JPS63289489A - Self-action type nuclear reactor control rod - Google Patents

Self-action type nuclear reactor control rod

Info

Publication number
JPS63289489A
JPS63289489A JP62123833A JP12383387A JPS63289489A JP S63289489 A JPS63289489 A JP S63289489A JP 62123833 A JP62123833 A JP 62123833A JP 12383387 A JP12383387 A JP 12383387A JP S63289489 A JPS63289489 A JP S63289489A
Authority
JP
Japan
Prior art keywords
coolant
control rod
reactor
flow rate
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62123833A
Other languages
Japanese (ja)
Inventor
Takayoshi Hikichi
引地 貴義
Hideaki Abe
英昭 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62123833A priority Critical patent/JPS63289489A/en
Publication of JPS63289489A publication Critical patent/JPS63289489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable the scramming of a reactor even when the temperature of a coolant rises, in addition to the time when the flow rate thereof lower, by retaining a control rod having a coolant passage cut-off valve allowed to counter the lowering of the flow rate of the coolant by a magnetic force of an electromagnet. CONSTITUTION:When the flow rate of a coolant lower, a neutron absorbing substance 1 in a control rod 2 drops spontaneously therethrough with a decrease in the buoyancy of a pressure fluid and inserted into a core area 13 to scram a reactor. At this point, with the same action, a coolant passage cut-off valve 14 drops to cut off a coolant passage, which increases the dropping effect of the absorbing substance 1. On the other hand, as the temperature of the coolant rises to exceed a Curie point temperature of an electromagnet 11 provided at the lower end of a drive rod 10, the body of the control rod 2 drops toward a core area 13 overcoming the retaining by the magnetic force with a decrease therein. Here, as there is no change in the flow rate of the coolant, the cut-off valve 14 floats up and with the passage opened, the coolant flows to make buoyancy of the pressure fluid action the absorbing substance 1 so that substance 1 is held at an upper part in the control rod 2. Thus, the absorbing substance is located at a position corresponding to the core area 13 thereby enabling the scramming of the reactor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉の制御棒に係り、特に高速増殖炉にお
いて炉の異常発生時に安全、確実に炉を停止させるに好
適な自己作動型原子炉制御棒に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a control rod for a nuclear reactor, and in particular to a control rod of a self-actuating type suitable for safely and reliably shutting down a fast breeder reactor when an abnormality occurs in the reactor. Regarding reactor control rods.

〔従来の技術〕[Conventional technology]

高速炉における後備制御棒は、主制御棒が炉心領域へ挿
入不可能となった時、これに代って炉心領域に挿入し炉
を停止させるものである。一般に、炉の異常事象を検出
器で検知すると、これを電気信号に変えられて制御棒駆
動装置に伝えられ、駆動装置が作動した時点で制御棒を
つかんでいたグ。
Backup control rods in fast reactors are inserted into the reactor core to stop the reactor when the main control rods cannot be inserted into the reactor core. Generally, when a detector detects an abnormal event in a reactor, it is converted into an electrical signal and transmitted to the control rod drive device, and when the drive device is activated, the control rod is gripped.

リッパ−が制御棒を離すことで炉心への挿入が開始する
。また、一般に制御棒は炉心の約10rn上方から操作
する構造である。このことから、特にグリッパ−の動作
を司る機械系設備の故障は炉にとって重大事故を引き起
すため、後備制御棒には炉の異常事象時にこのような機
械系設備故障に左右されずに自発スクラムする自己作動
機能を有することが要求される。
Insertion into the reactor core begins when the ripper releases the control rod. Furthermore, control rods are generally operated from about 10rn above the core. For this reason, failures in mechanical equipment that control gripper operation can cause serious accidents for reactors, so back-up control rods are designed to prevent spontaneous scrams from occurring during abnormal reactor events without being affected by mechanical equipment failures. It is required to have a self-actuating function.

従来、冷却材流量低下事故や反応度挿入事故等の特に重
大事故につながる恐れのある異常事象時に対応するため
に上記要求事項を考慮した後備制御棒の改善案が数多く
提案されている。例えば、冷却材流量低下事故に対して
は冷却材を加圧流体として、この流量変化による圧力変
化を利用して、複数個に分割したほぼ球形の中性子吸収
物質を制御棒案内管内で上下させる流体差圧方式の制御
棒がその一つである。その構造の一例を第5図に示す。
In the past, many proposals have been made to improve backup control rods in consideration of the above requirements in order to respond to abnormal events that may lead to particularly serious accidents, such as coolant flow rate drop accidents and reactivity insertion accidents. For example, in the case of a coolant flow reduction accident, the coolant is used as a pressurized fluid, and the pressure change caused by the change in flow rate is used to move a roughly spherical neutron absorbing material divided into multiple pieces up and down in the control rod guide tube. One example is a differential pressure control rod. An example of its structure is shown in FIG.

第5図において、エントランスノズル4から流入した冷
却材(加圧流体)は制御棒案内管16内を下方から上方
に流れて上部出口6がら流出する。制御棒案内管16内
には上下に有孔の仕切板17.18があり、この間に複
数個のぼぼ球形の中性子吸収物質1が収納されている。
In FIG. 5, the coolant (pressurized fluid) flowing from the entrance nozzle 4 flows from the bottom to the top inside the control rod guide tube 16 and flows out from the upper outlet 6. Inside the control rod guide tube 16, there are upper and lower perforated partition plates 17 and 18, and a plurality of spherical neutron absorbing substances 1 are housed between the partition plates 17 and 18.

中性子吸収物質1は、制御棒案内管16内を流れる冷却
材よりも比重が大きいものが用いられており、原子炉運
転中は下部より流入する冷却材の加圧作用によって中性
子吸収物質1の比重以上に浮力が働くため、第5図(a
)に示すように炉心領域13外上部に浮上する。一方、
異常発生時や原子炉停止時に冷却材が所定流量以下とな
ると浮力が低下し、中性子吸収物質1はその自重によっ
て炉心領域13に自発落下して挿入され、第5図(b)
に示すように堆積する。これによって、炉はスクラムす
る。
The neutron absorbing material 1 used has a specific gravity larger than that of the coolant flowing inside the control rod guide tube 16. During reactor operation, the specific gravity of the neutron absorbing material 1 is reduced by the pressurizing action of the coolant flowing from the bottom. Because the buoyancy force acts more than that, as shown in Figure 5 (a
), it floats above the outside of the core region 13. on the other hand,
When an abnormality occurs or the reactor is shut down, the buoyancy of the coolant drops below a predetermined flow rate, and the neutron absorbing material 1 spontaneously falls into the core region 13 due to its own weight and is inserted, as shown in Figure 5(b).
Deposits as shown in . This causes the furnace to scram.

なお、この種の技術としては、例えば特開昭56−16
2087号が挙げられる。
In addition, as this type of technology, for example, Japanese Patent Application Laid-Open No. 56-16
No. 2087 is mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本来、後備制御棒は機械的設備故障に左右されず、炉の
異常事象、特に冷却材流量低下事故時や反応度挿入事故
等による冷却材温度上昇時に対応して主制御棒に代って
緊急スクラムを行う機能が要求される。しかるに、上記
従来例のような方法では冷却材流量低下事故には対応で
きても、冷却材温度上昇時には炉をスクラムさせる機能
は有していないという問題があった。
Originally, backup control rods are not affected by mechanical equipment failures, and are used in emergency situations in place of main control rods in response to abnormal reactor events, especially when coolant temperature rises due to a drop in coolant flow rate or a reactivity insertion accident. Ability to perform Scrum is required. However, although the method of the above-mentioned conventional example can cope with an accident in which the coolant flow rate decreases, there is a problem in that it does not have a function to scram the furnace when the coolant temperature rises.

本発明の目的は、かかる問題を解決するために、炉の異
常事象として冷却材流量低下時に加え冷却材温度上昇時
にも炉をスクラムさせ得ることを可能とした自己作動型
制御棒を提供することにある。
In order to solve this problem, an object of the present invention is to provide a self-actuating control rod that can scram the reactor not only when the coolant flow rate decreases but also when the coolant temperature rises as an abnormal event in the reactor. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、冷却材流量低下時に対応できる加圧流体に
より浮上する冷却材流路遮断弁を有する流体差圧方式を
用いた制御棒を、制御棒駆動機構より延びた駆動棒の下
端に、ある温度でキュリ一点を有した電磁石を設け、こ
の磁力により上記制御棒を吸引して保持し、吊り下げる
という構成にすることにより冷却材温度上昇時にも対応
でき、目的が達成される。
The above purpose is to install a control rod using a fluid pressure differential system, which has a coolant flow path cutoff valve that floats with pressurized fluid to cope with a decrease in coolant flow rate, at the lower end of the drive rod extending from the control rod drive mechanism. By providing an electromagnet with a single temperature point and using this magnetic force to attract and hold the control rod and suspending it, it is possible to respond even when the coolant temperature rises, and the purpose is achieved.

特に、本発明では冷却材流量低下時には制御棒本体は動
かず、内蔵されている中性子吸収物質のみが制御棒内部
で落下移動し、これが堆積する位置を炉心領域となるよ
うな構造としたものである。
In particular, the present invention has a structure in which the control rod body does not move when the coolant flow rate decreases, and only the built-in neutron absorbing material falls and moves inside the control rod, and the position where this material is deposited becomes the core region. be.

〔作用〕[Effect]

上記本発明の構成によれば、冷却材流量低下時には加圧
流体の浮力減少により制御棒内の中性子吸収物質は加圧
流体の浮力に打ち勝って制御棒内を自発落下して炉心領
域へ挿入され、炉をスクラムさせる。この時、冷却材流
路遮断弁が同じ作用により落下して冷却材流路を遮断す
るため中性子吸収物質の落下効果が増大される。一方、
冷却材温度が上昇して駆動棒下端に設けた電極石のキュ
リ一点温度以−Lとなると、電磁石の磁力が減少するた
め制御棒を吸引保持できなくなり制御棒本体を炉心領域
に向って落下させる。この時、冷却材流量には変化がな
いため冷却材流路遮断弁は浮上して流路が開となってい
るので冷却材が流れ、中性子吸収物質には加圧流体の浮
力が相変わらずに働くことから制御棒内上部に保持され
、この位置が炉心領域に対応する位置にあることから炉
をスクラムさせることができる。
According to the configuration of the present invention, when the coolant flow rate decreases, due to the decrease in the buoyancy of the pressurized fluid, the neutron absorbing substance in the control rod overcomes the buoyancy of the pressurized fluid and spontaneously falls within the control rod and is inserted into the core region. , scram the furnace. At this time, the coolant flow path cutoff valve falls by the same action and blocks the coolant flow path, thereby increasing the effect of the neutron absorbing material falling. on the other hand,
When the coolant temperature rises to below the temperature of the cue of the electrode stone installed at the lower end of the drive rod, the magnetic force of the electromagnet decreases, making it impossible to attract and hold the control rod, causing the control rod body to fall toward the core area. . At this time, since there is no change in the coolant flow rate, the coolant flow cutoff valve floats up and the flow path is open, allowing the coolant to flow, and the buoyancy of the pressurized fluid continues to act on the neutron absorbing material. Therefore, it is held in the upper part of the control rod, and since this position corresponds to the core region, the reactor can be scrammed.

〔実施例〕〔Example〕

次に、本発明にかかる自己作動型原子炉制御棒の実施例
について説明する。
Next, an embodiment of the self-actuating nuclear reactor control rod according to the present invention will be described.

第1図は、その一実施例の構成を示す断面図であり、冷
却材が定格流量で流れている場合を示している。第1図
において、複数個のほぼ球形の中性子吸収物質1は制御
棒2本体内に内蔵されており、通常原子炉の起動時及び
運転中等、冷却材が定格流量で流れている場合は高圧プ
レナム3からエントランスノズル4を通って流入し、下
部案内管5上端の上部出口6より済出する冷却材の浮力
により制御棒2内上部に一塊となって浮上している。な
お、制御棒2内に流出入する冷却材流路の孔径は中性子
吸収物質1の球径よりも小さいことは言うまでもない。
FIG. 1 is a sectional view showing the configuration of one embodiment, and shows a case where the coolant is flowing at the rated flow rate. In Figure 1, a plurality of approximately spherical neutron absorbing materials 1 are built into the main body of the control rod 2, and are normally installed in a high-pressure plenum when coolant is flowing at the rated flow rate during reactor startup and operation. 3 through the entrance nozzle 4 and exits from the upper outlet 6 at the upper end of the lower guide tube 5. Due to the buoyancy of the coolant, the coolant floats in the upper part of the control rod 2 as a block. It goes without saying that the hole diameter of the coolant flow path flowing in and out of the control rod 2 is smaller than the spherical diameter of the neutron absorbing material 1.

制御棒2は内部を貫通して上方へ延びる接続棒7が設け
られている。この上端に設けられた接続部材8は図示し
ない制御棒駆動装置等から延びる上部案内管9内の駆動
軸10下端に設けられた、ある任意の温度でキュリ一点
を有する電磁石11の磁力(吸引力)により吸引されて
電磁石11と接合しており、これにより制御棒2本体は
下部案内管5内で持ち上げられて保持されてい、る。こ
の時の制御棒2の位置は、第1図に示すよう制御棒2の
上面が下部案内管5内上方に設けたストッパー12の下
面に接する位置にあり、これによって制御棒2内で浮上
している中性子吸収物質1の塊りの位置は炉心領域13
より上方となっている。また、接続棒7にはこれを中心
軸としてやはり、冷却材の浮力により浮上する冷却材流
路遮断弁14がストッパー12上方に第1図に示すよう
に設けてあり、冷却材が定格流量で流れている場合には
ストッパー12より上方に浮上している。なお、中性子
吸収物質1の材質としては中性子吸収断面積が大きく冷
却材より比重の大きな物質、例えばB2O(ボロンカー
バイド)等が推奨される。また、制御棒2及び冷却材流
路遮蔽弁14も冷却材より比重が大きく冷却材に対し耐
食性のある物質、例えばステンレス鋼やニラケル系金属
等を用いるものである。電磁石11の励磁は、図示しな
いが上部案内管9上方に設けられた制御棒駆動装置等の
電源部よりワイヤー15を通じて電流を流し、行うもの
である。その磁力(保持力)は、冷却材の流れが低下、
あるいは停止しても中性子吸収物質1を内蔵し、接続棒
7及び冷却材流路遮断弁14等を付設した制御棒2の全
重量を保持するよう調整する。また、接続棒7上端の接
続部材8には磁石に吸着されやすい物質、例えばニッケ
ル系金属を用い、電磁石11には鉄−ニッケル系合金を
用いて製作されるものである。
The control rod 2 is provided with a connecting rod 7 that passes through the inside and extends upward. The connecting member 8 provided at the upper end is connected to the magnetic force (attractive force) of an electromagnet 11, which is provided at the lower end of a drive shaft 10 in an upper guide tube 9 extending from a control rod drive device (not shown) or the like, and has a single point at a certain arbitrary temperature. ) and is connected to the electromagnet 11, whereby the main body of the control rod 2 is lifted and held within the lower guide tube 5. At this time, the control rod 2 is in a position where the upper surface of the control rod 2 is in contact with the lower surface of the stopper 12 provided above inside the lower guide tube 5, as shown in FIG. The location of the mass of neutron absorbing material 1 is in the core region 13.
It is higher up. In addition, the connecting rod 7 is provided with a coolant flow path cutoff valve 14, which floats up due to the buoyancy of the coolant, as shown in FIG. If it is flowing, it floats above the stopper 12. As the material for the neutron absorbing substance 1, a substance having a large neutron absorption cross section and a specific gravity greater than that of the coolant, such as B2O (boron carbide), is recommended. Further, the control rod 2 and the coolant flow path shielding valve 14 are also made of a material that has a higher specific gravity than the coolant and is corrosion resistant to the coolant, such as stainless steel or Nilacel metal. Although not shown, the electromagnet 11 is excited by passing a current through a wire 15 from a power source such as a control rod drive device provided above the upper guide tube 9. The magnetic force (holding force) decreases when the flow of coolant decreases.
Alternatively, even if the control rod is stopped, the control rod 2 is adjusted so as to maintain the total weight of the control rod 2 which contains the neutron absorbing material 1 and is equipped with the connecting rod 7, the coolant flow cutoff valve 14, and the like. The connecting member 8 at the upper end of the connecting rod 7 is made of a material that is easily attracted to a magnet, such as a nickel metal, and the electromagnet 11 is made of an iron-nickel alloy.

即ち、本発明になる制御棒2は電磁石11により保持さ
れていない場合は、冷却材が定格流量で流れている場合
でもその浮力に打ち勝って落下するように、その全重量
は調整されている。
That is, when the control rod 2 according to the present invention is not held by the electromagnet 11, its total weight is adjusted so that it overcomes the buoyancy and falls even when the coolant is flowing at the rated flow rate.

以上の本発明になる構成においては、冷却材が定格流量
で流れている場合は炉心領域13で発生した熱の除去は
冷却材によって問題なくなされる。
In the above configuration of the present invention, when the coolant is flowing at the rated flow rate, the heat generated in the core region 13 can be removed by the coolant without any problem.

しかるに、冷却材流量が低下した場合の本発明になる対
応は以下の通り行われる。即ち、上記した第1図におい
て冷却材流量が低下すると冷却材の浮力が低下し、これ
に伴ない中性子吸収物質1及び冷却材流路遮断弁14は
冷却材の浮力に打ち勝って自発落下する。一方、制御棒
2本体そのものは電磁石11の磁力に変化がないため接
続部材8を介して電磁石11に接合して保持されており
、なんら動くものではない。このため、中性子吸収物質
1が落下して堆積する位置は第2図に示すように炉心領
域13となり、これによって炉をスクラムさせることが
できる。また、冷却材流路遮断弁14はストッパー12
に挿入されるように落下し、冷却材の流れを遮断するた
め中性子吸収物質1の落下を促進し、しいては炉のスク
ラム時間を短かくする効果をはたすものである。
However, when the coolant flow rate decreases, the present invention takes action as follows. That is, in FIG. 1 described above, when the coolant flow rate decreases, the buoyancy of the coolant decreases, and as a result, the neutron absorbing material 1 and the coolant flow path cutoff valve 14 overcome the buoyancy of the coolant and fall of their own accord. On the other hand, since the control rod 2 itself does not change the magnetic force of the electromagnet 11, it is held connected to the electromagnet 11 via the connecting member 8, and does not move at all. Therefore, the position where the neutron absorbing material 1 falls and accumulates is in the core region 13 as shown in FIG. 2, thereby making it possible to scram the reactor. In addition, the coolant flow cutoff valve 14 is connected to the stopper 12.
The neutron absorbing material 1 falls as if inserted into the reactor and blocks the flow of the coolant, thereby promoting the fall of the neutron absorbing material 1 and shortening the scram time of the reactor.

一方、炉の異常発熱等により冷却材温度が上昇した場合
の対応は以下の通りである。上記した第1図において、
冷却材温度が上昇すると下部案内管5の上部出口6にお
ける冷却材の温度が上昇し、この温度が電磁石11の設
定されたキュリ一点温度以上(一般には600℃前後)
となる電磁石11の磁力が急激に低下する。このため、
電磁石11は接続部材8以下につながる制御棒2全体を
吸引保持できなくなり、自発的にこれを切り離し、落下
させる。落下後の状態を示したものが第3図であり、制
御棒2は下部案内管5内の下端まで落下した状態である
。この場合、第3図に示すように接続部材8は冷却材流
路遮断弁14をストッパー12内に押し込み、挿入させ
ることがない位置で停止するよう調整されている。この
ため、冷却材流路遮断弁14は冷却材の浮力により浮上
し、冷却材の流路を確保した位置にあることから冷却材
の流れを全く変えるこはない。即ち、中性子吸収物質1
には冷極材の浮力は第1図に示した状態と同様変化なく
加わっており、浮上して制御棒2内上部に一塊まりとな
っている。この位置は、第3図に示すように炉心領域1
3に当り、これによって炉をスクラムさせることができ
る。さらに加えて、冷却材の流れが確保されていること
から冷却材による炉の冷却効果は依持され、異常高温部
の冷却を促進することができる。なお、下部案内管5内
の下端に落下した制御棒2は駆動棒10を下部に押し出
し、電磁石11の下面が接続部材8の上面に接した時点
で、電磁石11を励磁することにより接続部材8を吸引
し、その状態で上部へ引き出して、第1図に示した位置
へもどすものである。
On the other hand, if the coolant temperature rises due to abnormal heat generation in the furnace, etc., the measures to be taken are as follows. In Figure 1 above,
When the coolant temperature rises, the temperature of the coolant at the upper outlet 6 of the lower guide pipe 5 rises, and this temperature exceeds the set Curie point temperature of the electromagnet 11 (generally around 600°C).
The magnetic force of the electromagnet 11 decreases rapidly. For this reason,
The electromagnet 11 is no longer able to attract and hold the entire control rod 2 connected to the connecting member 8 and below, and spontaneously separates it and causes it to fall. FIG. 3 shows the state after the fall, in which the control rod 2 has fallen to the lower end within the lower guide tube 5. In this case, as shown in FIG. 3, the connecting member 8 is adjusted so that the coolant flow cutoff valve 14 is pushed into the stopper 12 and stopped at a position where it is not inserted. For this reason, the coolant flow cutoff valve 14 floats due to the buoyancy of the coolant and is in a position where the coolant flow path is secured, so that the flow of the coolant is not changed at all. That is, neutron absorbing substance 1
The buoyant force of the cold electrode material remains unchanged as in the state shown in FIG. This position is located in the core area 1 as shown in Figure 3.
3, which allows the furnace to scram. In addition, since the flow of the coolant is ensured, the effect of cooling the furnace by the coolant is maintained, and cooling of the abnormally high temperature section can be promoted. The control rod 2 that has fallen to the lower end of the lower guide tube 5 pushes the drive rod 10 downward, and when the lower surface of the electromagnet 11 comes into contact with the upper surface of the connecting member 8, the electromagnet 11 is energized and the connecting member 8 , and then pull it out to the top and return it to the position shown in Figure 1.

上記実施例では、接続棒7を制御棒2下端まで貫通させ
たものを示した。これは、制御棒2全体の機械的強度を
高め、制御棒2の軸上の偏心を軽減することをねらった
ものであるが、本発明の他の実施例としては、第4図に
示すように接続棒7を制御棒2の上端で接合し、内部に
貫通させない方法も採れる。これによって、制御棒2内
に内蔵する中性子吸収物質1の充填量を増大でき、この
効果として上記実施例に比べ同重量の中性子吸収物質1
を使用した場合、制御棒2本体の寸法をよりコンパクト
にできるものである。また、1本の制御棒によるスクラ
ム能力を上昇し得ることができる。
In the above embodiment, the connecting rod 7 is inserted through the control rod 2 to the lower end thereof. This is aimed at increasing the mechanical strength of the control rod 2 as a whole and reducing the eccentricity of the control rod 2 on its axis. Alternatively, the connecting rod 7 may be joined at the upper end of the control rod 2 without penetrating the inside thereof. As a result, the amount of neutron absorbing material 1 contained in the control rod 2 can be increased.
When using this, the size of the control rod 2 body can be made more compact. Furthermore, the scram capability with one control rod can be increased.

以上は、本発明をナトリウムを冷却材とする高速炉に適
用した場合について説明したが、水やガスを冷却材とす
る原子炉への適用はもちろんのことであり、また本発明
を上記に示したような実施例について説明したが、本発
明の範囲内において数多くの修正や変更がなされ得るこ
とは明らかである。
The above description describes the case where the present invention is applied to a fast reactor that uses sodium as a coolant, but it goes without saying that the present invention can also be applied to a nuclear reactor that uses water or gas as a coolant. Although such embodiments have been described, it will be obvious that many modifications and changes may be made within the scope of the invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば流体差圧方式を用
いる制御棒をある温度でキュリ一点を持つ電磁石を利用
して吸引保持し、冷却材流量低下時には制御棒内の複数
個のほぼ球形の中性子吸収物質を冷却材の浮力減少作用
により自発落下させてこれを炉心領域に移動し、炉をス
クラムし、冷却材温度上昇時には電磁石の磁力の自発減
少を利用して制御棒を保持力減少作用によりこれを自発
落下させ炉をスクラムするものであり、従来流体差圧方
式制御棒に欠けていた炉の上記2異常事象に対応できる
効果がある。
As explained above, according to the present invention, a control rod using a fluid pressure differential method is suctioned and held using an electromagnet having a single point at a certain temperature, and when the coolant flow rate decreases, a plurality of approximately spherical shapes in the control rod The neutron-absorbing material is caused to fall spontaneously by the buoyancy reduction effect of the coolant and is moved to the reactor core area, the reactor is scrammed, and when the coolant temperature rises, the holding force of the control rods is reduced using the spontaneous reduction of the magnetic force of the electromagnets. The action causes the rod to fall spontaneously and scram the reactor, and has the effect of being able to cope with the above-mentioned two abnormal events in the reactor, which were lacking in conventional fluid differential pressure control rods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる自己作動型原子炉制御棒の一実
施断面構成図、第2図は第1図で示された実施例におい
て冷却材流量が低下した時の状態を示す説明図、第3図
は同じく冷却材温度が上昇した時の状態を示す説明図、
第4図は他の実施例の断面構成図、第5図は従来の流体
差圧方式自己作動型原子炉停止棒の断面構成図である。 1・・・中性子吸収物質、2・・・制御棒、5・・・下
部案内管、7・・・接続棒、8・・・接続部材、9・・
・上部案内管、第1図 $Z図 第3面 第41 第sEjJ
FIG. 1 is a cross-sectional configuration diagram of one implementation of a self-actuating nuclear reactor control rod according to the present invention, FIG. 2 is an explanatory diagram showing a state when the coolant flow rate decreases in the embodiment shown in FIG. 1, Figure 3 is an explanatory diagram showing the state when the coolant temperature rises,
FIG. 4 is a cross-sectional configuration diagram of another embodiment, and FIG. 5 is a cross-sectional configuration diagram of a conventional fluid differential pressure type self-actuating nuclear reactor shutdown rod. DESCRIPTION OF SYMBOLS 1... Neutron absorption material, 2... Control rod, 5... Lower guide tube, 7... Connection rod, 8... Connection member, 9...
・Upper guide tube, Figure 1, Figure 1, page 3, page 41, sEjJ

Claims (1)

【特許請求の範囲】[Claims] 1、下部より流入する加圧流体の作用により炉心外上部
に堆積した複数個のほぼ球形の中性子吸収物質を浮上さ
せる流体差圧方式も自己作動型原子炉制御棒において、
当核制御棒を磁性体の磁力による保持されることを特徴
とする自己作動型原子炉制御棒。
1. In self-actuating reactor control rods, a fluid pressure differential method that levitates multiple approximately spherical neutron-absorbing materials deposited on the outer upper part of the core by the action of pressurized fluid flowing in from the bottom is also used.
A self-actuating nuclear reactor control rod characterized in that the nuclear control rod is held by the magnetic force of a magnetic material.
JP62123833A 1987-05-22 1987-05-22 Self-action type nuclear reactor control rod Pending JPS63289489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123833A JPS63289489A (en) 1987-05-22 1987-05-22 Self-action type nuclear reactor control rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123833A JPS63289489A (en) 1987-05-22 1987-05-22 Self-action type nuclear reactor control rod

Publications (1)

Publication Number Publication Date
JPS63289489A true JPS63289489A (en) 1988-11-25

Family

ID=14870502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123833A Pending JPS63289489A (en) 1987-05-22 1987-05-22 Self-action type nuclear reactor control rod

Country Status (1)

Country Link
JP (1) JPS63289489A (en)

Similar Documents

Publication Publication Date Title
US4076584A (en) Rodded shutdown system for a nuclear reactor
JPH0122915B2 (en)
JPS63289489A (en) Self-action type nuclear reactor control rod
CN107068213B (en) Passive triggering safety device for nuclear reactors during abnormal coolant reduction
US4582675A (en) Magnetic switch for reactor control rod
JP2839222B2 (en) Self-actuated furnace shutdown device for fast reactors
JPS6055290A (en) Neutron absorber element for nuclear reactor stop device
JP2728711B2 (en) Control element drive
JPS63290991A (en) Shutdown device for nuclear reactor
JP2501338B2 (en) Reactor shutdown device
JP2509620B2 (en) Reactor shutdown device
JP2510228B2 (en) Self-acting reactor shutdown mechanism
JPH02243995A (en) Self-operation type reactor shut-down mechanism
JPS62169080A (en) Stop device for nuclear reactor
JPS5927290A (en) Reactor shutdown device
JPS62223696A (en) Controller for nuclear reactor
JPS6212893A (en) Controller for nuclear reactor
JPS5981591A (en) Reactor shutdown device
JP2845927B2 (en) Reactor control rod support device
CHETAL et al. DESIGN PHILOSOPHY OF PFBR SHUTDOWN SYSTEMS
JPH0352596B2 (en)
JPS63259495A (en) Advanced reactor stop mechanism
JPH02271296A (en) Shutdown device for nuclear reactor
JPH02268291A (en) Shut-down device of nuclear reactor
Barrus et al. Self-actuating reactor-shutdown system.[LMFBR]