JPS63289614A - Magnetic flux control circuit - Google Patents

Magnetic flux control circuit

Info

Publication number
JPS63289614A
JPS63289614A JP12391187A JP12391187A JPS63289614A JP S63289614 A JPS63289614 A JP S63289614A JP 12391187 A JP12391187 A JP 12391187A JP 12391187 A JP12391187 A JP 12391187A JP S63289614 A JPS63289614 A JP S63289614A
Authority
JP
Japan
Prior art keywords
magnetic flux
value
circuit
integrator
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12391187A
Other languages
Japanese (ja)
Inventor
Koichi Ishida
紘一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12391187A priority Critical patent/JPS63289614A/en
Publication of JPS63289614A publication Critical patent/JPS63289614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate delay of an eddy current at high speed by comparing a magnetic flux simulation value obtained from a simulation circuit of an electromagnet with a practical value, setting up a feedback circuit so as to be driven similarly to the practical circuit and adding a differential value of an effective current relating to an obtained eddy current time constant to a command value to obtain an effective current command value. CONSTITUTION:Magnetic flux phi is detected by a magnetic flux detector 4, in a simulation value obtained through a simulation circuit consisting of a multiplier 51B, and an integrator 53A, a deviation (e) between the simulation value and the value phi is extracted through the adder/subtractor 54C, multiplied by the simulation value by means of a multiplier 51C and integrated by an integrator 53B and the integrated value is inputted to the multiplier 51B. At that time, the output (a) of the integrator 53B corresponds to an eddy current time constant. The input of the integrator 53 is always supervised by a comparator 56, a switch is opened/closed and the value (a) corresponding to the eddy current time constant is stored in the integrator 53B. In said constitution, a delay due to the eddy current can be compensated without executing measuring/adjusting work, a sharp pulse-like magnetic flux is obtained, and even if a coil having the temperature change of a resistor or a different time constant is used, adjustment in each change can be omitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電磁石コイルに所定の電流を供給して所定
の磁束を発生させるための制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control circuit for supplying a predetermined current to an electromagnetic coil to generate a predetermined magnetic flux.

〔従来の技術〕[Conventional technology]

電磁石コイルに所定電流を供給して所定の磁束を発生さ
せる場合、電磁石コイルの等価回路は第2図のように表
わされる。こ〜に、R1はコイル抵抗、R2はうず電流
積等価抵抗、Lはコイルインダクタンス、1はコイルへ
の供給電流(コイル電流)、IRはうず電流積等価電流
、ILはコイル実効電流、φは磁束(=LiL)である
When a predetermined current is supplied to an electromagnetic coil to generate a predetermined magnetic flux, an equivalent circuit of the electromagnetic coil is expressed as shown in FIG. Here, R1 is the coil resistance, R2 is the eddy current product equivalent resistance, L is the coil inductance, 1 is the current supplied to the coil (coil current), IR is the eddy current product equivalent current, IL is the coil effective current, and φ is Magnetic flux (=LiL).

このような磁束を発生させるために、従来は例えば第3
図の如く、電流調節器1およびパワーアンプ2ならびに
電流検出器6によシ定電流制麹ループを構成し、コイル
電流iを指令値l に一致させ、一定の磁束φを発生さ
せるようにしている。
In order to generate such magnetic flux, conventionally, for example, a third
As shown in the figure, a constant current control loop is constructed by a current regulator 1, a power amplifier 2, and a current detector 6, and a coil current i is made to match a command value l to generate a constant magnetic flux φ. There is.

こ〜で電流iと磁束φを作るための実効電流九との間に
は、 (Sはラプラス演算子) なる関係が成立する。したがって、パルス状の磁束を得
ようとすると、うず電流積によりTE=L/R2 なる−次遅れ時定数をもってILが応答するため、パル
ス’tEIfi、iに対して磁束φの変化が遅れること
になる。つまシ、磁束の速い制御ができないので、この
時間曝れを補償すべく、コイル実効電流指令値1 に対
し、コイル7IL流指令値l が1  =(1+5TF
)1        ・・・・・・(2)となる伝達関
数をもつ進みフィルタ7を挿入し、TF=TI  とな
るようにしてうず電流にもとづく遅れを打ち消すように
している。
Here, the following relationship holds true between the current i and the effective current 9 for creating the magnetic flux φ: (S is the Laplace operator). Therefore, when trying to obtain a pulsed magnetic flux, the IL responds with a -second lag time constant due to the eddy current product, so the change in magnetic flux φ is delayed with respect to the pulse 'tEIfi,i. Become. However, since fast magnetic flux control is not possible, in order to compensate for this time exposure, the coil 7IL flow command value l is set to 1 = (1+5TF
)1 (2) A leading filter 7 having a transfer function is inserted so that TF=TI, thereby canceling out the delay caused by the eddy current.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、時定数TEの直は制御対象となる各コイ
ル毎に異なるため、正確にはその都度測定する必要があ
ること、またフィルタとしては調整範囲が互いに異なる
ものを何種類か用意して選択できるようにしておき、T
Eの測定結果に応じてTFを選択して調整する必要があ
ること等で、調整が煩雑になると云う問題がある。また
、第6図の電流制御ループの外側に磁束制御ループを設
ける場合は、磁束を検出するための磁束検出器が必要に
なるが、これは高価かつ取υ付けが困難なことから、時
定数の演算時等の必要なときにのみ用いることが望まし
い。
However, since the value of the time constant TE differs for each coil to be controlled, it is necessary to accurately measure it each time, and it is possible to select from several types of filters with different adjustment ranges. Keep it like this, T
There is a problem that the adjustment becomes complicated because it is necessary to select and adjust the TF according to the measurement result of E. In addition, if a magnetic flux control loop is provided outside the current control loop shown in Figure 6, a magnetic flux detector is required to detect the magnetic flux, but this is expensive and difficult to install, so the time constant It is desirable to use it only when necessary, such as when calculating.

したがって、この発明はうず電流時定数の調整作業を必
要とせず、磁束をその目標値(指令値)に高速に追従さ
せることができ、かつ磁束検出器を時定数演算後は撤去
することが可能な制御回路を提供することを目的とする
Therefore, this invention does not require adjustment of the eddy current time constant, allows the magnetic flux to follow its target value (command value) at high speed, and allows the magnetic flux detector to be removed after calculating the time constant. The purpose of this invention is to provide a control circuit that is easy to use.

〔問題点を解決するための手段〕[Means for solving problems]

電磁石コイルに所定の電流を供給して所定の磁束を発生
させるべく、乗算器と積分器との直列回路からなりコイ
ルの磁束または実効電流を模擬する第1の模擬回路と、
該第1模擬回路にて模擬される磁束模擬値とその実際直
との偏差に該磁束模擬値を掛け合わせる乗算器と、該乗
算機出カを積分してうず電流時定数相当値を出力する積
分器と、コイル電流指令値からその実際直を模擬する第
2の模擬回路と、該第2模擬回路からの出力と前記第1
模擬回路からの出方との偏差を取り出す加減算器と、該
加減算器出方および前記積分器出方を第1模發回路内の
乗算器に導入する導入回路と、前記加減算器出力をコイ
ル実効電流指令値と乗算しこれをコイル実効電流指令値
に加算して電流指令値を演算する演算回路と、前記磁束
実際哨を検出する着脱可能な磁束検出器と、前記積分器
の出力を保持する保持回路と、を設け、予め磁束検出器
を用いてうず電流時定数相当値を得た後は、これを前記
保持回路にて保持することにょシ磁束検出器の撤去を可
能にする。
a first simulation circuit that simulates the magnetic flux or effective current of the coil, which is made up of a series circuit of a multiplier and an integrator in order to supply a predetermined current to the electromagnetic coil and generate a predetermined magnetic flux;
a multiplier that multiplies the deviation between the simulated magnetic flux value simulated in the first simulation circuit and its actual value by the simulated magnetic flux value; and a multiplier that integrates the output of the multiplier and outputs a value equivalent to an eddy current time constant. an integrator, a second simulation circuit that simulates the actual directivity from the coil current command value, and an output from the second simulation circuit and the first simulation circuit.
an adder/subtracter that extracts the deviation from the output from the simulated circuit; an introduction circuit that introduces the output of the adder/subtractor and the output of the integrator into a multiplier in the first simulation circuit; an arithmetic circuit that calculates a current command value by multiplying it by a current command value and adding it to a coil effective current command value; a removable magnetic flux detector that detects the actual magnetic flux; and an output of the integrator. A holding circuit is provided, and after obtaining a value equivalent to an eddy current time constant using a magnetic flux detector in advance, this is held by the holding circuit, thereby making it possible to remove the magnetic flux detector.

〔作用〕[Effect]

うず電流積のある電磁石コイルの模擬回路を介して得ら
れる磁束模擬値と、磁界中におがれた検出器にて検出さ
れる磁束実際直とを比較して、模擬回路が実際のコイル
と同様な動作をするようなフィードバックループを組み
、そのとき得られるうず電流時定数に関係したコイル実
効電流の微分値を、コイル実効電流指令値に加算してコ
イル電流指令値を得ることにょシ調整作業を不(にし、
高速にうず電流遅れの補償を行なうと〜もに、前記保持
回路にてうず電流時定数相当値を保持することKより、
磁束検出器の撤去を可能にする。
Comparing the simulated magnetic flux value obtained through a simulated circuit of an electromagnetic coil with an eddy current product and the actual magnetic flux detected by a detector placed in a magnetic field, the simulated circuit is compared to the actual coil. Set up a feedback loop that operates in the same way, and add the differential value of the coil effective current related to the eddy current time constant obtained at that time to the coil effective current command value to obtain the coil current command value. Make work unnecessary,
By quickly compensating for the eddy current delay and holding a value equivalent to the eddy current time constant in the holding circuit,
Enables removal of magnetic flux detector.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す構成図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

同図において、1は電流調節器、2はパワーアンブ、3
はうず電流等価回路、4は磁束検出器、5は乗算器51
A、51B、51C,1次遅れ要素52、積分器53A
、53B、加減算器54A。
In the figure, 1 is a current regulator, 2 is a power amplifier, and 3 is a current regulator.
is an eddy current equivalent circuit, 4 is a magnetic flux detector, and 5 is a multiplier 51.
A, 51B, 51C, first-order lag element 52, integrator 53A
, 53B, adder/subtractor 54A.

54B、54C,スイッチ55およびコン7くレータ5
6等よシなる電流指令匝演算回路である。
54B, 54C, switch 55 and converter 5
This is a current command calculation circuit such as No. 6.

磁界中にサーチコイルを配置し、これに誘起する電圧を
積分する磁束検出器4によって磁束φを検出する一方、
乗算器51Bおよび積分器53Aによって上記(1)式
を模擬する模擬回路を形成し、この模擬回路を介して得
られる磁束模擬値φ(「△」印にて模擬値を示す。)と
その実際値φとの偏差eを加減算器54Cを介して取り
出す。この偏差eを乗算器51Cにて磁束模擬値φと乗
算し、積分器53Bにて積分したのち、うず電流に起因
する8れを模擬する模擬回路内の乗算器51Bの1つの
乗算入力として与える。このようにすると、積分器53
Bの出力a(うず電流時定数相当唾)は、 a=1/Tx            ・・・・・・(
6)となることが、公知の適応制御理論によシ導出され
る。そして、模擬回路の入出力の関係に着目すけ、 となシ、これを変形すれば、 となる。このとき、うず電流等価回路6の入出力の関係
からは、 が得られる。同様に加減算器54Bの入出力の関係から
は、 が得られ、乗算器51Cと積分器53Bの入出力の関係
からは I が得られる。したがって、t−+ooではφ=φ、 1
/a=TE となる。すなわち、積分器53Bの出力には、時定数T
I相当の模擬[a (= 1/TE )が得られること
になる。なお、模擬回路の入力となるコイル電流実際値
iFi、調節器1およびパワーアンプ2からなる電流制
御ループを等制約に模擬する1次遅れ要素52の出力よ
り与えるものとする。また、乗算器51Bの入力Xは であるが(Yは乗算器51Bの他の入力で、Y=aであ
る。)、 とみなし得るので、乗算器51Aと加減算器54Aとに
よって 、II4に 1  +5TEl  −i なる演算を行ない、 ム −(1+STl:)ビ 、養 として1 をコイル実効電流指令値とすることにより、
第3図のフィルタ7と等価なものを電流指令値演算回路
5にて得ることができる。
A search coil is placed in the magnetic field, and the magnetic flux φ is detected by a magnetic flux detector 4 that integrates the voltage induced therein.
A simulation circuit that simulates the above equation (1) is formed by the multiplier 51B and the integrator 53A, and the simulated magnetic flux value φ (the simulated value is indicated by a "△" mark) obtained through this simulation circuit and its actual value are The deviation e from the value φ is taken out via the adder/subtractor 54C. This deviation e is multiplied by the magnetic flux simulation value φ in a multiplier 51C, integrated by an integrator 53B, and then given as one multiplication input of a multiplier 51B in a simulation circuit that simulates 8 errors caused by eddy currents. . In this way, the integrator 53
The output a of B (equivalent to the eddy current time constant) is a=1/Tx (
6) can be derived from the known adaptive control theory. Then, if we focus on the relationship between the input and output of the simulated circuit, and transform this, we get . At this time, the following can be obtained from the input/output relationship of the eddy current equivalent circuit 6. Similarly, from the input/output relationship of the adder/subtractor 54B, the following can be obtained, and from the input/output relationship of the multiplier 51C and the integrator 53B, I can be obtained. Therefore, at t−+oo, φ=φ, 1
/a=TE. That is, the output of the integrator 53B has a time constant T
A simulation [a (= 1/TE) equivalent to I will be obtained. It is assumed that the actual coil current value iFi, which is input to the simulation circuit, is given by the output of the first-order lag element 52 that simulates the current control loop consisting of the regulator 1 and the power amplifier 2 with equal constraints. In addition, the input X of the multiplier 51B is (Y is another input of the multiplier 51B, and Y=a), so it can be considered that the multiplier 51A and the adder/subtracter 54A By performing the calculation +5TEl -i and setting 1 as the coil effective current command value,
A filter equivalent to the filter 7 shown in FIG. 3 can be obtained by the current command value calculation circuit 5.

また、積分器53Bの入力をコンパレータ56によシ常
時監視し、これが@0”にiったら積分器53Bの入力
側に設けたスイッチ55を開くことによυ、積分器53
Bの出力をそのときの笹に維持させる。これによシ、積
分器55Bにはうず電流時定数相当flEaが記憶され
るので磁束検出器4は不要とな)、以後の運転では撤去
することが可能となる。このように、磁束検出器4を着
脱可能な如くしておくことによシ、設置スペース上の問
題をなくすと〜もに、構成の簡略化と低コスト化を図る
ことが可能となる。
In addition, the input of the integrator 53B is constantly monitored by the comparator 56, and when the input becomes @0'', the switch 55 provided on the input side of the integrator 53B is opened.
The output of B is maintained at that time. As a result, since the eddy current time constant flEa is stored in the integrator 55B, the magnetic flux detector 4 is not necessary) and can be removed in subsequent operations. By making the magnetic flux detector 4 removable in this manner, problems regarding installation space can be eliminated, and the configuration can be simplified and costs reduced.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、うず電流時定数(相当lりを演算に
よシ求めるようにしたので、測定して調整すると云う作
業をすることなくうず電流による遅れを補償して立上p
、立下りの急峻なパルス磁束を作ることができる。また
、コイル抵抗の温度による変化、または互いに異なる時
定数をもつコイルに対しても、その都度調整する必要が
無くなると云う利点もある。さらに、うず電流時定数の
演算結果を記憶するようにしたので、その後は磁束検出
器を撤去することができ、構成の簡略化とコストダウン
を図ることが可能になる。
According to this invention, since the eddy current time constant (equivalent l) is determined by calculation, the delay due to eddy current is compensated for and the start-up time constant is calculated without having to measure and adjust it.
, it is possible to create a pulsed magnetic flux with a steep fall. There is also the advantage that there is no need to adjust each time the coil resistance changes due to temperature or the coils have different time constants. Furthermore, since the calculation result of the eddy current time constant is stored, the magnetic flux detector can be removed thereafter, making it possible to simplify the configuration and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す構成図、第2図は電磁
石コイルを示す等価回路図、第3図はその制菌回路の従
来例を示す回路図である。 符号説明 1・・・・・・電流調節器、2・・・・・・パワーアン
プ、3・・・・・・うず′tIf、流等価回路、4・・
・・・・磁束検出器、5・・・中を流指令値演算回路、
6・・・・・・itt流検出器、7・・・・・・フィル
タ、51A、51B、5jC・・・・・・乗算器、52
・・・・・・1次遅れ要素、53A、53B・・・・・
・積分器、54A、54B 、54C−回加減算器、5
5・・・・・・スイッチ、56・・・・・・コンパレー
タ。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram showing an electromagnetic coil, and FIG. 3 is a circuit diagram showing a conventional example of the antibacterial circuit. Description of symbols 1...Current regulator, 2...Power amplifier, 3...Twis'tIf, current equivalent circuit, 4...
...magnetic flux detector, 5... flow command value calculation circuit inside,
6...itt flow detector, 7...filter, 51A, 51B, 5jC...multiplier, 52
...First-order delay element, 53A, 53B...
・Integrator, 54A, 54B, 54C-time addition/subtraction unit, 5
5...Switch, 56...Comparator.

Claims (1)

【特許請求の範囲】 電磁石コイルに所定の電流を供給して所定の磁束を発生
させるべく、 乗算器と積分器との直列回路からなりコイルの磁束また
は実効電流を模擬する第1の模擬回路と、該第1模擬回
路にて模擬される磁束模擬値とその実際値との偏差に該
磁束模擬値を掛け合わせる乗算器と、 該乗算器出力を積分してうず電流時定数相当値を出力す
る積分器と、 コイル電流指令値からその実際値を模擬する第2の模擬
回路と、 該第2模擬回路からの出力と前記第1模擬回路からの出
力との偏差を取り出す加減算器と、該加減算器出力およ
び前記積分器出力を第1模擬回路内の乗算器に導入する
導入回路と、 前記加減算器出力をコイル実効電流指令値と乗算しこれ
をコイル実効電流指令値に加算して電流指令値を演算す
る演算回路と、 前記磁束実際値を検出する着脱可能な磁束検出器と、 前記積分器の出力を保持する保持回路と、 を設け、予め磁束検出器を用いてうず電流時定数相当値
を得た後は、これを前記保持回路にて保持することによ
り磁束検出器の撤去を可能にしてなることを特徴とする
磁束制御回路。
[Claims] In order to supply a predetermined current to an electromagnetic coil and generate a predetermined magnetic flux, there is provided a first simulating circuit that includes a series circuit of a multiplier and an integrator and simulates the magnetic flux or effective current of the coil. , a multiplier that multiplies the deviation between the simulated magnetic flux value simulated in the first simulation circuit and its actual value by the simulated magnetic flux value, and integrates the output of the multiplier to output a value equivalent to an eddy current time constant. an integrator; a second simulation circuit that simulates the actual value from the coil current command value; an adder/subtractor that extracts the deviation between the output from the second simulation circuit and the output from the first simulation circuit; an introduction circuit that introduces the adder/subtractor output and the integrator output into a multiplier in a first simulation circuit; and a current command value by multiplying the adder/subtractor output by a coil effective current command value and adding this to the coil effective current command value. an arithmetic circuit that calculates the actual value of the magnetic flux; a removable magnetic flux detector that detects the actual value of the magnetic flux; and a holding circuit that holds the output of the integrator. A magnetic flux control circuit characterized in that, after the magnetic flux detector is obtained, the magnetic flux detector can be removed by holding it in the holding circuit.
JP12391187A 1987-05-22 1987-05-22 Magnetic flux control circuit Pending JPS63289614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12391187A JPS63289614A (en) 1987-05-22 1987-05-22 Magnetic flux control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12391187A JPS63289614A (en) 1987-05-22 1987-05-22 Magnetic flux control circuit

Publications (1)

Publication Number Publication Date
JPS63289614A true JPS63289614A (en) 1988-11-28

Family

ID=14872395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12391187A Pending JPS63289614A (en) 1987-05-22 1987-05-22 Magnetic flux control circuit

Country Status (1)

Country Link
JP (1) JPS63289614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090937A1 (en) * 2009-10-19 2011-04-21 Tsi Technologies Llc Eddy current thermometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090937A1 (en) * 2009-10-19 2011-04-21 Tsi Technologies Llc Eddy current thermometer
US8523429B2 (en) * 2009-10-19 2013-09-03 Tsi Technologies Llc Eddy current thermometer

Similar Documents

Publication Publication Date Title
Chen et al. Applying neural networks to on-line updated PID controllers for nonlinear process control
JP2009245419A (en) System controller and system control method
Karimi et al. Iterative correlation-based controller tuning with application to a magnetic suspension system
US5057993A (en) Method and system for acquiring parameters in process control
Laskawski et al. Sampling rate impact on the tuning of PID controller parameters
Papadopoulos et al. Revisiting the magnitude optimum criterion for robust tuning of PID type-I control loops
JPWO2009110368A1 (en) Feed forward control method for moving body
JPS63289614A (en) Magnetic flux control circuit
JPH0433102A (en) Model prediction controller
Aghaee et al. BLDC motor speed control based on MPC sliding mode multi-loop control strategy–implementation on Matlab and Arduino software
JPH07261805A (en) Automatic adjusting device for proportional plus integral plus derivative control parameter
WO2017085781A1 (en) Temperature control device and temperature control method
Saków Novel robust disturbance observer
KR20060087337A (en) Method for speed control of ac motor using the radial basis function network observer
JPS63289616A (en) Magnetic flux control circuit
JPS63289618A (en) Magnetic flux control circuit
JPS60218105A (en) Control device
JPS63289617A (en) Magnetic flux control circuit
Petrus et al. Solid boundary output feedback control of the stefan problem: The enthalpy approach
JPS63289615A (en) Magnetic flux control circuit
JPS63289611A (en) Magnetic flux control circuit
JP3870767B2 (en) Predictive control method
Moraes Algebraic derivative estimation applied to nonlinear control of magnetic levitation.
Kelly et al. Overcoming encoder quantisation noise in an adaptive position controller
JP3571952B2 (en) 2-DOF control device