃装置の作動を制御することにより、所望
の蒸気負荷に対応した蒸気発生量の制御が行なわれる。
On the other hand, the steam pressure in the main steam pipe is detected by a pressure detection device and input to the steam load control device. A control signal is sent from the steam load control device to the damper device and the auxiliary fuel control valve, and the amount of exhaust gas flowing through the bypass duct of the secondary steam generator (i.e., the amount of exhaust gas flowing through the secondary evaporator 9 economizer, etc.) By controlling the amount of steam generated) and the operation of the auxiliary combustion device, the amount of steam generated can be controlled in accordance with the desired steam load.

尚、2次蒸気発生器へは気水ドラム、降水管及び水ドラ
ム等を通して給水が自然循環されており、また、1次蒸
発器へは循環ポンプによって気水ドラムから給水が強制
循環されている。
In addition, the water supply is naturally circulated to the secondary steam generator through the air-water drum, downcomer pipe, water drum, etc., and the water supply is forcibly circulated from the air-water drum to the primary evaporator by a circulation pump. .

(実施例) 以下、第1図及び第2図に基づいて、本発明の詳細な説
明する。尚、前記第3図と共通する部位には、同じ参照
番号が付されている。
(Example) Hereinafter, the present invention will be explained in detail based on FIGS. 1 and 2. Incidentally, parts common to those in FIG. 3 are given the same reference numerals.

第1図は、本件発明に係る排熱回収ボイラを適用した熱
併給発電設備の系統概要図であり、該熱併給発電設備A
はガスタービン発電装置Bと排熱回収ボイラCとを排ガ
スダクト7を介して連結することにより構成されている
FIG. 1 is a system outline diagram of a cogeneration power generation facility to which the waste heat recovery boiler according to the present invention is applied, and the cogeneration power generation facility A
is constructed by connecting a gas turbine power generation device B and an exhaust heat recovery boiler C via an exhaust gas duct 7.

前記ガスタービン発電設備Bは空気圧縮機1、燃焼器2
、ガスタービン3、減速装置4、発電機5等から構成さ
れている。
The gas turbine power generation equipment B includes an air compressor 1 and a combustor 2.
, a gas turbine 3, a reduction gear 4, a generator 5, etc.

また、前記排ガスダクト7には助燃装置11が設けられ
ており、ガスタービン3からの排ガスを燃焼用空気の代
替として利用し、灯油等の助燃材Fがバーナ燃焼される
Further, the exhaust gas duct 7 is provided with an auxiliary combustion device 11, in which exhaust gas from the gas turbine 3 is used as a substitute for combustion air, and a combustion auxiliary material F such as kerosene is combusted in a burner.

一方、排熱回収ボイラCは、排ガスGの上流側から下流
側へ向けて1次蒸発器17、乾式脱硝装置16.2次蒸
発器18、節炭器9等を配列することにより形成されて
おり、前記1次蒸発器17には、排ガスGのバイパスダ
クト19が、また、2次蒸発器18には、排ガスGのバ
イパスダク) 20が夫々設けられている。
On the other hand, the exhaust heat recovery boiler C is formed by arranging a primary evaporator 17, a dry denitrification device 16, a secondary evaporator 18, a carbon saver 9, etc. from the upstream side to the downstream side of the exhaust gas G. The primary evaporator 17 is provided with a bypass duct 19 for exhaust gas G, and the secondary evaporator 18 is provided with a bypass duct 20 for exhaust gas G.

尚、本実施例に於いては、1次蒸発器18用のバイパス
ダクト20の末端を節炭器9の下流側へ接続する構成と
しているが、これを節炭器9の上流側へ接続するように
してもよく、また、1次蒸発器17の排ガス上流側に過
熱器(図示省略)を配設する構成としてもよい。
In this embodiment, the end of the bypass duct 20 for the primary evaporator 18 is connected to the downstream side of the economizer 9, but this is connected to the upstream side of the economizer 9. Alternatively, a superheater (not shown) may be provided upstream of the exhaust gas of the primary evaporator 17.

更に、本実施例では、前記助燃装置11を、排ガスダク
ト内に助燃用バーナーを設け、排ガスGを燃焼用空気の
代替とする所謂インダクトバーナにより構成しているが
、如何なる構成の助燃装置であっても良いことは勿論で
ある。
Further, in this embodiment, the auxiliary combustion device 11 is configured by a so-called induct burner that provides an auxiliary combustion burner in the exhaust gas duct and uses the exhaust gas G as a substitute for combustion air, but the auxiliary combustion device 11 may have any configuration. Of course, it is possible.

前記2次蒸発器18には、所謂自然循環式の給水システ
ムが採用されており、気水ドラム21と水ドラム22間
を降水管23群で連結することにより、気水ドラム21
→降水管23→水ドラム22→2次蒸発器I8−気水ド
ラム21を順路とする自然循環路が形成されている。
The secondary evaporator 18 employs a so-called natural circulation water supply system, and by connecting the air-water drum 21 and the water drum 22 with a group of downcomer pipes 23, the air-water drum 21
A natural circulation path is formed in the following order: -> downpipe 23 -> water drum 22 -> secondary evaporator I8 - air/water drum 21.

また、前記1次蒸発器には、所謂強制循環式の給水シス
テムが採用されており、循環管路24を通して気水ドラ
ム21から、強制循環ポンプ25により給水される。
Furthermore, the primary evaporator employs a so-called forced circulation type water supply system, and water is supplied from the air/water drum 21 through a circulation pipe 24 by a forced circulation pump 25 .

前記乾式脱硝装置16には、アンモニヤガスを還元ガス
として使用し、これを排ガスG内へ均一に混合して触媒
層内を通過させることにより、NOxを分解除去するよ
うにした所謂乾式接触還元法による脱硝装置が使用され
てあり、触媒層の耐熱温度は420°〜430℃、還元
反応の最適温度は300〜400℃である。又、当該脱
硝装置16は、乾式脱硝装置であれば如何なる構造の装
置であっても良いことは勿論である。
The dry denitrification device 16 employs a so-called dry catalytic reduction method in which ammonia gas is used as a reducing gas, and NOx is decomposed and removed by uniformly mixing this into the exhaust gas G and passing it through a catalyst layer. A denitrification device according to the above is used, and the allowable temperature limit of the catalyst layer is 420° to 430°C, and the optimum temperature for the reduction reaction is 300 to 400°C. Further, it goes without saying that the denitrification device 16 may have any structure as long as it is a dry type denitrification device.

尚、第1図に於いて、26は1次蒸発器17の排ガス入
口側に設けたダンパー装置、27はバイパスタクト19
に設けたダンパー装置、28は2次蒸発器18の排ガス
入口側に設けたダンパー装置、29はバイパスダクト2
0に設けたダンパー装置である。
In FIG. 1, 26 is a damper device installed on the exhaust gas inlet side of the primary evaporator 17, and 27 is a bypass tact 19.
28 is a damper device installed on the exhaust gas inlet side of the secondary evaporator 18, 29 is a bypass duct 2
This is a damper device installed at 0.

又、(9)はガス温度制御装置であり、乾式脱硝装置1
6の入口側に設けた温度検出器31から脱硝装置16の
入口側に於ける排ガスGの温度が入力されると共に、前
記ダンパー装置26.26の開・閉駆動信号が夫々のダ
ンパー駆動装置(図示省略)へ出力される。
Further, (9) is a gas temperature control device, which is a dry denitrification device 1.
The temperature of the exhaust gas G at the inlet side of the denitrification device 16 is input from the temperature detector 31 provided at the inlet side of the denitrification device 16, and the opening/closing drive signals of the damper devices 26 and 26 are sent to the respective damper drive devices ( (not shown).

更に、32は蒸気負荷制御装置であり、主蒸気管羽に設
けた蒸気圧力検出画調から主蒸気管内の蒸気圧力が入力
されると共に、前記ダンパー装置28゜四への開・閉駆
動信号や助燃料調整弁35への開・閉制御信号が夫々出
力される。
Furthermore, 32 is a steam load control device, which inputs the steam pressure in the main steam pipe from a steam pressure detection screen provided on the main steam pipe vane, and also sends an opening/closing drive signal to the damper device 28. Open/close control signals to the auxiliary fuel adjustment valve 35 are output, respectively.

次に、本件排熱回収ボイラCの作動について説明する。Next, the operation of the exhaust heat recovery boiler C will be explained.

ガスタービン3から排ガスダクト7を通して排出される
排ガスGは、温度約500℃、NOx11度約250p
pm(灯油燃料、024%換算値)であり、1次蒸発器
17、乾式脱硝装置16.2次蒸発器18及び節炭器9
を通って煙突10より外部へ排出されて行く。
The exhaust gas G discharged from the gas turbine 3 through the exhaust gas duct 7 has a temperature of approximately 500°C and a NOx level of 11°C and approximately 250p.
pm (kerosene fuel, 024% conversion value), primary evaporator 17, dry denitrification device 16, secondary evaporator 18 and energy saver 9
It passes through the chimney 10 and is discharged to the outside.

乾、式脱硝装置16の入口側に於ける排ガス温度は、脱
硝効率の点から約380〜400℃位いに設定されてお
り、排ガス温度が当該設定直になるように、ガス温度制
御装置(資)を介して両ダンパー装置26゜27が開・
閉制御される。
The exhaust gas temperature at the inlet side of the dry type denitrification device 16 is set at approximately 380 to 400°C from the viewpoint of denitrification efficiency, and the gas temperature control device ( Both damper devices 26 and 27 are opened and
Closed controlled.

1次蒸発器17並びにバイパスダク) 19を通過した
排ガスGは、脱硝装置16で所望のNOx濃度に脱硝さ
れた後、2次蒸発器18で約180〜190℃に冷却さ
れ、更に節炭器9で冷却された後、大気へ放散されて行
く。
The exhaust gas G that has passed through the primary evaporator 17 and bypass duct 19 is denitrated to a desired NOx concentration in the denitrification device 16, cooled to approximately 180 to 190°C in the secondary evaporator 18, and further passed through the energy saver 9. After being cooled down, it is dissipated into the atmosphere.

蒸気負荷が増・減し、主蒸気管33内の蒸気圧が変動す
ると、蒸気負荷制御装置32を介して両ダンパー装置四
、29の開・閉制御や助燃装置11の起動・停止並びに
燃料調整弁35の開閉制御が行なわれ、蒸気負荷に見合
った蒸気量の発生が行なわれる。
When the steam load increases or decreases and the steam pressure in the main steam pipe 33 fluctuates, the steam load control device 32 controls the opening and closing of both damper devices 4 and 29, starts and stops the auxiliary combustion device 11, and adjusts the fuel. The opening and closing of the valve 35 is controlled to generate an amount of steam commensurate with the steam load.

前記1次蒸発器17と2次蒸発器18の伝熱面積比を、
ガスタービンの排ガスfi : 4QOOON扉/H,
排ガス温度: SOO℃、1次蒸発器出口の排ガス温度
:380℃、2次蒸発器出口の排ガス温度=185℃。
The heat transfer area ratio of the primary evaporator 17 and the secondary evaporator 18 is
Gas turbine exhaust gas fi: 4QOOON door/H,
Exhaust gas temperature: SOO°C, exhaust gas temperature at primary evaporator outlet: 380°C, exhaust gas temperature at secondary evaporator outlet = 185°C.

気水ドラムの圧カニyKy/crilc、の条件下で求
めると、下表の如くになる。
The pressure of the air-water drum is determined under the conditions of yKy/crilc, as shown in the table below.

即ち、脱硝装置16に於ける排ガス温度を最適領域38
0°〜390℃とするためには、脱硝装置16の上流側
に全伝熱面積の約12%に相当する1次蒸発器を設ける
必要があり、その吸収熱量は全蒸発器の約刃%となる。
That is, the exhaust gas temperature in the denitrification device 16 is set to the optimum range 38.
In order to achieve a temperature of 0° to 390°C, it is necessary to install a primary evaporator corresponding to approximately 12% of the total heat transfer area upstream of the denitrification device 16, and the amount of heat absorbed by the primary evaporator is approximately 12% of the total heat transfer area. becomes.

従って、1次蒸発器17を強制循環式とし、2次蒸発器
を自然循環式とする組合せ方式とすることにより、強制
循環ポンプ25の容量を小さくでき、所要動力が少なく
なると共に、気水ドラム等を支える鉄骨フレームを省略
できる等の利点が得られる。
Therefore, by adopting a combination system in which the primary evaporator 17 is a forced circulation type and the secondary evaporator is a natural circulation type, the capacity of the forced circulation pump 25 can be reduced, the required power is reduced, and the air-water drum This provides advantages such as the ability to omit the steel frame that supports the equipment.

第2図は、本発明の第2実施例に係る排熱回収ボイラの
系統概要図であり、1次蒸発器17及び2次蒸発器18
全体を強制循環式の構成としたものである。即ち、強制
?!環ポンプ25により、両蒸発器17.18を流通す
る給水を強制循環させるようにした点が、前記第1実施
例の場合と異なっており、その他の構成は全く同一であ
る。
FIG. 2 is a system diagram of a waste heat recovery boiler according to a second embodiment of the present invention, in which a primary evaporator 17 and a secondary evaporator 18
The entire structure is a forced circulation type. In other words, forced? ! This embodiment differs from the first embodiment in that the ring pump 25 forcedly circulates the water flowing through both evaporators 17 and 18, and the other configurations are the same.

(発明の効果) 本件第1発明では、1次蒸発器と2次蒸発器の間に乾式
脱硝装置を設けると共に、1次蒸発器にバイパスダクト
を設け、1次蒸発器系のダンパー装置をガス温度制御装
置により開・閉制御する構成としているため、バイパス
ダクトを流通する排ガス量を調整することにより、乾式
脱硝装置へ流入する排ガス温度を常に、脱硝反応の最適
温度範囲に作詩することが出来る。その結果、幅広い電
力負荷及び蒸気負荷に於いて、全量の排ガスを、しかも
高効率で脱硝処理することが可能となる。
(Effect of the invention) In the first invention, a dry denitrification device is provided between the primary evaporator and the secondary evaporator, a bypass duct is provided in the primary evaporator, and the damper device of the primary evaporator system is Since it is configured to open and close using a temperature control device, by adjusting the amount of exhaust gas flowing through the bypass duct, the temperature of the exhaust gas flowing into the dry denitrification equipment can always be kept within the optimum temperature range for the denitrification reaction. . As a result, it becomes possible to denitrate the entire amount of exhaust gas with high efficiency under a wide range of power loads and steam loads.

また、本件第2発明では、前記排ガス温度の制御の他に
、2次蒸発器にバイパスダクトを設けると共に、蒸気負
荷制御装置によって2次蒸発器系のダンパー装置や助燃
装置の燃料調整弁を制御する構成としているため、発電
装置側は電力需要に応じた運転制御をしつつ、蒸気負荷
側に対応した幅広い蒸気発生量の制御を行なうことが出
来る。
Further, in the second invention of the present invention, in addition to controlling the exhaust gas temperature, a bypass duct is provided in the secondary evaporator, and the damper device of the secondary evaporator system and the fuel adjustment valve of the auxiliary combustion device are controlled by the steam load control device. Because of this configuration, the power generation device side can control the amount of steam generation over a wide range corresponding to the steam load side while controlling the operation according to the electric power demand.

本件発明は、上述の如く熱併給発電設備の運転上のフレ
キシビリティが著しく向上し、電力負荷及び蒸気負荷の
両方に亘って幅広い負荷運転が可能になると共に、全量
の排ガスを効率的に脱硝処理することが出来、優れた実
用的効用を有するものである。
As mentioned above, the present invention significantly improves the operational flexibility of cogeneration power generation equipment, enables a wide range of load operation across both electric power load and steam load, and efficiently denitrates the entire amount of exhaust gas. It has excellent practical utility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本件発明に係る排熱回収ボイラを適用した熱
併給発電設備の系統概要図である。 第2図は、第2実施例に係る排熱回収ボイラの系統概要
図である。 第3図は、従前のガスタービンを用いた熱併給発電設備
の系統概要図である。 A   熱併給発電設備 B   ガスタービン発電設備 C排熱回収ボイラ G   排ガス 7   排ガスダクト 16    乾式脱硝装置 17  1次蒸発器 18  2次蒸発器 19  1次蒸発器のバイパスダクト 20  2次蒸発器のバイパスダクト 26.27  ダンパー装置 28.29  ダンパー装置 30    ガス温度制御装置 32    蒸気負荷制御装置 手  続  補  正  書  (自発)1.事件の表
示   特願昭62−124969号2、発明の名称 
 排熱回収ボイラ 8、補正をする者 事件との関係  特許出願人 住 所   大阪市北区堂島浜1丁目3番23号氏 名
    株式会社 タ  り  マ代表者 福 1)順
 吉 4、代理人 5、補正により増加する発明の数   な しく1) 
 明細書を下記の通りtこ補正する。 (2)  願書に添付した第1rgJを、別添の第1図
に差し替える。
FIG. 1 is a schematic system diagram of a cogeneration power generation facility to which the exhaust heat recovery boiler according to the present invention is applied. FIG. 2 is a system schematic diagram of the exhaust heat recovery boiler according to the second embodiment. FIG. 3 is a schematic diagram of a cogeneration power generation facility using a conventional gas turbine. A Combined heat generation equipment B Gas turbine power generation equipment C Exhaust heat recovery boiler G Exhaust gas 7 Exhaust gas duct 16 Dry denitrification device 17 Primary evaporator 18 Secondary evaporator 19 Primary evaporator bypass duct 20 Secondary evaporator bypass duct 26.27 Damper device 28.29 Damper device 30 Gas temperature control device 32 Steam load control device procedure amendment (voluntary) 1. Indication of the case: Japanese Patent Application No. 124969/1988 2, Title of the invention
Exhaust heat recovery boiler 8, relationship with the amended case Patent applicant address 1-3-23 Dojimahama, Kita-ku, Osaka Name Tarima Co., Ltd. Representative Fuku 1) Jun Yoshi 4, Agent 5, Number of inventions increased by amendment 1)
The specification is amended as follows. (2) Replace No. 1rgJ attached to the application with the attached Figure 1.

Claims (4)

【特許請求の範囲】[Claims] (1)ガスタービンを用いる熱併給発電設備の排熱回収
ボイラに於いて、ボイラ伝熱部を形成する1次蒸発器(
17)と2次蒸発器(18)との間に乾式脱硝装置(1
6)を配設し、前記1次蒸発器(17)に排ガス(G)
のバイパスダクト(19)を設けると共に、1次蒸発器
(17)の入口側とバイパスダクト(19)にガス温度
制御装置(30)により開・閉制御されるダンパー装置
(26)、(27)を夫々設け、排ガス(G)のバイパ
ス量を調整することにより、前記乾式脱硝装置(16)
へ流入する排ガス(G)の温度を所定値に制御する構成
とした排熱回収ボイラ。
(1) In the exhaust heat recovery boiler of cogeneration power generation equipment using a gas turbine, the primary evaporator (
A dry denitrification device (17) and a secondary evaporator (18) are installed.
6), and exhaust gas (G) is provided in the primary evaporator (17).
damper devices (26), (27) which are controlled to open and close by a gas temperature control device (30) are provided on the inlet side of the primary evaporator (17) and the bypass duct (19). The dry denitrification device (16) can be
An exhaust heat recovery boiler configured to control the temperature of exhaust gas (G) flowing into the boiler to a predetermined value.
(2)ガスタービンを用いる熱併給発電設備の排熱回収
ボイラに於いて、1次蒸発器(17)と2次蒸発器(1
8)の間に乾式脱硝装置(16)を配設し、前記1次蒸
発器(17)と2次蒸発器(18)とに排ガス(G)の
バイパスダクト(19)、(20)を夫々設けると共に
、1次蒸発器(17)の入口側と該1次蒸発器(17)
のバイパスダクト(19)に夫々ガス温度制御装置(3
0)により開・閉制御されるダンパー装置(26)、(
27)を、また、前記2次蒸発器(18)の入口側と該
2次蒸発器(18)のバイパスダクト(20)に夫々蒸
気負荷制御装置(32)により開・閉制御されるダンパ
ー装置(28)、(29)を設け、前記ガス温度制御装
置(30)により1次蒸発器(17)のバイパスダクト
(19)の排ガス量を調整し、乾式脱硝装置(16)へ
流入する排ガス(G)の温度を所定値に制御すると共に
、蒸気負荷制御装置(32)により2次蒸発器四のバイ
パスダクト(20)の排ガス量や助燃装置(11)の作
動を調整し、発生蒸気量を所望値に制御する構成とした
排熱回収ボイラ。
(2) In the exhaust heat recovery boiler of cogeneration power generation equipment using a gas turbine, the primary evaporator (17) and the secondary evaporator (1
A dry denitrification device (16) is installed between 8), and bypass ducts (19) and (20) for exhaust gas (G) are provided between the primary evaporator (17) and the secondary evaporator (18), respectively. In addition, the inlet side of the primary evaporator (17) and the primary evaporator (17)
A gas temperature control device (3) is installed in each bypass duct (19).
damper device (26), (
27), and a damper device that is controlled to open and close by a steam load control device (32) on the inlet side of the secondary evaporator (18) and a bypass duct (20) of the secondary evaporator (18), respectively. (28) and (29) are provided, and the amount of exhaust gas in the bypass duct (19) of the primary evaporator (17) is adjusted by the gas temperature control device (30), and the amount of exhaust gas ( G) is controlled to a predetermined value, and the steam load control device (32) adjusts the amount of exhaust gas in the bypass duct (20) of the secondary evaporator 4 and the operation of the auxiliary combustion device (11) to reduce the amount of steam generated. An exhaust heat recovery boiler configured to control to a desired value.
(3)助燃装置(11)を、1次蒸発器(17)の上流
側の排ガスダクト(7)に設けた燃焼バーナとした特許
請求の範囲第2項に記載の排熱回収ボイラ。
(3) The exhaust heat recovery boiler according to claim 2, wherein the auxiliary combustion device (11) is a combustion burner provided in the exhaust gas duct (7) upstream of the primary evaporator (17).
(4)2次蒸発器(18)を給水の自然循環式蒸発器と
すると共に、1次蒸発器(17)を給水の強制循環式蒸
発器とした特許請求の範囲第2項に記載の排熱回収ボイ
ラ。
(4) The exhaust gas according to claim 2, wherein the secondary evaporator (18) is a natural circulation type evaporator for the feed water, and the primary evaporator (17) is a forced circulation type evaporator for the feed water. Heat recovery boiler.
JP62124969A 1987-05-21 1987-05-21 Exhaust heat recovery boiler Expired - Fee Related JPH086883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124969A JPH086883B2 (en) 1987-05-21 1987-05-21 Exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124969A JPH086883B2 (en) 1987-05-21 1987-05-21 Exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JPS63290301A true JPS63290301A (en) 1988-11-28
JPH086883B2 JPH086883B2 (en) 1996-01-29

Family

ID=14898701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124969A Expired - Fee Related JPH086883B2 (en) 1987-05-21 1987-05-21 Exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH086883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522987A (en) * 2008-05-15 2011-08-04 ジョンソン、マッセイ、インコーポレイテッド Emission reduction device used with heat recovery steam generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134901A (en) * 1976-05-07 1977-11-11 Kawasaki Heavy Ind Ltd Method of controlling exhaust gas switching
JPS5413801A (en) * 1977-07-01 1979-02-01 Hitachi Ltd Waste heat recovery boiler
JPS5496604A (en) * 1978-01-18 1979-07-31 Hitachi Ltd Exhaust heat recovering boiler device
JPS60159501A (en) * 1984-01-30 1985-08-21 株式会社日立製作所 Waste-heat recovery boiler device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134901A (en) * 1976-05-07 1977-11-11 Kawasaki Heavy Ind Ltd Method of controlling exhaust gas switching
JPS5413801A (en) * 1977-07-01 1979-02-01 Hitachi Ltd Waste heat recovery boiler
JPS5496604A (en) * 1978-01-18 1979-07-31 Hitachi Ltd Exhaust heat recovering boiler device
JPS60159501A (en) * 1984-01-30 1985-08-21 株式会社日立製作所 Waste-heat recovery boiler device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522987A (en) * 2008-05-15 2011-08-04 ジョンソン、マッセイ、インコーポレイテッド Emission reduction device used with heat recovery steam generator

Also Published As

Publication number Publication date
JPH086883B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
US4466241A (en) Waste heat recovery boiler
US4693213A (en) Waste heat recovery boiler
JP2011522987A (en) Emission reduction device used with heat recovery steam generator
US9359918B2 (en) Apparatus for reducing emissions and method of assembly
JP2002526706A (en) Gas / steam turbine combined facility
US6341486B2 (en) Gas and steam turbine plant
JP4681460B2 (en) Gasification combined power generation facility
CN210473607U (en) Full-load SCR denitration system of coal-fired boiler
JPS63290301A (en) Exhaust-heat recovery boiler
CN205570100U (en) Hot female pipe SCR flue gas denitration system of converging
JP2004092426A (en) Cogeneration method and cogeneration system
JP2006266086A (en) Regenerative cycle type gas turbine power generation system
JP3621389B2 (en) Waste heat recovery method for deodorizer and cogeneration system with waste heat recovery for deodorizer
JP2000065313A (en) Boiler apparatus and boiler starting operation method
JPH0323807B2 (en)
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
CN105597539A (en) SCR (Selective Catalytic Reduction) flue gas denitration system of hot confluence main pipe
KR102624232B1 (en) Combined SCR System
JPH0367728B2 (en)
JPH0461917A (en) Exhaust gas treatment apparatus
JPH01119329A (en) Denitration of exhaust gas from diesel engine
JP2006250494A (en) Exhaust heat recovery boiler and its operation method
Cerkanowicz et al. Environmental Assessment of Advanced Open Cycle Gas Turbine Power Plants

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees