JPS63289798A - High-frequency induction plasma torch - Google Patents

High-frequency induction plasma torch

Info

Publication number
JPS63289798A
JPS63289798A JP62124936A JP12493687A JPS63289798A JP S63289798 A JPS63289798 A JP S63289798A JP 62124936 A JP62124936 A JP 62124936A JP 12493687 A JP12493687 A JP 12493687A JP S63289798 A JPS63289798 A JP S63289798A
Authority
JP
Japan
Prior art keywords
plasma
frequency induction
tube
torch
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124936A
Other languages
Japanese (ja)
Inventor
Takaharu Kurumachi
車地 隆治
Koichi Yokoyama
公一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62124936A priority Critical patent/JPS63289798A/en
Publication of JPS63289798A publication Critical patent/JPS63289798A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the transmission of a thermal shock to a member surrounding plasma by providing a film made of the preset heat absorbing material on the plasma side of the member surrounding plasma. CONSTITUTION:A plasma cushioning tube 8 made of a heat absorbing material (e.g., Si3N4) absorbing heat by sublimation or thermal decomposition is provided inside the plasma generating unit of an outer tube 7. The interior of a torch is exhausted with an exhaust pump 14, the Ar gas is introduced through a guide section 2 to generate plasma. The Si3N4 powder is fed through a raw material lower guide section 4 and ultra-finely pulverized. Even if plasma is brought into contact with the tube 8, the heat is absorbed, and no thermal shock is applied to the outer tube 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波誘導プラズマトーチに係り、特に、プ
ラズマの熱衝撃に対し耐力のあるプラズマトーチに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high frequency induction plasma torch, and more particularly to a plasma torch that is resistant to plasma thermal shock.

〔従来の技術〕[Conventional technology]

高周波誘導型のプラズマトーチは、ICP(Induc
tively Coupled Plasma)分析用
、粉体の球状微細化処理用、化学反応を利用したM3微
粉製造用等に用いられ、5,000℃以上の熱源が得ら
れるため、近年特に注目されているものである。
A high-frequency induction plasma torch is an ICP (Induc) torch.
It is used for analysis (Very Coupled Plasma), for processing powder into spherical particles, for manufacturing M3 fine powder using chemical reactions, etc., and has been attracting particular attention in recent years because it can provide a heat source of 5,000°C or higher. be.

ICP分析用等のように、せいぜい1〜2KW程度の出
力で1分析用原料も、わずかですむ場合には、第2図の
ようなトーチ構造で、十分機能を満足し、プラズマの熱
によるトーチの破損といった問題も生じなかった。
For cases such as ICP analysis, where only a small amount of raw material is needed for one analysis with an output of about 1 to 2 kW at most, a torch structure as shown in Figure 2 is sufficient to satisfy the function, and the torch is powered by the heat of the plasma. No problems such as damage occurred.

しかし、粉体の球状化処理や、超微粉製造用熱源として
利用する場合には、実験室規模のものでも20〜50K
Wのものが用いられ、実用規模のものでは、MW級のも
のが必要と言われている。
However, when used as a heat source for powder spheroidization processing or ultrafine powder production, even a laboratory-scale one has a temperature of 20 to 50K.
W class is used, and it is said that MW class is required for practical scale.

第3図は、現在、実験室規模の超微粉製造装置及び粉体
処理用に用いられている一般的トーチ構造を示す。トー
チは三重構造になっており、インナーチューブ5とミド
ルチューブ60間にプラズマ発生用のガス(例えばAr
ガス)を流し、このプラズマガスがアウターチューブ7
に当って破損しないように、アウターチューブ7とミド
ルチューブ6の間に冷却ガスを流す構造となっている。
FIG. 3 shows a typical torch structure currently used for laboratory-scale ultrafine powder production equipment and powder processing. The torch has a triple structure, and a gas for plasma generation (for example, Ar) is inserted between the inner tube 5 and the middle tube 60.
This plasma gas flows through the outer tube 7.
The structure is such that cooling gas flows between the outer tube 7 and the middle tube 6 to prevent them from being damaged by contact with the outer tube 7 and the middle tube 6.

この冷却ガスは、プラズマの安定化という効果も持たせ
るため、旋回成分を与えて流し、また、アウターチュー
ブは冷却用の水冷ジャケット16を設けている。しかし
、このような構造のトーチの場合、プラズマ尾炎部から
球状化処理用粉体を原料下部導入部4により導入したり
、また、インナーチューブ1の中からガス状原料を導入
する場合、中心のプラズマの形状が乱され、わずかでも
プラズマがアウターチューブ7に触れると、熱Wf撃の
ためクラックが入り、トーチとして使用不能となってし
まう。
In order to have the effect of stabilizing the plasma, this cooling gas is given a swirling component and flows, and the outer tube is provided with a water cooling jacket 16 for cooling. However, in the case of a torch with such a structure, when the powder for spheroidization treatment is introduced from the plasma tail flame section through the raw material lower introduction section 4, or when the gaseous raw material is introduced from the inner tube 1, the center If the shape of the plasma is disturbed and even a small amount of plasma touches the outer tube 7, it will crack due to the thermal Wf attack and become unusable as a torch.

このため、ガス状原料及び粉体の導入速度、導入量に工
夫をこらして使用しているが、十分な解決策は得られて
いないのが現状である。
For this reason, efforts have been made to introduce the speed and amount of gaseous raw materials and powder, but at present no satisfactory solution has been found.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した冷却ガスを流す方法やガス状原料や粉体の導入
方法を工夫する方法では、これらガスや原料が安定して
供給され、トーチ内に付着物が生成してない場合は、破
損といった問題には到らないが、粉体の供給系のつまり
のため、尾炎部に対称的に粉体が導入されなくなったり
、ガス原料導入口(インナーチューブ出口)に生成物が
付着して、わずかにプラズマ形状を乱したりした場合に
は、プラズマがアウターチューブ内壁に触れ、破損に到
る。また、この触れ方が、はんの瞬間であっても、プラ
ズマの温度が5,000〜10.000℃と高いため、
クラックが発生するという点が問題である。
With the above-mentioned method of flowing cooling gas or devising a method of introducing gaseous raw materials or powder, if these gases and raw materials are stably supplied and no deposits are formed inside the torch, problems such as damage may occur. However, due to clogging of the powder supply system, the powder may not be introduced symmetrically to the tail flame section, or products may adhere to the gas raw material inlet (inner tube outlet), resulting in a slight If the shape of the plasma is disturbed, the plasma will come into contact with the inner wall of the outer tube, leading to damage. In addition, this way of touching causes the plasma temperature to be as high as 5,000 to 10,000 degrees Celsius, even at the moment of contact.
The problem is that cracks occur.

本発明は、このようなプラズマのわずかな乱れというの
は長時間運転する場合には避は難い現象であり、はんの
わずかであればプラズマが触れても破損しない構造とし
ておくことの方が得策と考え、その構造、材質を工夫し
た点に特色がある。
In the present invention, such slight disturbance of plasma is an unavoidable phenomenon when operating for a long time, and it is better to have a structure that will not be damaged even if a small amount of solder comes into contact with the plasma. It is unique in that it was thought to be a good idea and its structure and materials were devised.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、プラズマを囲む部材のプラズマ側に熱吸
収材により構成される膜を設けた高周波誘導プラズマト
ーチによって解決される。
The above-mentioned problem is solved by a high-frequency induction plasma torch in which a film made of a heat absorbing material is provided on the plasma side of a member surrounding the plasma.

〔作用〕[Effect]

プラズマを囲む部材のプラズマ側に熱吸収材により構成
される膜を設けることによりプラズマが該膜に触れても
プラズマの熱は該膜によって吸収されプラズマを囲む部
材に熱衝撃は伝達されない。
By providing a film made of a heat absorbing material on the plasma side of the member surrounding the plasma, even if the plasma touches the film, the heat of the plasma is absorbed by the film and no thermal shock is transmitted to the member surrounding the plasma.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第1図の装置は、プラズマトーチを利用した反応装置で
ある。装置構成は大きく分けて、プラズマトーチ部、反
応容器11、生成物回収部12、排ガス回収ポンプ14
より成る。
The apparatus shown in FIG. 1 is a reaction apparatus using a plasma torch. The device configuration is roughly divided into a plasma torch section, a reaction vessel 11, a product recovery section 12, and an exhaust gas recovery pump 14.
Consists of.

プラズマトーチ部は、上部にガス状原料1を導入する導
入部16を有するインナーチューブ5と、インナーチュ
ーブ5を包み、上部にプラズマ用ガス2を導入する導入
部17を有するミドルチューブ6と、ミドルチューブ6
を包み、この下方にプラズマ10を発生させる空間を有
するアウターチューブ7を基本構造としている。アウタ
ーチューブ7の上部にはアウターチューブ内面を冷却す
る冷却ガス3を導入する導入部18が設けられ、アウタ
ーチューブ7のプラズマ10発生範囲には本発明にかか
わるプラズマ緩衝用チューブ8が設けられている。また
アウターチューブ7の外周には、プラズマ10発生用高
周波コイル9をプラズマ発生部に設け、プラズマ尾炎部
に原料4を導入する原料下部導入部19を設け、冷却水
15により温度上昇部を冷却する水冷ジャケット16を
設けている。
The plasma torch section includes an inner tube 5 having an introduction part 16 for introducing the gaseous raw material 1 into the upper part, a middle tube 6 that wraps around the inner tube 5 and has an introduction part 17 for introducing the plasma gas 2 into the upper part, and a middle tube 6 having an introduction part 17 for introducing the plasma gas 2 into the upper part. tube 6
The basic structure is an outer tube 7 which encloses the outer tube 7 and has a space below which the plasma 10 is generated. An introduction part 18 for introducing cooling gas 3 for cooling the inner surface of the outer tube is provided at the upper part of the outer tube 7, and a plasma buffer tube 8 according to the present invention is provided in the plasma 10 generation range of the outer tube 7. . Further, on the outer periphery of the outer tube 7, a high frequency coil 9 for generating plasma 10 is provided in the plasma generation part, a lower raw material introduction part 19 is provided for introducing the raw material 4 into the plasma tail flame part, and the temperature rising part is cooled by cooling water 15. A water cooling jacket 16 is provided.

〔実施例1〕 排気ポンプ14を用いて、トーチ内を減圧にした状態で
、プラズマ発生用のArガスを導入部2より流して、高
周波誘導コイルの出力を上昇してゆくとプラズマが発生
する。高周波出力が約5KWに達成した状態で、冷却用
Arガスを徐々に流し始め、排気ポンプをストップして
高周波の出力を徐々に上昇させて行くと、装置最大出力
の30KWで大気圧の熱プラズマが発生する。なお、冷
即用ガスはその効果を大きくするため旋回成分を持つよ
う接線方向に流し込む構造としている。この状態で原料
下部導入部4より、粒径約1〜5μmのSL 3 N 
4’粉を供給を開始する。
[Example 1] Plasma is generated by flowing Ar gas for plasma generation from the introduction part 2 and increasing the output of the high-frequency induction coil while reducing the pressure inside the torch using the exhaust pump 14. . When the high-frequency output reached approximately 5KW, cooling Ar gas was gradually started to flow, the exhaust pump was stopped, and the high-frequency output was gradually increased.Atmospheric pressure thermal plasma was generated at the device's maximum output of 30KW. occurs. In addition, the cold ready-to-use gas is constructed to flow in a tangential direction so as to have a swirling component in order to increase its effect. In this state, SL 3 N having a particle size of approximately 1 to 5 μm is introduced from the raw material lower introduction part 4.
4' Start feeding powder.

するとプラズマは原料供給を開始した当初、その粉体が
突入する尾炎部が乱され、半径方向にゆがみが生じ、わ
ずかに5i3NJJのプラズマ緩衝用チューブ8に触れ
たが、その後プラズマの乱れは解消されトーチ部を破損
することなしに安定して粉体の球状、微細化実験を維持
することができた。
Then, when the plasma started supplying raw materials, the tail flame part into which the powder entered was disturbed, causing distortion in the radial direction and slightly touching the plasma buffer tube 8 of 5i3NJJ, but the plasma disturbance disappeared after that. This made it possible to stably maintain the powder's spherical shape and refinement experiments without damaging the torch section.

プラズマ緩衝用チューブ8を内蔵しないトーチを用いて
、比較実験を2回行なったが、1回目は粉体原料導入直
後、2回目は定常運転に入って約2時間後、粉体供給系
の閉塞が原因でプラズマがやや乱れて、アウターチュー
ブに微小クラックが発生し、その後進展して実験不能と
なった。
Comparative experiments were conducted twice using a torch without a built-in plasma buffer tube 8. The first time was immediately after introducing the powder raw material, and the second time was about 2 hours after entering steady operation, when the powder supply system was blocked. This caused a slight disturbance in the plasma, causing microcracks to occur in the outer tube, which subsequently progressed and made the experiment impossible.

〔実施例2〕 実施例1と同様の方法でプラズマを発生させた後、ガス
状原料導入部1より5iCu、をArガスをキャリアガ
スとして導入し、また、原料下部導入部よりN Hiガ
スを流し込んで、Si3N、合成実験を行なったが、ト
ーチの破損なしに、累計約50時間の実験を継続できた
[Example 2] After generating plasma in the same manner as in Example 1, 5iCu and Ar gas were introduced from the gaseous raw material introduction part 1 as a carrier gas, and NHi gas was introduced from the lower raw material introduction part. After pouring it in, we conducted a Si3N synthesis experiment, and the experiment continued for a total of about 50 hours without damaging the torch.

プラズマ緩衝用チューブを用いれば、長時間安定して、
プラズマ発生を継続できるのは、プラズマがたとえ壁面
に当ったとしても、その熱が緩衝用チューブの昇華(或
いは分解)に費やされ、アウターチューブには、はとん
ど熱衝撃現象が生じないからである。
If you use a plasma buffer tube, it will be stable for a long time.
The reason why plasma can continue to be generated is that even if the plasma hits the wall, the heat is used to sublimate (or decompose) the buffer tube, and no thermal shock phenomenon occurs in the outer tube. It is from.

昇華による熱吸収が効率よく行なわれ、プラズマの熱が
アウターチューブに伝わらないためには、昇華潜熱の大
きい材料であること、プラズマの温度で昇華できるよう
な昇華温度を持つ材料で、しかも、熱伝導率の小さいも
のが適切である。
In order for heat absorption by sublimation to be carried out efficiently and for the heat of the plasma to not be transferred to the outer tube, the material must have a large latent heat of sublimation, a material with a sublimation temperature that can sublimate at the plasma temperature, and a material with a high heat resistance. A material with low conductivity is suitable.

BN、AQN、Si、N、、SiC等のセラミックスは
耐熱性があり、しかも昇華(分解)温度が1.900〜
3,000℃で、いずれもプラズマの接触が生じた場合
、昇華が期待できる温度であるが、Si3N4が最も熱
伝導率が低く、最適なプラズマ緩衝用チューブ材である
。生成物の純度を低下させないという点からは、生成物
と同材質のプラズマ緩衝用チューブを選ぶ方法が得策と
なり、上記熱的特性に起因する破損確率と生成物純度の
かね合いから、材質を選定すべきである。
Ceramics such as BN, AQN, Si, N, and SiC are heat resistant and have a sublimation (decomposition) temperature of 1.900~.
At 3,000°C, both are temperatures at which sublimation can be expected when plasma contact occurs, but Si3N4 has the lowest thermal conductivity and is the most suitable tube material for plasma buffering. From the point of view of not reducing the purity of the product, it is best to choose a plasma buffer tube made of the same material as the product, and the material is selected based on the balance between the probability of damage due to the thermal characteristics mentioned above and the purity of the product. Should.

また、従来の方式では、アウターチューブのプラズマに
よる破損を防止するため、プラズマガスの約5〜10倍
の冷却ガスを流す必要があったが、本発明を用いればこ
のプラズマガスの量を節約することができる。
In addition, in the conventional method, in order to prevent damage to the outer tube due to plasma, it was necessary to flow cooling gas approximately 5 to 10 times the amount of plasma gas, but with the present invention, this amount of plasma gas can be saved. be able to.

本発明の他の実施例としては、円筒状のプラズマ緩衝用
材を嵌合する代りに、膜として付着させる方法及び、粉
体状のものを塗布する方法がある。
In other embodiments of the present invention, instead of fitting the cylindrical plasma buffer material, there is a method of attaching it as a film, and a method of applying a powder.

材質としては、2,000〜3,000℃で昇華する物
質が適切で、BN、AQN、5i3N41SiCが挙げ
られる。この場合、施工が簡単であり、また、プラズマ
の熱により緩衝材が破損を受けた場合でも、修復が容易
であるという特徴が上げられる。
Suitable materials include substances that sublime at 2,000 to 3,000°C, such as BN, AQN, and 5i3N41SiC. In this case, the construction is easy, and even if the buffer material is damaged by the heat of the plasma, it is easy to repair.

また、第1図では、アウターチューブを冷却水で冷却す
る構造としているが、緩衝材をプラズマ全長に渡って施
工することにより、冷却水を用いない方式も可能である
。  。
Furthermore, although the structure shown in FIG. 1 is such that the outer tube is cooled with cooling water, a system that does not use cooling water is also possible by applying a buffer material over the entire length of the plasma. .

上記実施例によれば、熱プラズマトーチの最も大きな欠
点であった破損の問題を解決でき、破損時に流入する冷
却水による生成物の汚染の問題を同時に解決できる。
According to the above embodiment, the problem of breakage, which was the biggest drawback of the thermal plasma torch, can be solved, and at the same time, the problem of contamination of products by cooling water flowing in when the torch breaks can be solved.

また、アウターチューブ用の冷却水の量も減少させたり
、或いは、使用せずにすむことから、熱効率の点でも優
れており、大型化、工業化を考えた場合、非常に大きな
メリットとなる。
Furthermore, since the amount of cooling water for the outer tube can be reduced or eliminated, it is also excellent in terms of thermal efficiency, which is a very big advantage when considering upsizing and industrialization.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマを囲む部材のプラズマ側に熱
吸収材により構成される膜を設けることによりプラズマ
が該膵に触れてもプラズマの熱は該膜によって吸収され
プラズマを囲む部材に熱衝撃は伝達されないのでプラズ
マを囲む部材がプラズマの熱衝撃で破損されないという
優れた効果がある。
According to the present invention, by providing a film made of a heat absorbing material on the plasma side of the member surrounding the plasma, even if the plasma touches the pancreas, the heat of the plasma is absorbed by the film, causing a thermal shock to the member surrounding the plasma. is not transmitted, so there is an excellent effect that members surrounding the plasma are not damaged by the thermal shock of the plasma.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は従来の
トーチの断面図、第3図は従来のトーチの応用例を示す
断面図を示す。 7・・アウターチューブ、 8・・・プラズマ緩衝用チューブ、 9・・・誘導コイル、 10・・・プラズマ。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view of a conventional torch, and FIG. 3 is a sectional view showing an application example of the conventional torch. 7... Outer tube, 8... Plasma buffer tube, 9... Induction coil, 10... Plasma.

Claims (3)

【特許請求の範囲】[Claims] (1)プラズマを囲む部材のプラズマ側に熱吸収材によ
り構成される膜を設けたことを特徴とする高周波誘導プ
ラズマトーチ。
(1) A high-frequency induction plasma torch characterized in that a film made of a heat absorbing material is provided on the plasma side of a member surrounding the plasma.
(2)前記熱吸収材が昇華あるいは熱分解により熱を吸
収することを特徴とする特許請求の範囲第1項記載の高
周波誘導プラズマトーチ。
(2) The high frequency induction plasma torch according to claim 1, wherein the heat absorbing material absorbs heat by sublimation or thermal decomposition.
(3)前記プラズマを囲む部材が最外円筒を構成し、該
最外円筒の外側に高周波誘導コイルを設けた高周波誘導
プラズマトーチにおいて、前記膜の最外円筒軸方向の長
さを該最外円筒の内側直径の1〜3倍とし、該膜の取付
範囲内に前記高周波誘導コイルの取付範囲が含まれるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の高周波誘導プラズマトーチ。
(3) In a high-frequency induction plasma torch in which the member surrounding the plasma constitutes an outermost cylinder and a high-frequency induction coil is provided outside the outermost cylinder, the length of the membrane in the axial direction of the outermost cylinder is the outermost cylinder. The high frequency induction plasma torch according to claim 1 or 2, characterized in that the diameter is 1 to 3 times the inner diameter of the cylinder, and the mounting range of the high frequency induction coil is included within the mounting range of the membrane. .
JP62124936A 1987-05-21 1987-05-21 High-frequency induction plasma torch Pending JPS63289798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124936A JPS63289798A (en) 1987-05-21 1987-05-21 High-frequency induction plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124936A JPS63289798A (en) 1987-05-21 1987-05-21 High-frequency induction plasma torch

Publications (1)

Publication Number Publication Date
JPS63289798A true JPS63289798A (en) 1988-11-28

Family

ID=14897839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124936A Pending JPS63289798A (en) 1987-05-21 1987-05-21 High-frequency induction plasma torch

Country Status (1)

Country Link
JP (1) JPS63289798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693865A1 (en) 1994-07-22 1996-01-24 Alcatel Fibres Optiques Induction plasma torch
JP2003194723A (en) * 2001-12-27 2003-07-09 Rikogaku Shinkokai Plasma torch
US7371992B2 (en) 2003-03-07 2008-05-13 Rapt Industries, Inc. Method for non-contact cleaning of a surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693865A1 (en) 1994-07-22 1996-01-24 Alcatel Fibres Optiques Induction plasma torch
FR2722939A1 (en) * 1994-07-22 1996-01-26 Alcatel Fibres Optiques INDUCTION PLASMA TORCH
US5676863A (en) * 1994-07-22 1997-10-14 Alcatel Fibres Optiques Induction plasma torch
JP2003194723A (en) * 2001-12-27 2003-07-09 Rikogaku Shinkokai Plasma torch
US7371992B2 (en) 2003-03-07 2008-05-13 Rapt Industries, Inc. Method for non-contact cleaning of a surface

Similar Documents

Publication Publication Date Title
JP5667099B2 (en) Particle synthesis equipment
JP5241984B2 (en) Twin plasma torch device
JP5159513B2 (en) Carbon nanotube synthesizer
CA2493279A1 (en) Plasma reactor for carrying out gas reactions and method for the plasma-supported reaction of gases
JP5289048B2 (en) Device for introducing a reaction gas into a reaction chamber, and epitaxial reactor using the device
JP2005529727A (en) High frequency induction plasma reactor for mass production of nano powder
GB2486781A (en) A microwave plasma reactor for manufacturing synthetic diamond material
JPS63289798A (en) High-frequency induction plasma torch
CN201742637U (en) Atmospheric pressure medium blocking-air cold plasma fluidizing device
JP2598652B2 (en) Gas phase chemical reactor
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JP2003168594A (en) High-frequency heat plasma apparatus
BR9007006A (en) PROCESS TO PREPARE SILICON CARBIDE
CN100560482C (en) Carbon nanotube preparing apparatus and preparation method
JPH01226709A (en) Production of high-purity aluminum nitride powder
Ibberson et al. Plasma chemical and process engineering
JPS63198299A (en) Radio frequency induction plasma generator
JP4052473B2 (en) Plasma processing equipment
JPS6234416B2 (en)
CN102517565A (en) Vertical deposition furnace tube
JPH08259209A (en) Furnace for highly purifying graphite member
JPH06290896A (en) High frequency plasma heater and its operating method
KR101737856B1 (en) Apparatus for heating gas of high temperature and high pressure
JPH0279400A (en) High-frequency plasma reactor
US20230377848A1 (en) Microwave plasma apparatus and methods for processing materials using an interior liner