JPS63289765A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPS63289765A
JPS63289765A JP62124921A JP12492187A JPS63289765A JP S63289765 A JPS63289765 A JP S63289765A JP 62124921 A JP62124921 A JP 62124921A JP 12492187 A JP12492187 A JP 12492187A JP S63289765 A JPS63289765 A JP S63289765A
Authority
JP
Japan
Prior art keywords
polyaniline
secondary battery
active material
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124921A
Other languages
Japanese (ja)
Inventor
Shinichi Toyosawa
真一 豊澤
Shigeru Kishima
来嶋 茂
Katsuhiko Arai
克彦 新井
Hiroko Maeda
裕子 前田
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62124921A priority Critical patent/JPS63289765A/en
Priority to DE3808985A priority patent/DE3808985A1/en
Priority to FR8803459A priority patent/FR2612695A1/en
Priority to US07/169,881 priority patent/US4906538A/en
Priority to US07/211,059 priority patent/US4904553A/en
Publication of JPS63289765A publication Critical patent/JPS63289765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve local discharge and a cycle life by using poly aniline containing BF4 in a specified ratio for an active material of a positive electrode. CONSTITUTION:Poly aniline is used for an active material of a positive electrode. In this case the poly aniline contains BF4 of 15 to 30 wt.%. By using the poly aniline as described above for an active material of a positive electrode, local discharge is repressed and a long lived secondary battery is obtained. When the content of BF4 is less than 15 wt.% or more than 30 wt.%, discharge capacity and capacity retention are lowered, so that the purpose is not attained. As for an active material of a negative electrode a combination of Li-Al containing Li of 25 to 65 atomic % is preferable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極、負極及び非水電解液を備えた非水系二
次電池に関し、更に詳述すると、正極活物質として特定
の物性を有するポリアニリンを用いたことにより、自己
放電が少なく、かつサイクル寿命が長いと共に、放電容
量の大きい非水系二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonaqueous secondary battery equipped with a positive electrode, a negative electrode, and a nonaqueous electrolyte. By using the present invention, it relates to a non-aqueous secondary battery that has less self-discharge, a longer cycle life, and a larger discharge capacity.

来の 術及び 明が解決しようとする間“点近年、ポリ
アニリン、ポリピロール、ポリアセチレン等の導電性高
分子物質が電池電極材料として注目され、これらの導電
性高分子物質を用いた二次電池が種々提案されている。
In recent years, conductive polymer substances such as polyaniline, polypyrrole, and polyacetylene have attracted attention as battery electrode materials, and various secondary batteries using these conductive polymer substances have been developed. Proposed.

特に、ポリアニリンを電極活物質として用いた二次電池
は、エネルギー密度を高くすることができるため、その
研究が盛んである。
In particular, secondary batteries using polyaniline as an electrode active material have been actively researched because they can have high energy density.

しかしながら、導電性高分子物質を正極活物質に使用し
た電池は、一般に自己放電が多く、またサイクル寿命が
安定しないなどの現象がみられ。
However, batteries using a conductive polymer material as a positive electrode active material generally suffer from many self-discharges and unstable cycle life.

実用的な二次電池としてはまだまだ改良が望まれる。As a practical secondary battery, further improvements are desired.

この点はポリアニリンを用いた二次電池も同様であり、
従来より二次電池の正極活物質としてポリアニリンを使
用する場合、その二次電池の性能を向上させるために特
定の製造方法或いは製造条件を採用して得たポリアニリ
ンを正極活物質として用いたり、また、従来ポリアニリ
ンは電解重合法や化学的重合法等によって製造されてい
るが、このようにして製造されたポリアニリンのうち特
定の性状のものを正極活物質として使用するなど、正極
活物質に用いるポリアニリンに対する提案が種々なされ
ているが、更に自己放電を少なくしてサイクル寿命を延
長し、実用性を向上させたポリアニリン使用二次電池が
要望される。
This point is also the same for secondary batteries using polyaniline.
Conventionally, when polyaniline is used as a positive electrode active material in a secondary battery, polyaniline obtained by adopting a specific manufacturing method or manufacturing condition to improve the performance of the secondary battery is used as the positive electrode active material, or Conventionally, polyaniline has been produced by electrolytic polymerization or chemical polymerization, but among the polyanilines produced in this way, polyanilines with specific properties are used as positive electrode active materials. Although various proposals have been made for this purpose, there is a need for a secondary battery using polyaniline that further reduces self-discharge, extends cycle life, and improves practicality.

本発明は上記事情に鑑みなされたもので、容量が大きく
、自己放電が少なく、長いサイクル寿命を有するという
優れた性能を有し、実用性の高いポリアニリン使用二次
電池を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a highly practical secondary battery using polyaniline, which has excellent performance such as large capacity, low self-discharge, and long cycle life. do.

問題点を解決するための手段及び作用 本発明者らは、上記目的を達成するため鋭意検討を行な
った結果、特定の物性を有するポリアニリン、即ちBF
4の含有量が15〜30重量%の範囲にあるよう制御し
たポリアニリンを正極活物質として用いた場合、意外に
も自己放電が少なく、サイクル寿命が長く、しかも容量
の大きい高性能の二次電池を得ることができることを知
見した。
Means and Function for Solving the Problems The present inventors have conducted extensive studies to achieve the above object, and as a result, have developed polyaniline having specific physical properties, namely BF.
When polyaniline whose content of 4 is controlled in the range of 15 to 30% by weight is used as a positive electrode active material, a high-performance secondary battery with surprisingly little self-discharge, long cycle life, and large capacity can be created. We found that it is possible to obtain

即ち、上述したように二次電池の正極活物質として用い
るポリアニリンとしては、種々の性状のものが提案され
ているが、ポリアニリン正ri膜自体の組成或いは不純
物量については従来殆ど考慮されておらず、ポリアニリ
ン膜中の水分量をコントロールする提案がある程度であ
るが、本発明者らの検討によれば、二次電池の正極活物
質として用いるポリアニリンは、その中にBF4を含有
していること、しかも特定範囲、即ち15〜30重量%
のBF、を含有しているものが意外にも電池性能、特に
自己放電を抑制し、サイクル寿命を伸ばすという特性か
ら好ましいこと、このようにBF4を15〜30重量%
の範囲で含有したポリアニリンを正極活物質として使用
することにより、二次電池のサイクル特性を顕著に改善
し得ることを見い出した。また、この場合かかるポリア
ニリンを正極活物質とし、これに負極活物質としてリチ
ウム合金、特に25〜65原子%のリチウムを含むリチ
ウム−アルミニウム合金を組合せること、更に電解液と
してLiBF4を好ましくは1モル/lを菖え3モル/
l以下の濃度で溶解した炭酸プロピレン−ジメトキシエ
タン混合溶媒(容量比35〜65:65〜35)を使用
した場合、サイクル特性のより優れた実用性の一層高い
リチウム非水系二次電池が得られることを知見し、本発
明をなすに至ったものである。
That is, as mentioned above, polyaniline with various properties has been proposed for use as a positive electrode active material in secondary batteries, but until now little consideration has been given to the composition or amount of impurities of the polyaniline positive RI film itself. Although there are some proposals for controlling the water content in polyaniline films, according to the studies of the present inventors, polyaniline used as a positive electrode active material of secondary batteries contains BF4. Moreover, within a specific range, i.e. 15 to 30% by weight.
BF containing 15 to 30% by weight is surprisingly preferable due to its properties of battery performance, especially suppressing self-discharge and extending cycle life.
It has been found that the cycle characteristics of a secondary battery can be significantly improved by using polyaniline containing the above range as a positive electrode active material. In this case, such polyaniline is used as a positive electrode active material, and a lithium alloy, especially a lithium-aluminum alloy containing 25 to 65 at% lithium, is combined as a negative electrode active material, and LiBF4 is preferably added as an electrolyte, preferably 1 mol. /l 3 moles/
When using a propylene carbonate-dimethoxyethane mixed solvent (volume ratio 35-65:65-35) dissolved at a concentration of 1 or less, a lithium non-aqueous secondary battery with better cycle characteristics and higher practicality can be obtained. This knowledge led to the present invention.

従って、本発明は、正極、負極及び非水電解液を備えた
非水系二次電池において、正極活物質として15〜30
重量%のBF4を含むポリアニリンを用いたことを特徴
とする非水系二次電池を提供する。
Therefore, the present invention provides a nonaqueous secondary battery equipped with a positive electrode, a negative electrode, and a nonaqueous electrolyte, in which the positive electrode active material contains 15 to 30%
Provided is a non-aqueous secondary battery characterized by using polyaniline containing BF4 in a weight percent.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係る二次電池は、上述したようにポリアニリン
を正極活物質として使用するものであるが、この場合ポ
リアニリンとして、その中にBF4が15〜30重量%
、より好ましくは17〜25重量%含まれるポリアニリ
ンを使用するもので、かかるポリアニリンを正極活物質
として使用することにより、自己放電が抑制され、サイ
クル寿命の長い二次電池が得られるものである。これに
対し、BF4含有量が15重量%より少ないもの及び3
0重量%より高いものは放電容量及び容量保持率が低く
なるため、いずれも本発明の目的を達成し得ない。
The secondary battery according to the present invention uses polyaniline as the positive electrode active material as described above, and in this case, BF4 is contained in the polyaniline in an amount of 15 to 30% by weight.
, more preferably 17 to 25% by weight of polyaniline. By using such polyaniline as a positive electrode active material, self-discharge is suppressed and a secondary battery with a long cycle life can be obtained. In contrast, those with a BF4 content of less than 15% by weight and those with a BF4 content of less than 15% by weight
If the content is higher than 0% by weight, the discharge capacity and capacity retention rate will be low, and therefore the object of the present invention cannot be achieved.

なお、ポリアニリン中に含有されるBF4は、イオン及
び/又は分子として含有され、また酸(HB F4)や
塩(LiBF4等)などのいずれの形で含有されていて
もよい。
Note that BF4 contained in polyaniline may be contained as an ion and/or molecule, and may also be contained in any form such as an acid (HB F4) or a salt (LiBF4, etc.).

ここで、BF4含有量を制御すべきポリアニリンの製造
方法には特に制限はないが、アニリンモノマーを含む酸
性水溶液からポリアニリンを電析する電解重合法及びア
ニリンモノマーを含み、触媒が添加された酸性水溶液か
らアニリンモノマーを化学的に酸化重合してポリアニリ
ンを得る化学的重合法が好適に採用され、特に前者の電
解重合法によって得たポリアニリン膜が好ましく使用さ
れる。
Here, there is no particular restriction on the method for producing polyaniline whose BF4 content should be controlled, but there is an electrolytic polymerization method in which polyaniline is electrodeposited from an acidic aqueous solution containing an aniline monomer, and an acidic aqueous solution containing an aniline monomer and a catalyst added. A chemical polymerization method in which polyaniline is obtained by chemically oxidatively polymerizing an aniline monomer is preferably employed, and a polyaniline film obtained by the former electrolytic polymerization method is particularly preferably used.

なお、上記酸性水溶液の調製に用いられる酸としては、
必ずしも限定されるものではないが、HCQ、H2SO
,、HBF、、H(do4等が挙げられ、これらの1種
又は2種以上が使用される。これらの中ではHBF、が
好ましく用いられる。また、酸の濃度は0.1〜3モル
/2、特に0.5〜2.5モル/lとすることが好適で
あり、更に酸性水溶液中におけるアニリンモノマーの濃
度は0.05〜4モル/12、特に0.25〜1.5モ
ル/lとすることが好ましい。この酸性水溶液中には、
上記成分に加えてPHを調整するための可溶性塩などを
適宜含んでいてもよい。
In addition, as the acid used for preparing the above acidic aqueous solution,
Although not necessarily limited to, HCQ, H2SO
, , HBF, , H(do4, etc.), and one or more of these are used. Among these, HBF is preferably used. Also, the concentration of the acid is 0.1 to 3 mol/ 2. It is particularly preferable that the concentration of the aniline monomer in the acidic aqueous solution is 0.05 to 4 mol/12, particularly 0.25 to 1.5 mol/l. In this acidic aqueous solution,
In addition to the above components, a soluble salt for adjusting pH may be appropriately included.

上記の酸性水溶液を用いて電解重合法によりポリアニリ
ンを得る場合、電極(作用極及び対極)に制限はない。
When polyaniline is obtained by electrolytic polymerization using the above acidic aqueous solution, there are no restrictions on the electrodes (working electrode and counter electrode).

作用極としては白金、ステンレススチール、カーボン、
pbo、等が挙げられ、これらは板状、箔状、メツシュ
状、パンチングされた形状等の適宜な形状で用いられる
が、これらの中ではメツシュ状のステンレススチールが
好ましい。
As a working electrode, platinum, stainless steel, carbon,
pbo, etc., and these are used in appropriate shapes such as plate-like, foil-like, mesh-like, punched-like shapes, etc. Among these, mesh-like stainless steel is preferable.

また、対極としても、白金、ステンレススチール、カー
ボン、PbO□等が板状、メツシュ状、パンチングメタ
ル状等の形状で用いられ、これらを多数組合せて用いる
こともできるが、これらの中ではパンチングメタル状の
ステンレススチール板が好ましく使用される。
In addition, as a counter electrode, platinum, stainless steel, carbon, PbO□, etc. are used in the shape of a plate, mesh, punched metal, etc., and many of these can be used in combination, but among these, punching metal A shaped stainless steel plate is preferably used.

電解重合方法としては、電位規制、電流規制のいずれの
方法でもよい。電流規制法により電解重合を行なう場合
は、電流を一定の値で与え続ける定電流規制法、時間毎
に電流値を変化させるステップ電流規制法、時間と共に
電流を増減させる連続電流規制法、電流値をサイクル的
に変化させるサイクリック電流規制法などの規制方法を
採用することができる。電解重合の条件は適宜選定され
、通常の条件を用いることができるが、重合液温は一1
0〜15℃、特に−5〜9℃とすることが好ましい。
The electrolytic polymerization method may be either a potential regulation method or a current regulation method. When performing electrolytic polymerization using the current regulation method, there are two methods: constant current regulation method that continues to apply current at a constant value, step current regulation method that changes the current value over time, continuous current regulation method that increases or decreases the current over time, and current value regulation method. A regulation method such as a cyclic current regulation method that changes the current in a cyclical manner can be adopted. The conditions for electrolytic polymerization are appropriately selected, and normal conditions can be used, but the temperature of the polymerization solution is -11.
The temperature is preferably 0 to 15°C, particularly -5 to 9°C.

また、化学的重合法を採用する場合、上述した酸性水溶
液中に触媒を添加したものを使用するが、触媒としては
反応を促進するものであればいずれのものも用いること
ができ、例えばNa2S20s t(NH,)2S20
.、FeCQ3等を添加することができる。この化学的
重合法は常法によって行なうことができるが、重合液温
は30℃以上とすることが好ましい。
In addition, when a chemical polymerization method is adopted, the above-mentioned acidic aqueous solution containing a catalyst is used, but any catalyst can be used as long as it promotes the reaction. For example, Na2S20s t (NH,)2S20
.. , FeCQ3, etc. can be added. This chemical polymerization method can be carried out by a conventional method, but the temperature of the polymerization solution is preferably 30° C. or higher.

本発明は、上述したようにして得られるポリアニリンの
BF4含有量を15〜30重量%の範囲に制御するもの
であるが、その制御方法としては特に制限されず、制御
前のポリアニリンのBF。
In the present invention, the BF4 content of the polyaniline obtained as described above is controlled within the range of 15 to 30% by weight, but the method of controlling is not particularly limited.

含有量に応じて選定され、ポリアニリンをHBF4を含
む酸性水溶液から製造した場合は得られたポリアニリン
中にBF4を含むので、一般的にはイオン交換水等を用
いてポリアニリンを洗浄処理する方法が推賞され、また
ポリアニリンをHBF4以外の酸を含む酸性水溶液から
製造した場合は得られたポリアニリン中にはBF4は含
まれないので、BF4を含む溶液に浸漬或いは洗浄する
などの方法が推賞される。この場合、ポリアニリン中に
予めBF4が含まれていても、その量が上記範囲より少
ない場合も同様にBF4を含む溶液に浸漬或いは洗浄す
る方法が採用される。
It is selected according to the content, and if polyaniline is manufactured from an acidic aqueous solution containing HBF4, the resulting polyaniline will contain BF4, so a method of washing polyaniline using ion-exchanged water is generally recommended. Furthermore, when polyaniline is produced from an acidic aqueous solution containing an acid other than HBF4, the resulting polyaniline does not contain BF4, so methods such as immersion or washing in a solution containing BF4 are recommended. In this case, even if polyaniline contains BF4 in advance but the amount is less than the above range, a method of immersing or washing in a solution containing BF4 is similarly adopted.

ここで、ポリアニリンを洗浄乃至は浸漬処理する場合、
洗浄、浸漬不足は勿論、過度の洗浄、浸漬も避けるべき
であり、その種類、性質、量等を制御した溶液を用い、
洗浄・浸漬手段、方法も制御した条件で処理することが
必要である。なお、制御すべきポリアニリン中のBF、
量が多い場合はイオン交換水などで洗浄するが、洗浄は
ポリアニリン中のBF、−iが上記範囲になるように行
なえばよい。また、BF4を含有しない又は含有量の少
ないポリアニリンは上述したようにBF、を含む溶液に
浸漬或いは洗浄するが、BF、を含む溶液としてはイオ
ン交換水又は適宜な有機溶媒にHBF、やLiBF4な
どのホウフッ化塩を0.001〜2モル/l、特に0.
01〜1モル/l溶解したものが好適に用いられる。
Here, when washing or soaking polyaniline,
Not only insufficient washing and immersion, but also excessive washing and immersion should be avoided.
The cleaning/immersion means and methods also need to be controlled under controlled conditions. In addition, BF in polyaniline to be controlled,
If the amount is large, it is washed with ion-exchanged water or the like, but the washing may be carried out so that BF, -i in the polyaniline falls within the above range. In addition, polyaniline that does not contain BF4 or has a low content is immersed or washed in a solution containing BF as described above, but solutions containing BF such as HBF, LiBF4, etc. in ion-exchange water or an appropriate organic solvent can be used. 0.001 to 2 mol/l, especially 0.001 to 2 mol/l of borofluoride salt.
A solution of 0.01 to 1 mol/l is preferably used.

本発明の二次電池は、上記ポリアニリンを正極活物質と
するものであるが、この場合負極活物質は適宜選定され
、従来より負極活物質として使用されてきたいずれの物
質を使用してもよい。しかし、負極活物質としてはリチ
ウム合金が好ましく、本発明に係るポリアニリンとリチ
ウム合金とを組合せることにより、電池性能に優れ、実
用性の高いリチウム二次電池が得られる。
The secondary battery of the present invention uses the polyaniline described above as a positive electrode active material, but in this case, the negative electrode active material is appropriately selected, and any material conventionally used as a negative electrode active material may be used. . However, a lithium alloy is preferable as the negative electrode active material, and by combining the polyaniline and lithium alloy according to the present invention, a lithium secondary battery with excellent battery performance and high practicality can be obtained.

リチウム合金としては、リチウムと合金化し得るアルミ
ニウム、銀、鉛、錫、ビスマス、アンチモン、インジウ
ム、カドミウム等の金属の1種又は2種以上の合金にリ
チウムを真空又は不活性ガス雰囲気下で加熱溶融して均
質に混合した後に冷却固化して合金化する方法により製
造したもの。
The lithium alloy is made by heating and melting lithium in an alloy of one or more metals such as aluminum, silver, lead, tin, bismuth, antimony, indium, and cadmium that can be alloyed with lithium in a vacuum or an inert gas atmosphere. Manufactured by a method of homogeneously mixing, cooling and solidifying to form an alloy.

リチウムを電気化学的に導入する方法により製造したも
ののいずれをも使用することができる。リチウム合金の
合成組成、負極活物質量等に特に制限はないが、リチウ
ム合金の種類としては上述したLi−AQ金合金LL−
AM−In合金、Li−AQ−Bi金合金好適であり、
特に25〜65原子%のリチウムを含むリチウム−アル
ミニウム合金を用いることがサイクル寿命を安定させて
電池寿命を向上させるなどの点で好ましい。
Any material produced by a method of electrochemically introducing lithium can be used. There are no particular restrictions on the synthetic composition of the lithium alloy, the amount of negative electrode active material, etc., but the types of lithium alloys include the above-mentioned Li-AQ gold alloy LL-
AM-In alloy, Li-AQ-Bi gold alloy are suitable;
In particular, it is preferable to use a lithium-aluminum alloy containing 25 to 65 atom % of lithium from the viewpoint of stabilizing cycle life and improving battery life.

更に、本発明の二次電池を構成する非水電解液の電解質
は、アニオンとカチオンの組合せよりなる化合物であっ
て、アニオンの例としてはPFG−。
Further, the electrolyte of the non-aqueous electrolyte constituting the secondary battery of the present invention is a compound consisting of a combination of an anion and a cation, and an example of the anion is PFG-.

SbF、−、AsFG−、5bc4−の如きVA族元素
のハロゲン化物アニオン、B F、−、AQCQ、−の
如きIIIA族元素のハロゲン化物アニオン、I−(I
、−)、Br−、CQ−の如きハロゲンアニオン、Cl
204の如き過塩素酸アニオン、HF、−。
Halide anions of group VA elements such as SbF, -, AsFG-, 5bc4-, halide anions of group IIIA elements such as B F, -, AQCQ, -, I-(I
, -), halogen anions such as Br-, CQ-, Cl
Perchlorate anion such as 204, HF, -.

CF3 S Oz−、S CN−、Oニー、HS O4
−等を挙げルコトができる。また、カチオンとしてはL
i”、Na÷、に+の如きアルカリ金属イオン等を挙げ
ることができる。具体的には、LiPF、、Li5bF
G、LiAsF、、LiCQO,、LiI +LiBr
、LiCQ。
CF3 S Oz-, S CN-, O knee, HS O4
- etc. can be mentioned. In addition, as a cation, L
Examples include alkali metal ions such as "i", Na÷, and +.Specifically, examples include LiPF, Li5bF,
G, LiAsF, , LiCQO, , LiI +LiBr
, LiCQ.

NaP F、、Na5bF、、NaAsF、、NaC1
10,、NaI 、KP Fs。
NaP F, , Na5bF, , NaAsF, , NaCl
10, NaI, KP Fs.

KSbF、、KAsF、、K(j20.、LiB F4
.LiAflCQ4.LiHF2゜Li5CN、KSC
N、Li5O3CF3等を挙げることができ。
KSbF,,KAsF,,K(j20.,LiB F4
.. LiAflCQ4. LiHF2゜Li5CN, KSC
N, Li5O3CF3, etc. can be mentioned.

これらに限定されるものではないが、二次電池の軽量化
、安定化の点からはリチウム塩、特にLiCQO4,L
iB F4. LiP F、 、 LiAsFGなど、
なかでもLiBF、を溶媒に1モル/12を越え、3モ
ル/l以下の濃度で溶解して用いることが好適である。
Although not limited to these, lithium salts, especially LiCQO4, L
iB F4. LiPF, , LiAsFG, etc.
Among these, it is preferable to dissolve LiBF in a solvent at a concentration of more than 1 mol/12 and less than 3 mol/l.

上記電解質は通常溶媒により溶解された状態で使用され
、この場合溶媒は特に限定はされないが、比較的極性の
大きい溶媒が好適に用いられる。具体的には、プロピレ
ンカーボネート、エチレンカーボネート、ベンゾニトリ
ル、アセトニトリル。
The above-mentioned electrolyte is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively polar solvent is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, and acetonitrile.

テトラヒドロフラン、2−メチルテトラヒドロフラン、
γ−ブチロラクトン、ジオキソラン、塩化メチレン、ト
リエチルフォスフェート、トリエチルフォスファイト、
硫酸ジメチル、ジメチルホルムアミド、ジメチルアセト
アミド、ジメチルスルフオキシド、ジオキサン、ジメト
キシエタン、ポリエチレングリコール、スルフオラン、
ジクロロエタン、クロルベンゼン、ニトロベンゼンなど
の1種又は2種以上の混合物を挙げることができる。
Tetrahydrofuran, 2-methyltetrahydrofuran,
γ-butyrolactone, dioxolane, methylene chloride, triethyl phosphate, triethyl phosphite,
Dimethyl sulfate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane,
One or a mixture of two or more of dichloroethane, chlorobenzene, nitrobenzene and the like can be mentioned.

これらのうちでは、特にエチレンカーボネート。Among these, especially ethylene carbonate.

プロピレンカーボネート、ジメトキシエタン、テトラヒ
ドロフラン及びγ−ブチロラクトンから選ばれた1種の
溶媒又は2種以上の溶媒を混合してなる混合溶媒、なか
でもプロピレンカーボネートとジメトキシエタンとを容
積比35 : 65〜65:35の割合で混合したもの
が好適であり、本発明においては、電解液として35〜
65容積%の炭酸プロピレンを含み残余がジメトキシエ
タンである混合溶媒に上述したように1モル/lを越え
3モル/l以下のLiBF、を溶解したものを用いるこ
とが電池性能の点で特に好ましい。
A mixed solvent consisting of one solvent or a mixture of two or more solvents selected from propylene carbonate, dimethoxyethane, tetrahydrofuran, and γ-butyrolactone, especially propylene carbonate and dimethoxyethane in a volume ratio of 35:65 to 65: It is preferable to mix the electrolyte at a ratio of 35 to 35.
From the viewpoint of battery performance, it is particularly preferable to use a mixed solvent containing 65% by volume of propylene carbonate and the remainder being dimethoxyethane, in which more than 1 mol/l and less than 3 mol/l of LiBF is dissolved as described above. .

本発明の電池は、コイン型、箱型、或いは円筒型電池等
として作製され、通常外装缶内に収容した正負極間に電
解液を介在させることにより構成されるが、この場合必
要によれば正負極間にポリエチレンやポリプロピレンな
どの合成樹脂製の多孔質膜や天然繊維等を隔膜(セパレ
ーター)として使用することができる。
The battery of the present invention is manufactured as a coin-shaped, box-shaped, or cylindrical battery, and is usually constructed by interposing an electrolyte between positive and negative electrodes housed in an outer can, but in this case, if necessary, A porous membrane made of synthetic resin such as polyethylene or polypropylene, natural fiber, or the like can be used as a separator between the positive and negative electrodes.

発明の詳細 な説明したように、本発明の非水系二次電池は、正極活
物質として15〜30重量%のBF。
As described in detail, the non-aqueous secondary battery of the present invention contains 15 to 30% by weight of BF as a positive electrode active material.

を含むポリアニリンを用いたことにより、自己放電が少
なく、かつサイクル寿命が長いと共に、放電容量が大き
いものであり、このため自動車、飛行機、ポータプル機
械、電気自動車など多方面の用途に好適に使用されるも
のである。
By using polyaniline containing polyaniline, self-discharge is small, cycle life is long, and discharge capacity is large. Therefore, it is suitable for use in a variety of applications such as automobiles, airplanes, portable machines, and electric vehicles. It is something that

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記実施例に限定されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

χ1五 アニリンモノマー1モル/M、HBF、2モル/lを含
む酸性水溶液中にステンレススチールメツシュからなる
作用極を水平に設置し、対極としてステンレススチール
のパンチングメタルを使用し、この水溶液を3℃の温度
に保ち、通電量60C/dにおいて電解重合を行ない、
ポリアニリンを電析した。
A working electrode made of stainless steel mesh was placed horizontally in an acidic aqueous solution containing 1 mol/M of χ1 pentaaniline monomer and 2 mol/l of HBF, and a punched stainless steel metal was used as the counter electrode. Electrolytic polymerization was carried out at a current flow rate of 60 C/d while maintaining the temperature at ℃.
Polyaniline was electrodeposited.

得られたポリアニリン膜をステンレススチールメツシュ
ごと取り出し、30℃のイオン交換水を12cc/aJ
の割合でポリアニリン膜に透過させ、過剰のBF4を抽
出除去した。
The obtained polyaniline membrane was taken out along with the stainless steel mesh, and 12 cc/aJ of ion-exchanged water at 30°C was added.
The excess BF4 was extracted and removed by passing through a polyaniline membrane at a ratio of .

このポリアニリン膜を72時間真空乾燥した後、50m
gを秤取し、0.2モル/lのヒドラジン水溶液50c
cに48時間浸漬してポリアニリン中のBF4を完全に
抽出した。この抽出液のpHを希硫酸で7に調整した後
、BF4イオン電極法によってBF4濃度を測定した。
After vacuum drying this polyaniline membrane for 72 hours, 50 m
g was weighed out, and 50 c of a 0.2 mol/l hydrazine aqueous solution was added.
BF4 in polyaniline was completely extracted by immersing it in water for 48 hours. After adjusting the pH of this extract to 7 with dilute sulfuric acid, the BF4 concentration was measured by the BF4 ion electrode method.

得られた測定値から元のポリアニリン中に含まれるBF
Jを算出したところ、23重量%であった。
From the obtained measurement values, the BF contained in the original polyaniline
When J was calculated, it was 23% by weight.

次に、上記ポリアニリンをステンレススチールメツシュ
ごと15mmφに切断し、これを正極にすると共に、負
極にリチウム−アルミニウム合金(リチウム量50原子
%)を使用し、電解液としてプロピレンカーボネートと
ジメトキシエタンとを容積比50 : 50の割合で混
合し、これにLiBF4を3モル/lの濃度で溶解した
ものを用い、コイン型二次電池を作製した。なお、セパ
レ゛−ターとしてはポリプロピレン製の不織布と多孔質
膜との積層フィルムを用いた。
Next, the above-mentioned polyaniline was cut into pieces of 15 mmφ together with the stainless steel mesh, and this was used as a positive electrode. A lithium-aluminum alloy (lithium content: 50 at%) was used as a negative electrode, and propylene carbonate and dimethoxyethane were used as an electrolyte. They were mixed at a volume ratio of 50:50 and LiBF4 was dissolved therein at a concentration of 3 mol/l to produce a coin-shaped secondary battery. Note that a laminated film of a polypropylene nonwoven fabric and a porous membrane was used as the separator.

この電池を0 、5 m Aの定電流で3.3vまで充
電し、その後更に3.3vの定電圧で3時間充電した。
This battery was charged to 3.3V with a constant current of 0.5 mA, and then further charged with a constant voltage of 3.3V for 3 hours.

次いで、直ちに0 、5 m Aで2.Ovまで放電さ
せたところ、放電容量は4.9mAhであった。
Then immediately at 0.5 mA for 2. When discharged to Ov, the discharge capacity was 4.9 mAh.

また、同様の条件で充電した電池を60℃で1週間保持
した後、0 、5 m Aで2.Ovまで放電させたと
ころ、放電容量は4.2mAhであり、容量保持率は8
6%であった。
In addition, a battery charged under the same conditions was held at 60°C for 1 week, and then charged at 0.5 mA for 2.5 mA. When discharged to Ov, the discharge capacity was 4.2mAh, and the capacity retention rate was 8.
It was 6%.

ル較榔よ 実施例と同様の方法で電解重合したポリアニリンをイオ
ン交換水の代わりに0.5モル/lの水酸化ナトリウム
水溶液を用いて実施例と同様にして洗浄した。
Polyaniline, which had been electrolytically polymerized in the same manner as in the example, was washed in the same manner as in the example, using a 0.5 mol/l aqueous sodium hydroxide solution instead of ion-exchanged water.

この洗浄後のポリアニリン中のBF4量を実施例と同様
の方法で測定したところ、14重量%であった。
The amount of BF4 in the polyaniline after washing was measured in the same manner as in the example, and was found to be 14% by weight.

次に、このポリアニリンを使用し、実施例と同様のコイ
ン型二次電池を作製し、その性能を評価したところ、6
0℃、1週間保持後の放電容量は2.7mAh、容量保
持率は76%であった。
Next, using this polyaniline, a coin-shaped secondary battery similar to that in the example was produced, and its performance was evaluated.
The discharge capacity after holding at 0° C. for one week was 2.7 mAh, and the capacity retention rate was 76%.

比較例2 実施例と同様の方法で電解重合したポリアニリンを1モ
ル/lのHBF4水溶液で洗浄した。
Comparative Example 2 Polyaniline electrolytically polymerized in the same manner as in Example was washed with a 1 mol/l HBF4 aqueous solution.

このポリアニリン中のBF、量を実施例と同様の方法で
測定したところ、33重量%であった。
The amount of BF in this polyaniline was measured in the same manner as in the example, and was found to be 33% by weight.

次に、このポリアニリンを使用し、実施例と同様のコイ
ン型二次電池を作製し、その性能を評価したところ、6
0℃、1週間保持後の放電容量は3 、0 m A h
、容量保持率は72%であった。
Next, using this polyaniline, a coin-shaped secondary battery similar to that in the example was produced, and its performance was evaluated.
Discharge capacity after holding at 0℃ for 1 week is 3.0 mA h
, the capacity retention rate was 72%.

Claims (1)

【特許請求の範囲】 1、正極、負極及び非水電解液を備えた非水系二次電池
において、正極活物質として15〜30重量%のBF_
4を含むポリアニリンを用いたことを特徴とする非水系
二次電池。 2、負極活物質として25〜65原子%のリチウムを含
むリチウム−アルミニウム合金を用いた特許請求の範囲
第1項記載の非水系二次電池。 3、電解液として、35〜65容積%の炭酸プロピレン
を含み残余がジメトキシエタンである混合溶媒に1モル
/lを越え3モル/l以下のLiBF_4を溶解したも
のを用いた特許請求の範囲第1項又は第2項記載の非水
系二次電池。
[Claims] 1. In a nonaqueous secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, 15 to 30% by weight of BF_ as a positive electrode active material.
A non-aqueous secondary battery characterized by using polyaniline containing 4. 2. The non-aqueous secondary battery according to claim 1, which uses a lithium-aluminum alloy containing 25 to 65 atom % of lithium as a negative electrode active material. 3. As an electrolytic solution, LiBF_4 of more than 1 mol/l and less than 3 mol/l is dissolved in a mixed solvent containing 35 to 65% by volume of propylene carbonate and the remainder being dimethoxyethane. The non-aqueous secondary battery according to item 1 or 2.
JP62124921A 1987-03-18 1987-05-21 Nonaqueous secondary battery Pending JPS63289765A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62124921A JPS63289765A (en) 1987-05-21 1987-05-21 Nonaqueous secondary battery
DE3808985A DE3808985A1 (en) 1987-03-18 1988-03-17 NON-AQUEOUS SECOND ELEMENT
FR8803459A FR2612695A1 (en) 1987-03-18 1988-03-17 NON-AQUEOUS SECONDARY BATTERY
US07/169,881 US4906538A (en) 1987-03-18 1988-03-18 Non-aqueous secondary cell
US07/211,059 US4904553A (en) 1987-04-16 1988-06-24 Polyaniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124921A JPS63289765A (en) 1987-05-21 1987-05-21 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPS63289765A true JPS63289765A (en) 1988-11-28

Family

ID=14897436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124921A Pending JPS63289765A (en) 1987-03-18 1987-05-21 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPS63289765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646381A (en) * 1987-06-29 1989-01-10 Showa Denko Kk Secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646381A (en) * 1987-06-29 1989-01-10 Showa Denko Kk Secondary cell

Similar Documents

Publication Publication Date Title
JP2717890B2 (en) Lithium secondary battery
US4717634A (en) Electric cells utilizing polyaniline as a positive electrode active material
US4687598A (en) Electrode-active material for electrochemical batteries and method of preparation
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
EP3783720A1 (en) An electrolyte solution comprising an alkali metal bis (oxalato)borate salt
JPS634569A (en) Nonaqueous electrolyte secondary battery
JPS63289765A (en) Nonaqueous secondary battery
JP3079291B2 (en) Electrochemically active electrode and electrochemical cell using the same
JPS6164082A (en) Nonaqueous electrolyte battery
JPS63289766A (en) Nonaqueous secondary battery
JPS6355861A (en) Secondary battery
JP2020532837A (en) Lithium secondary battery electrolyte and lithium-secondary battery containing it
JPH0821430B2 (en) Secondary battery
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JP2644765B2 (en) Positive electrode for storage battery
JPS6164080A (en) Nonaqueous electrolyte battery
JP3019362B2 (en) Rechargeable battery
JPH01124970A (en) Lithium secondary battery
KR800000158B1 (en) Nonaqueous cell having an electrolyte containing crotonitrile
JPH01258408A (en) Energy storage device using non-aqueous electrolyte
JPS62211861A (en) Nonaqueous electrolyte secondary battery
JPH03289062A (en) Nonaqueous electrolyte for lithium secondary cell and lithium secondary cell
JP3443224B2 (en) Non-aqueous electrolyte battery
JPH06290807A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JPH02253560A (en) Battery