JPS6328976B2 - - Google Patents

Info

Publication number
JPS6328976B2
JPS6328976B2 JP6950780A JP6950780A JPS6328976B2 JP S6328976 B2 JPS6328976 B2 JP S6328976B2 JP 6950780 A JP6950780 A JP 6950780A JP 6950780 A JP6950780 A JP 6950780A JP S6328976 B2 JPS6328976 B2 JP S6328976B2
Authority
JP
Japan
Prior art keywords
alloy
weight
copper
effect
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6950780A
Other languages
Japanese (ja)
Other versions
JPS56166353A (en
Inventor
Kazuo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6950780A priority Critical patent/JPS56166353A/en
Publication of JPS56166353A publication Critical patent/JPS56166353A/en
Publication of JPS6328976B2 publication Critical patent/JPS6328976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は形状記憶効果、超弾性挙動あるいは防
振効果と有する銅基合金に関するものであり、詳
しくは上記機能を有する銅基合金の特性改善を目
的としたものである。 ここで形状記憶効果あるいは超弾性挙動という
のは、合金のマルテンサイト変態に起因するとさ
れている現象であり、前者は合金の変態温度域を
挾んで高温側での形状と低温側での形状との間に
一方向的もしくは可逆的な形状の復元現象が現出
することを指し、また後者は応力誘起マルテンサ
イトがその温度では熱的に安定でない温度領域で
変形を行なつた時現出するものであり、見掛け上
の大きな塑性ひずみが変形応力除去後に殆んど完
全に回復する現象を指すものである。 また防振効果は、この場合マルテンサイト双晶
の寄与により振動エネルギーが吸収されやすい効
果である。 従来形状記憶効果や超弾性挙動あるいは防振効
果(以下これらをまとめて機能効果という。)を
有する機能合金としてNi―Ti合金、Au―Cd合
金、などのほか銅合金ではCu―Zn、Cu―Zn―Al
合金などが知られている。 しかしながらNi―Ti合金は良好な機能特性を
有するもののその溶製や熱処理が非常に困難であ
るため、実用範囲がかなり限られている。 またAu―Cd合金は原材料が高価なため実用化
には至らず、学術的な研究対象の範囲にとどまつ
ている。 ところがCu―Zn、Cu―Zn―Al合金などの銅基
合金は原料が安価なうえ、溶解作業性なども比較
的容易なため、今後の工業的利用が大いに期待さ
れている。 しかしながら、これらのCu―ZnやCu―Zn―Al
といつた銅基合金の欠点として主に次のような事
が挙げられる。即ち (1) 熱間加工や機能付与のための高温に加熱する
工程中に結晶粒径が成長して機能特性が低下し
やすい。 (2) 高温で長時間使用される場合の熱的安定性に
不安がある。 さらに詳しくのべると機能効果を得るには合金
材料が組成的に均一であることが好ましく、高温
で均一化焼鈍処理を施こす工程や共析反応を生じ
ない高温域での熱間加工工程、さらに機能付与の
ためのβ相構造からの焼入れ処理(β化処理)な
ど高温加熱処理が多く、製造工程中結晶粒径が粗
大化したりして微細粒径に制御し難く、このため
すぐれた機能特性を安定して得ることが困難であ
つた。 また機能合金製品の熱的安定性の問題として
は、例えば形状記憶効果の場合、変態温度域より
低温側で変形させた合金を高温側に加熱すると、
無負荷であるとほぼ元の高温側での形状に近い形
に回復する。 しかしながら、合金が回復しようとする応力よ
り大きい逆の応力で完全にもしくは部分的な回復
を許したのち拘束しておくと、除荷後も次第に回
復の程度が少なくなり、形状記憶合金としての機
能を果さなくなる傾向がある。 上記は形状記憶効果における熱的安定性の問題
の一例であるが、このような熱的安定性の問題は
超弾性挙動や防振機能においても同様である。 本発明はCu―Zn系合金の上述の問題点に着目
してなされたものであり、結晶粒径の微細安定化
と熱的安定性の改善により機能特性の向上を目指
したものである。 即ち本発明の銅基合金は、まず第1にはZn38
〜45重量%、とZr0.003〜0.3重量%と残部Cuより
なることを特徴とし、第2にはZn10〜35重量%
とZr0.003〜0.3重量%さらにAlを12重量%以下を
含有し、残部がCuよりなることを特徴とするも
のであつて、これによつて形状記憶効果や超弾性
挙動あるいは防振効果などを発揮させんとするも
のである。 そしてこれらの機能は合金組成にもよるが、使
用温度によつても同一組成の合金であつても機能
が異なることは先に説明した通りである。 上記した本発明の形状記憶効果または超弾性効
果を有する銅基合金においてZnを10〜45重量%
と規定したのは、Znが10重量%以下では機能効
果を有し難く、また45重量%を超えて含有させて
もいたずらに加工性を損なうだけで機能効果の改
善に寄与しないためである。そしてこのZnの量
は、銅基合金の組成としてCu―Znの2元合金の
場合には38〜45重量%が好ましくそれ以外では何
れの機能効果も有しない。 次にZrを0.003〜0.3重量%と規定した理由はこ
れが0.003重量%未満では機能特性改善効果が十
分ではなく、また0.3重量%をこえて添加しても
いたずらに溶解、鋳造の均一性を困難にするほか
変態温度域の変動要因となるのみで、より一層の
機能特性改善効果が期待し難いためである。 またAlは上述した機能効果を発揮させる使用
温度域に応じて合金の変態温度域を制御する目的
で添加されるのが好ましいが、その量が多すぎる
と加工性を阻害することになるので12重量%以下
が望ましい。 そして所望の変態温度を得るのにAlを添加す
る場合は合金の加工性も考慮してZn量は35重量
%をこえないことが好ましい。 本発明において変態温度域を殆んど変動させな
い微量な範囲で添加されるZrが鋳造材の結晶粒
を微細化させ、凝固に伴なう組成の不均一を少な
くするとともに均質化焼鈍、熱間加工、機能付与
のβ化処理などの工程における結晶粒の不均質な
粗大化を抑制し、延性の改善効果をもたらすほ
か、繰返し変形に伴なう疲労特性などの銅基合金
としての諸特性を向上させるのである。 またさらに合金の熱的安定化に寄与して銅基合
金の実用特性を高めるものである。 以下実施例により本発明を詳細に説明する。 実施例 1 通常の電気用銅地金、電解亜鉛、電気錫、純度
99.99%のアルミニウム、Cu―30%Zr母合金およ
びCu―15%Si母合金などを用いてアルゴンガス
雰囲気下で第1表に示すような組成の20mmφの銅
基合金を溶解、鋳造した。 これを800℃にて5時間均一化焼鈍したのち、
熱間圧延および冷間圧延により1mmtに圧延し、
次いでその表面を軽く機械的に研磨して約100mm
長さのテープとした。 このテープを真直ぐな状態で700℃から水焼入
れして機能効果調査のための試料を得た。 この間に鋳造インゴツトの横断面マクロ組織の
観察ならびに加工性の状況観察を行なつた。 また試料の機能効果についても調べ、これらの
結果を第2表に示した。
The present invention relates to a copper-based alloy having a shape memory effect, superelastic behavior, or vibration-proofing effect, and specifically aims to improve the characteristics of a copper-based alloy having the above-mentioned functions. Here, the shape memory effect or superelastic behavior is a phenomenon that is said to be caused by the martensitic transformation of the alloy, and the former is a phenomenon that differs between the shape at high temperature and the shape at low temperature across the transformation temperature range of the alloy. The latter phenomenon occurs when stress-induced martensite is deformed in a temperature range where it is not thermally stable. It refers to a phenomenon in which an apparently large plastic strain almost completely recovers after the deformation stress is removed. Furthermore, the vibration damping effect is an effect in which vibration energy is easily absorbed due to the contribution of martensite twins. Conventional functional alloys with shape memory effect, superelastic behavior, or vibration damping effect (hereinafter collectively referred to as functional effects) include Ni-Ti alloy, Au-Cd alloy, etc., and copper alloys such as Cu-Zn, Cu- Zn-Al
Alloys are known. However, although Ni--Ti alloys have good functional properties, they are very difficult to melt and heat-treat, so their practical range is quite limited. Furthermore, Au-Cd alloys have not been put into practical use due to the high cost of their raw materials, and remain the subject of academic research. However, copper-based alloys such as Cu-Zn and Cu-Zn-Al alloys are inexpensive raw materials and relatively easy to melt, so they are highly anticipated for future industrial use. However, these Cu-Zn and Cu-Zn-Al
The main drawbacks of copper-based alloys are as follows. That is, (1) during hot working or heating to high temperatures for imparting functionality, crystal grain size grows and functional properties tend to deteriorate. (2) There are concerns about thermal stability when used at high temperatures for long periods of time. More specifically, in order to obtain functional effects, it is preferable that the alloy material be uniform in composition, and it is necessary to perform a uniform annealing treatment at high temperatures, a hot working process in a high temperature range that does not cause eutectoid reactions, and High-temperature heat treatments such as quenching from the β-phase structure (β-ization treatment) are often used to impart functionality, and the crystal grain size may become coarse during the manufacturing process, making it difficult to control the grain size to a fine grain size. It was difficult to obtain it stably. In addition, as for the problem of thermal stability of functional alloy products, for example, in the case of shape memory effect, when an alloy that has been deformed at a temperature lower than the transformation temperature range is heated to a higher temperature,
When no load is applied, the shape almost recovers to its original shape on the high temperature side. However, if the alloy is allowed to fully or partially recover under a stress that is greater than the stress it is trying to recover from, and then is restrained, the degree of recovery will gradually decrease even after unloading, and it will not function as a shape memory alloy. There is a tendency for people to not fulfill their goals. The above is an example of a thermal stability problem in the shape memory effect, but such thermal stability problems also apply to superelastic behavior and vibration damping function. The present invention was made in view of the above-mentioned problems of Cu--Zn alloys, and aims to improve functional properties by finely stabilizing the crystal grain size and improving thermal stability. That is, the copper-based alloy of the present invention first contains Zn38
~45% by weight, Zr0.003~0.3% by weight and the balance Cu, and secondly Zn10~35% by weight.
It is characterized by containing 0.003 to 0.3% by weight of Zr, and 12% by weight or less of Al, with the remainder being Cu, which provides shape memory effects, superelastic behavior, vibration damping effects, etc. The aim is to demonstrate this. These functions depend on the alloy composition, but as described above, even alloys with the same composition have different functions depending on the operating temperature. 10 to 45% by weight of Zn in the above-mentioned copper-based alloy having shape memory effect or superelastic effect of the present invention
This is specified because if Zn is less than 10% by weight, it is difficult to have functional effects, and if it is contained in excess of 45% by weight, it will only unnecessarily impair workability and will not contribute to improving functional effects. The amount of Zn is preferably 38 to 45% by weight in the case of a Cu--Zn binary alloy as the composition of the copper-based alloy, otherwise it does not have any functional effect. Next, the reason why Zr was specified as 0.003 to 0.3% by weight is that if it is less than 0.003% by weight, the effect of improving functional properties is not sufficient, and if it is added in excess of 0.3% by weight, it will cause unnecessary dissolution and make it difficult to achieve uniformity in casting. This is because it only becomes a factor in changing the transformation temperature range, and it is difficult to expect any further improvement in functional characteristics. In addition, Al is preferably added for the purpose of controlling the transformation temperature range of the alloy according to the operating temperature range in which the above-mentioned functional effects are exhibited, but if the amount is too large, it will impede workability. It is desirable that the amount is less than % by weight. When Al is added to obtain the desired transformation temperature, it is preferable that the amount of Zn does not exceed 35% by weight, taking into consideration the workability of the alloy. In the present invention, Zr, which is added in a small amount that hardly changes the transformation temperature range, refines the crystal grains of the cast material and reduces compositional non-uniformity caused by solidification. It suppresses heterogeneous coarsening of crystal grains in processes such as processing and beta-ization treatment to impart functionality, and improves ductility. It improves it. Furthermore, it contributes to thermal stabilization of the alloy and improves the practical properties of the copper-based alloy. The present invention will be explained in detail below with reference to Examples. Example 1 Ordinary electrical copper metal, electrolytic zinc, electrolytic tin, purity
A 20 mmφ copper-based alloy having the composition shown in Table 1 was melted and cast in an argon gas atmosphere using 99.99% aluminum, Cu-30% Zr master alloy, Cu-15% Si master alloy, etc. After homogenizing this at 800℃ for 5 hours,
Rolled to 1mm t by hot rolling and cold rolling,
The surface was then lightly mechanically polished to approximately 100 mm.
It was made into a length of tape. This tape was water-quenched at 700°C in a straight state to obtain a sample for functional effect investigation. During this period, we observed the cross-sectional macrostructure of the cast ingot and observed its workability. The functional effects of the samples were also investigated, and the results are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 上記第2表から本発明合金は比較合金に比べ鋳
造組織からして微細で加工性にすぐれていること
が認められた。 Zrを含有していても合金No.10のように過剰に
添加されたものは、却つて機能特性に悪影響をお
よぼすことがわかつた。 実施例 2 実施例1で準備した形状記憶効果を示す試料を
用いて、これらの合金における形状記憶機能の熱
的な安定性を調査した。 試験方法は、試料を室温において25mmφの円筒
(即ち曲率半径12.5mm)にそわせてU字形になる
まで180゜曲げたのちこれを拘束し、所定の温度の
油槽中に浸漬放置したのち回復状態をその曲率半
径測定により調査した。 第3表にその結果を示したが、本発明合金は変
態温度域の類似した比較合金に比べて熱的安定性
においてすぐれていることがわかつた。
[Table] From Table 2 above, it was found that the alloy of the present invention has a finer casting structure and superior workability than the comparative alloy. It was found that even if Zr is contained, if it is added in excess as in Alloy No. 10, it has a negative effect on the functional properties. Example 2 Using the samples exhibiting the shape memory effect prepared in Example 1, the thermal stability of the shape memory function in these alloys was investigated. The test method was to bend the sample 180° at room temperature to form a U-shape along a 25mmφ cylinder (i.e., radius of curvature 12.5mm), restrain it, and leave it immersed in an oil bath at a predetermined temperature before recovering. was investigated by measuring its radius of curvature. The results are shown in Table 3, and it was found that the alloy of the present invention was superior in thermal stability compared to comparative alloys having similar transformation temperature ranges.

【表】【table】

【表】 以上詳述したように本発明の銅基合金はZn10
〜45重量%とZrを0.003〜0.3重量%、あるいはAl
を12重量%以下含有し、残部がCuよりなること
を特徴とする形状記憶効果または超弾性効果を有
する銅基合金であつて結晶粒の微細化などによつ
て延性が改善される結果、加工性において著しい
改善効果が得られ、また熱的安定性も顕著に改善
されるため工業的に用いて多大の効果を有するも
のである。
[Table] As detailed above, the copper-based alloy of the present invention is Zn10
~45 wt% and 0.003~0.3 wt% Zr or Al
It is a copper-based alloy with shape memory effect or superelastic effect characterized by containing 12% by weight or less of Cu, and the balance being Cu, and as a result of improved ductility due to refinement of crystal grains, it is easy to process. It has a remarkable effect of improving properties and thermal stability, so it has great effects when used industrially.

Claims (1)

【特許請求の範囲】 1 Zn38〜45重量%、Zr0.003〜0.3重量%を含有
し、残部がCuよりなることを特徴とする形状記
憶効果または超弾性効果を有する銅基合金。 2 Zn10〜35重量%、Zr0.003〜0.3重量%および
Alを12重量%以下の範囲で含有し、残部がCuよ
りなることを特徴とする形状記憶効果または超弾
性効果を有する銅基合金。
[Claims] 1. A copper-based alloy having a shape memory effect or a superelastic effect, characterized by containing 38 to 45% by weight of Zn, 0.003 to 0.3% by weight of Zr, and the remainder being Cu. 2 Zn10-35% by weight, Zr0.003-0.3% by weight and
A copper-based alloy having a shape memory effect or a superelastic effect, characterized by containing Al in a range of 12% by weight or less, and the balance being Cu.
JP6950780A 1980-05-24 1980-05-24 Functional copper alloy Granted JPS56166353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6950780A JPS56166353A (en) 1980-05-24 1980-05-24 Functional copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6950780A JPS56166353A (en) 1980-05-24 1980-05-24 Functional copper alloy

Publications (2)

Publication Number Publication Date
JPS56166353A JPS56166353A (en) 1981-12-21
JPS6328976B2 true JPS6328976B2 (en) 1988-06-10

Family

ID=13404716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6950780A Granted JPS56166353A (en) 1980-05-24 1980-05-24 Functional copper alloy

Country Status (1)

Country Link
JP (1) JPS56166353A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189346A (en) * 1982-04-26 1983-11-05 Furukawa Electric Co Ltd:The Damping copper alloy for acoustic use
KR910003882B1 (en) * 1988-12-21 1991-06-15 풍산금속공업주식회사 Cu-alloy for electric parts and the process for making
RU2502818C1 (en) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Brass
CN104232978B (en) * 2014-09-01 2016-05-18 航天材料及工艺研究所 A kind of preparation method of copper silver zircaloy large size forging biscuit

Also Published As

Publication number Publication date
JPS56166353A (en) 1981-12-21

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JP2014015681A (en) Method for working nickel-titanium shape memory alloy
US5084109A (en) Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof
JPS63186859A (en) Method for improving dynamical and statical mechanical properties of (alpha + beta)- titanium alloy
JP5353754B2 (en) Metastable β-type titanium alloy having low Young's modulus and method for producing the same
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
JPS6328976B2 (en)
JPS6132386B2 (en)
JPS623226B2 (en)
JPS6328975B2 (en)
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
JP5210874B2 (en) Cold workable titanium alloy
KR910008004B1 (en) Memorial alloy with high strength & the making method
CN109385561B (en) Production process of Al-Mg-Si-Zr aluminum alloy tubular bus
JPH048494B2 (en)
JPS59215448A (en) Functional alloy
JP2004277873A (en) Titanium alloy incorporated with boron added
JPS6356302B2 (en)
JPS6328974B2 (en)
KR910006016B1 (en) Memorial alloy based cu and the making method
JPS6220272B2 (en)
JP2001003131A (en) Aluminum alloy material excellent in low temperature creep characteristics, its manufacture, and aluminum alloy product
JPH0437149B2 (en)