JPS6212893A - Controller for nuclear reactor - Google Patents

Controller for nuclear reactor

Info

Publication number
JPS6212893A
JPS6212893A JP60150257A JP15025785A JPS6212893A JP S6212893 A JPS6212893 A JP S6212893A JP 60150257 A JP60150257 A JP 60150257A JP 15025785 A JP15025785 A JP 15025785A JP S6212893 A JPS6212893 A JP S6212893A
Authority
JP
Japan
Prior art keywords
reactor
weight
absorber
rod
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60150257A
Other languages
Japanese (ja)
Inventor
三田 敏男
逢澤 弘子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60150257A priority Critical patent/JPS6212893A/en
Publication of JPS6212893A publication Critical patent/JPS6212893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Linear Motors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の制御装置に係り、特に高速増殖炉の
事故時や炉心変形時に炉を安全に停止させるのに好適な
原子炉制御装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a nuclear reactor control device, and in particular, a nuclear reactor control device suitable for safely shutting down a fast breeder reactor in the event of an accident or core deformation. It is related to.

〔発明の背景〕[Background of the invention]

一般に原子炉には、炉を安全に運転し、停止できるよう
に中性子をよく吸収する物質を含んだ制御棒を備えてい
る。この制御棒は大きく分ると、調整捧と安全棒に分類
できる。原子炉を起動するには、まず安全棒を炉心領域
から完全に引き抜き、次に調整捧を徐々に引き抜いて、
所定の原子炉出力において原子炉がちょうど臨界となる
ようにしている。原子炉運転中には、調整捧は燃料消費
に伴う原子炉出力低下の補償のため運転が経過する□ 
につれて除々に引き抜かれる。原子炉を停止する場合に
は、調整棒と安全棒を共に炉心内に挿入することにより
、大きな負の反応度を炉心内に与え高速増殖炉の場合に
は、制御棒として調整棒と安全棒の他に後備安全棒を備
えている。後備安全棒は機能的には安全棒と同じである
が安全棒の駆動機構と異なった駆動機構を有し安全棒を
バックアップする。すななわち、後備安全棒は安全棒の
炉心領域への挿入が不可能になった特、安全棒に代って
炉心領域内に挿入して炉を停止させる。
Nuclear reactors are generally equipped with control rods that contain materials that absorb neutrons to allow the reactor to operate and shut down safely. These control rods can be broadly classified into adjustment rods and safety rods. To start the reactor, first withdraw the safety rod completely from the core area, then gradually withdraw the adjustment rod,
The reactor is made to be just critical at a given reactor power. During reactor operation, adjustment is performed as the operation progresses to compensate for the decrease in reactor output due to fuel consumption.
It is gradually pulled out. When shutting down a nuclear reactor, both adjustment rods and safety rods are inserted into the reactor core to create a large negative reactivity within the reactor core.In the case of a fast breeder reactor, adjustment rods and safety rods are used as control rods. In addition, it is equipped with a backup safety bar. The backup safety rod is functionally the same as the safety rod, but has a drive mechanism different from that of the safety rod and backs up the safety rod. That is, when it becomes impossible to insert the safety rod into the reactor core region, the backup safety rod is inserted into the reactor core region instead of the safety rod to stop the reactor.

高速増殖炉の場合、制御棒を約10m上方から操作する
ため、原子炉運転中の炉心変形や地震時      □
の変形時に対しても挿入性を高めることは制御棒設計に
おける重大な課題の一つである。また、後備安全棒とし
て事故発生時に自動的にスクラムする機能が要求されて
いる。
In the case of a fast breeder reactor, the control rods are operated from about 10 meters above, so there is a risk of core deformation during reactor operation or during an earthquake.
Improving insertability even when the rod is deformed is one of the important issues in control rod design. Additionally, a function is required to automatically scram in the event of an accident as a back-up safety bar.

従来、前者の課題に対する対策として、特開昭57−1
36188号公報や特開昭51−51697号公報に記
載のように、制御棒を複数個の要素に分け、自在継手や
弾性部材等で結合して、各要素間で屈曲可−1す、各制
御棒要素1a”cを弾性体の連結棒5で結合している。
Conventionally, as a countermeasure to the former problem, Japanese Patent Laid-Open No. 57-1
As described in Japanese Patent Application Laid-open No. 36188 and Japanese Patent Application Laid-open No. 51-51697, a control rod is divided into a plurality of elements and connected with universal joints, elastic members, etc., so that each element can be bent. The control rod elements 1a''c are connected by a connecting rod 5 made of an elastic body.

案内管2に曲げが生じている場合でも延長管3を炉上部
の駆動機構で上下駆動することにより制御棒1を上下操
作することができる。
Even when the guide tube 2 is bent, the control rod 1 can be moved up and down by driving the extension tube 3 up and down with a drive mechanism in the upper part of the furnace.

しかし、制御棒要素1a=cの結合部の信頼性に問題が
あると共に、結合部を設けるため中性子吸収物質の量が
減るという欠点がある。
However, there is a problem in the reliability of the joint between the control rod elements 1a=c, and the provision of the joint reduces the amount of neutron absorbing material.

一方、後者の事故時の自動スクラム機能に関しては、冷
却材流量低下事故や反応度挿入事故について有効な装置
が多数検討されている。冷却材流量低下事故に対して有
効な装置として第3図にその概略図を示す。本装置では
、エントランスノズル8から流入した冷却材は案内管2
内を下方から上方に流れて上部出口9から流出するよう
になっている。案内管2内には有孔仕切板10.11間
に粒状の中性子吸収体6が収容されている。吸収体6は
案内管2内を流れる冷却材より比重が大きく、冷却材が
所定の流量以下のときはその自重によって下側の有効仕
切板1o上に沈積する。また有孔仕切板11の上方には
電磁流量調整弁7がnけられ、原子炉停止時には流量調
整弁7により流量を絞ることにより吸収体6を沈積させ
る。冷却材流量低下事故時には吸収体6が沈積し、炉が
自動的に停止する。この装置では粒状の中性子吸収体6
を使用しているため路心変形時の作動性に関しても信頼
性が高く、高速増殖炉の後備安全棒としてすぐれたもの
の一つである。しかし、電磁流量調整弁7が破損した場
合には、吸収体6が浮上したままとなり、原子炉に大き
な正の反応度を与える可能性がある。さらに、反応度挿
入事故時に対する自動スクラムについては配慮されてい
ない。
On the other hand, regarding the latter type of automatic scram function in the event of an accident, a number of effective devices are being studied to prevent coolant flow rate drop accidents and reactivity insertion accidents. Figure 3 shows a schematic diagram of a device that is effective against coolant flow rate drop accidents. In this device, the coolant flowing from the entrance nozzle 8 is transferred to the guide pipe 2.
It flows inside from the bottom to the top and flows out from the upper outlet 9. A granular neutron absorber 6 is accommodated in the guide tube 2 between perforated partition plates 10,11. The absorber 6 has a higher specific gravity than the coolant flowing in the guide tube 2, and when the flow rate of the coolant is less than a predetermined flow rate, it is deposited on the lower effective partition plate 1o due to its own weight. Further, an electromagnetic flow rate adjustment valve 7 is provided above the perforated partition plate 11, and when the nuclear reactor is shut down, the absorber 6 is deposited by restricting the flow rate with the flow rate adjustment valve 7. In the event of a coolant flow rate reduction accident, the absorber 6 is deposited and the furnace automatically shuts down. In this device, granular neutron absorber 6
Because of the use of this rod, it is highly reliable in terms of operability when the center of the road deforms, and is one of the best back-up safety rods for fast breeder reactors. However, if the electromagnetic flow control valve 7 is damaged, the absorber 6 will remain floating, potentially giving a large positive reactivity to the reactor. Furthermore, no consideration is given to automatic scrams in the event of a reactivity insertion accident.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷却材流量低下事故および反応度挿入
事故に対して自動スクラムにより原子炉を確実に停止し
、かつ炉心変形時の操作性を向上した原子炉制御装を提
供することにある。   ゛〔発明の概要〕 本発明の特徴は、下部から流入する冷却材の流動圧によ
り通常運転時には中性子吸収体を浮上させ、冷却材流量
低下事故時にはその流動圧の低下により吸収体が沈下し
て自動スクラムすることと。
An object of the present invention is to provide a nuclear reactor control system that can reliably shut down a nuclear reactor by automatic scram in response to a coolant flow rate drop accident or a reactivity insertion accident, and that improves operability during core deformation. . [Summary of the Invention] The feature of the present invention is that during normal operation, the neutron absorber is floated by the fluid pressure of the coolant flowing in from the bottom, and in the event of a coolant flow rate drop accident, the absorber sinks due to the drop in fluid pressure. Automatic scrum and.

吸収体の上部に重りを設置することにより反応度挿入事
故時にはその異常温度上昇を検知してその重りの自重で
確実に自動スクラムすることである。
By installing a weight on the top of the absorber, in the event of a reactivity insertion accident, the abnormal temperature rise is detected and the weight's own weight automatically scrams.

また、中性子吸収体を粒状の吸収体又は、複数本の制御
棒要素で構成することにより炉心変形時の挿入性を向上
したことも特徴とする。
Another feature is that insertability during core deformation is improved by configuring the neutron absorber with a granular absorber or a plurality of control rod elements.

本発明の制御棒操作は、従来の制御棒と同様に炉上部の
駆動機構により延長管を介して重りを操作することによ
って行う。吸収体は相互に機械的に結合していないが、
冷却材の流動圧により一体として重りの上下動に追随す
る。
The control rod of the present invention is operated by operating a weight via an extension tube using a drive mechanism in the upper part of the reactor, similar to conventional control rods. Although the absorbers are not mechanically connected to each other,
It follows the vertical movement of the weight as a unit due to the fluid pressure of the coolant.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

本発明を電気出力100100Oクラスの大型炉の原子
炉制御装置に適用した実施例を第1図に示す。本装置は
、炉心を構成する燃料集合体と同様に炉容器下部の高圧
プレナム部からエントランスノズル8を介して冷却材(
液体ナトリウム)が流入する。
FIG. 1 shows an embodiment in which the present invention is applied to a reactor control system for a large reactor with an electrical output of 100,100 O class. This device supplies coolant (
liquid sodium) flows in.

冷却材は案内管2内を下方から上方に流れて上部出口9
から流出する。案内管2の下部には、スクラム時の衝撃
を緩和するためダッシュポット14が備えられている。
The coolant flows from the bottom to the top in the guide tube 2 and reaches the upper outlet 9.
flows out from. A dashpot 14 is provided at the lower part of the guide tube 2 to reduce the impact during scram.

案内管2の内部には、上部に重り12、中間部に多数の
粒状の中性子吸収体6゜下部にガイド用ノズル13が収
納されている。上記の収納物12,6.13はいずれも
冷却材より比重が大きく、冷却材が所定の流量以下のと
きはその自重によって下部のダッシュボット14まで沈
下する。
Inside the guide tube 2, a weight 12 is housed in the upper part, a large number of granular neutron absorbers 6° are housed in the middle part, and a guide nozzle 13 is housed in the lower part. Each of the stored items 12, 6.13 has a higher specific gravity than the coolant, and when the coolant has a predetermined flow rate or less, it sinks to the lower dashbot 14 due to its own weight.

重り12は、比重の大きい物質で構成され、原子炉運転
中の定格流量ではその流動圧により中性子吸収体6とガ
イド用ノズル13だけでは浮き上り、重り12の重量を
加えると沈下するようにエンランスノズル内のオリフィ
スの形状等を設計している。ガイド用ノズル13は、吸
収体6の浮上及び沈下時にそのガイドをすると共に、沈
下してダッシュボット14に挿入された時には冷却材入
口に流路が縮小され、そこでの圧損が増すため冷却材流
量を低下させる。このため、炉停止時の吸収物質6の浮
上り防止の効果がある。
The weight 12 is made of a material with a high specific gravity, and is designed so that the neutron absorber 6 and the guide nozzle 13 alone will float due to the fluid pressure at the rated flow rate during reactor operation, but when the weight of the weight 12 is added, the engine will sink. The shape of the orifice inside the lance nozzle is designed. The guide nozzle 13 guides the absorber 6 when it floats and sinks, and when the absorber 6 sinks and is inserted into the dashbot 14, the flow path is reduced to the coolant inlet and the pressure drop there increases, so the flow rate of the coolant is reduced. decrease. Therefore, there is an effect of preventing the absorption material 6 from floating when the furnace is shut down.

吸収体6の構成物質は、炭化ホウ素、タンタル又はステ
ンレス・スチール(以下SUSと略記)で、重り12は
、劣化ウラン(比重18.9.融点1130℃)、オス
ミウム(比重22.5.融点2700℃)又はレニウム
(比重21.3、融点3180℃)で、ガイド用ノズル
13はSUSである。
The absorber 6 is made of boron carbide, tantalum, or stainless steel (hereinafter abbreviated as SUS), and the weight 12 is made of depleted uranium (specific gravity 18.9, melting point 1130°C), osmium (specific gravity 22.5, melting point 2700°C). The guide nozzle 13 is made of SUS.

以下に、本装置の特性について数値例で示す。The characteristics of this device are shown below using numerical examples.

案内管2の内径D□は132mm、吸収体6の有効高さ
h工は炉心領域Aと同じ1000+n+++である。吸
収体として、直径18mmの炭化ホウ素(SUS被覆:
被覆管肉厚0.8mm)のボールを用いると、約200
0個必要となり、その重量は約25kgである。ガイド
ノズル13の重量と合せても30kg以下である。一方
、重り12として劣化ウランを用い、その寸法を直径1
00 m m、高さ500mmとすると、その重量は約
75kgである。そこで、吸収体6とガイド用ノズル1
3(重量和30−以下)に対する最小浮上刃の2程度の
流量を流しても、重りと一体とすると3.5倍以上の重
量となるので確実に沈下する。また、吸収体6とガイド
用ノズル13の重量和(30kg)をガイド用ノズル1
3の断面積合体の圧損は約5 kg/dであるので、本
装置のエントランスノズル8のオリフィスの調整により
十分浮上させることが可能である。本実施例の炭化ホウ
素の重量は、約12kgであり、従来使用されているピ
ン状の炭化ホウ素を用いた後備安全棒での炭化ホウ素の
重量約13kgと同程度であり、安全棒としての炉停止
機能(負の反応度効果)は同等である。
The inner diameter D□ of the guide tube 2 is 132 mm, and the effective height h of the absorber 6 is 1000+n+++, which is the same as the core area A. As an absorber, boron carbide (SUS coating:
When using a ball with a cladding tube wall thickness of 0.8 mm, approximately 200
0 pieces are required, and their weight is approximately 25 kg. The total weight including the guide nozzle 13 is 30 kg or less. On the other hand, depleted uranium is used as the weight 12, and its dimensions are set to 1 in diameter.
00 mm and height 500 mm, its weight is approximately 75 kg. Therefore, the absorber 6 and the guide nozzle 1
Even if the flow rate is about 2 of the minimum floating blade for 3 (total weight 30- or less), the weight will be 3.5 times or more when combined with the weight, so it will surely sink. In addition, the sum of the weights (30 kg) of the absorber 6 and the guide nozzle 13 is calculated as the guide nozzle 1
Since the pressure loss of the combined cross-sectional area of No. 3 is approximately 5 kg/d, sufficient levitation is possible by adjusting the orifice of the entrance nozzle 8 of this device. The weight of the boron carbide in this example is approximately 12 kg, which is comparable to the approximately 13 kg weight of the boron carbide in the conventionally used back-up safety rod using pin-shaped boron carbide. The stopping function (negative reactivity effect) is equivalent.

一方、重り12は、延長管3と電磁石15、脱着部16
.キュリ一点を有する磁性体17で結合されている。通
常の炉停止時には、電磁石15の電源を切ることにより
電磁石15と脱着部16を切り離す。事故時に異常に温
度が上昇し、磁性体17のキュリ一点を越えると急速に
磁気力が低下し、磁性体17と脱着部16が切り離され
て自動スクラムとなる。キュリ一点を有する材料として
は、Fe(キュリ一点1043°K) 、G o (1
400°K)。
On the other hand, the weight 12 includes the extension tube 3, the electromagnet 15, and the detachable part 16.
.. They are connected by a magnetic material 17 having a single Curie point. When the furnace is normally stopped, the electromagnet 15 and the detachable part 16 are separated by turning off the power to the electromagnet 15. When the temperature rises abnormally at the time of an accident and exceeds the single point of the magnetic body 17, the magnetic force rapidly decreases, and the magnetic body 17 and the detachable portion 16 are separated, resulting in an automatic scram. Materials with one Curie point include Fe (one Curie point 1043°K), G o (1
400°K).

N1(631°K)などがあり、炉設計温度に応じてこ
れらの材料や合金を用いることにより確実な原子炉停止
が可能となる。
N1 (631°K), etc., and by using these materials and alloys depending on the reactor design temperature, reliable reactor shutdown becomes possible.

次に、本実施例による原子炉制御装置の操作方法とその
動作を第4図に基づいて説明する。
Next, the operating method and operation of the reactor control device according to this embodiment will be explained based on FIG. 4.

炉停止時(4−a図)には、重り12、吸収体6とガイ
ド用ノズル13がその自重で沈下している。このとき、
ガイド用ノズル13はダッシュボット14に挿入されて
いる。原子炉起動のために制御棒操作時(4−b図)に
は、延長管3と重り12を結合し、延長管3により重り
12を上昇してゆくと、冷却材の流動圧により吸収体6
とガイド用ノズル13が一体となり浮上していく。ガイ
ド用ノズル13がダッシュボット14から抜けると、冷
却材入口流路が広がり、さらに流動圧が増す。吸収体6
が、炉心領域Aから完全に引抜かれた状態が炉運転状態
(4−0図)となる。冷却材流量低下事故時(4−d図
)には、流動圧の低下により吸収体6とガイド用ノズル
13のみが沈下して、自動スクラムにより原子炉を停止
する。スクラム信号又は反応度挿入事故による隣接燃料
集合体の出口温度の異常上昇により延長管3と重り12
が切り離されたときには、重り12.吸収体6とガイド
用ノズル13が一体となり沈下して原子炉を停止する。
When the furnace is stopped (Fig. 4-a), the weight 12, the absorber 6, and the guide nozzle 13 are sinking under their own weight. At this time,
The guide nozzle 13 is inserted into the dashbot 14. When operating the control rods for reactor startup (Figure 4-b), the extension tube 3 and the weight 12 are connected, and when the weight 12 is raised by the extension tube 3, the absorber is moved by the flow pressure of the coolant. 6
The guide nozzle 13 and the guide nozzle 13 float together. When the guide nozzle 13 exits the dashbot 14, the coolant inlet flow path widens and the flow pressure further increases. Absorber 6
However, the state in which the reactor is completely withdrawn from the core region A is the reactor operating state (Figure 4-0). In the event of a coolant flow rate drop accident (Figure 4-d), only the absorber 6 and the guide nozzle 13 sink due to the drop in fluid pressure, and the reactor is shut down by automatic scram. Extension pipe 3 and weight 12 due to abnormal rise in outlet temperature of adjacent fuel assembly due to scram signal or reactivity insertion accident.
When separated, the weight 12. The absorber 6 and the guide nozzle 13 sink together to shut down the reactor.

他の実施例の原子炉制御装置を第5図に示す。FIG. 5 shows another embodiment of the reactor control system.

この実施例の特徴は、重り12を操作する駆動棒18の
下部の径を上部の径に比べて小さくしたことである。さ
らに、案内管2の上部に流路調整ガイド19を設置して
おり、重り12が上限位置([子炉運転中)では、駆動
棒18の細径部が流路調整ガイド19の位置にある。ス
クラム等により駆動棒18が下降しはじめると、その太
径部が流路調整ガイド19の位置にきて流路をせばめる
A feature of this embodiment is that the lower diameter of the drive rod 18 for operating the weight 12 is smaller than the upper diameter. Furthermore, a flow path adjustment guide 19 is installed at the upper part of the guide tube 2, and when the weight 12 is at the upper limit position (during operation of the child furnace), the narrow diameter part of the drive rod 18 is at the position of the flow path adjustment guide 19. . When the drive rod 18 begins to descend due to scram or the like, its large diameter portion comes to the position of the flow path adjustment guide 19 and narrows the flow path.

このため、流動圧が減少してさらに急速に吸収体6が沈
下してゆき、スクラム速度を早める効果がある。
Therefore, the flow pressure decreases and the absorber 6 sinks more rapidly, which has the effect of accelerating the scram speed.

以下に本発明を高速増殖炉の調整捧に適用した実施例を
説明する6第6図はその一実施例であり、前述の実施例
で説明してきた重り12の下部に従来のピン形状の炭化
ボロンを用いた調整捧20を配置したものである。調整
捧20の上下操作は重り12を操作することにより行う
、事故時の自動スクラム機能は前述の実施例と同様に有
している。
An embodiment in which the present invention is applied to the adjustment of a fast breeder reactor will be described below. 6 Figure 6 is an embodiment of the present invention. Adjustment rods 20 made of boron are arranged. The adjustment shaft 20 is raised and lowered by operating the weight 12, and the automatic scram function in the event of an accident is provided as in the previous embodiment.

第7図に他の実施例を示す。第6図の実施例に対して、
調整棒20を3つの要素20 a = cに分けたこと
と、重り12を3つの要素12 a ” cに分けて、
各要素を自在継手21で結合したものである。第6図の
実施例の効果の他に、案内管2内で自由に変形できるた
め炉心変形時の調整棒の炉心内への挿入性が向上してい
る。特に、調整捧の各要素20 a = cには連結機
構が不要なため、炉心内への吸収物質の装荷の密度が増
すと共に、連結機構の破損の心配がない。
FIG. 7 shows another embodiment. For the embodiment shown in FIG.
Dividing the adjustment rod 20 into three elements 20 a = c, and dividing the weight 12 into three elements 12 a '' c,
Each element is connected by a universal joint 21. In addition to the effects of the embodiment shown in FIG. 6, since the adjustment rod can be freely deformed within the guide tube 2, the ease with which the adjustment rod can be inserted into the core during core deformation is improved. In particular, since a connecting mechanism is not required for each element 20a=c of the adjustment shaft, the density of the absorption material loaded into the reactor core is increased and there is no fear of damage to the connecting mechanism.

本発明の異常高温時のスクラム機能については電磁石と
キュリ一点をもった磁性体により構成したが、バイメタ
ル、金属溶融、形状記憶合金を用いることもできる。
The scram function at abnormally high temperatures according to the present invention is constructed using an electromagnet and a magnetic material with a single Curie point, but bimetals, fused metals, and shape memory alloys may also be used.

1−8以上の説明は、ナトリウムを冷却材とする高速炉
を対象に述べてきたが、本発明は、ガス冷却高速炉ある
いは軽水炉に対しても、同様に適用できる。
1-8 The above explanation has been made with reference to a fast reactor using sodium as a coolant, but the present invention can be similarly applied to a gas-cooled fast reactor or a light water reactor.

なお、耐高温ナトリウム、耐照射及び強度的にもすぐれ
た弾性材料を用いて、延長管9重り及び制御棒要素(保
護管や被覆管等)をその弾性材料で構成すると、炉心変
形時にさらに挿入性のすぐれた原子炉制御装置が実現で
きる。
In addition, if the extension tube 9 weights and control rod elements (protective tubes, cladding tubes, etc.) are made of elastic materials that are highly resistant to high temperature sodium, irradiation, and strong, they will not be inserted further when the core deforms. A nuclear reactor control system with excellent performance can be realized.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉運転中の炉心変形や地震時の変
形に対して制御棒の炉心部への挿入性を向上し、かつ冷
却材低下事故及び反応度挿入事故時に自動的にスクラム
する原子炉制御装置を提供するもので、原子炉の安全上
の効果は大なるものである。
According to the present invention, it is possible to improve the ease of inserting control rods into the reactor core against core deformation during reactor operation or deformation during an earthquake, and to automatically scram in the event of a coolant drop accident or a reactivity insertion accident. It provides a nuclear reactor control system and has a great effect on the safety of nuclear reactors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の後備安全装置の断面図、
第2図は、−分節点をもつ制御棒の一例の断面図、第3
図は流体差圧方式の原子炉停止装置の一例の断面図、第
4図は、本発明の一実施例′実施例の後備安全装置の断
面図、第6.第7図は一本発明の別の実施例の調整捧の
断面図である。 1・・・制御棒、2・・・安内管、3・・・延長管、6
・・・中性子吸収体、7・・・電磁流量調整弁、8・・
・エントランスノズル、12・・・重り、13・・・ガ
イド用ノズル、冶10 静J 幻 第5m 第7区
FIG. 1 is a sectional view of a backup safety device according to an embodiment of the present invention;
Figure 2 is a cross-sectional view of an example of a control rod with a -segment node;
The figure is a cross-sectional view of an example of a fluid differential pressure type reactor shutdown system, FIG. 4 is a cross-sectional view of a backup safety device according to an embodiment of the present invention, and FIG. FIG. 7 is a cross-sectional view of an adjustment shaft according to another embodiment of the present invention. 1...Control rod, 2...Annai tube, 3...Extension tube, 6
...neutron absorber, 7...electromagnetic flow control valve, 8...
・Entrance nozzle, 12... Weight, 13... Guide nozzle, Ji 10 Shizuka J Phantom No. 5m District 7

Claims (1)

【特許請求の範囲】[Claims] 1、下部より導入される加圧流体の作用によつて炉心外
上部に中性子吸収物質を浮上させる流体差圧方式の原子
炉制御装置において、前記中性子吸収物質の上部に、流
体の流量減少時に自由落下させる重りを配置したことを
特徴とする原子炉制御装置。
1. In a reactor control system using a fluid pressure differential pressure system in which a neutron absorbing substance is floated to the upper part of the outside of the core by the action of pressurized fluid introduced from the bottom, a free float is placed above the neutron absorbing substance when the flow rate of the fluid decreases. A nuclear reactor control device characterized in that a weight to be dropped is arranged.
JP60150257A 1985-07-10 1985-07-10 Controller for nuclear reactor Pending JPS6212893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150257A JPS6212893A (en) 1985-07-10 1985-07-10 Controller for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150257A JPS6212893A (en) 1985-07-10 1985-07-10 Controller for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6212893A true JPS6212893A (en) 1987-01-21

Family

ID=15492985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150257A Pending JPS6212893A (en) 1985-07-10 1985-07-10 Controller for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6212893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443797A (en) * 1987-08-11 1989-02-16 Hitachi Ltd Nuclear reactor shut-down device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443797A (en) * 1987-08-11 1989-02-16 Hitachi Ltd Nuclear reactor shut-down device

Similar Documents

Publication Publication Date Title
Cinotti et al. Lead-cooled system design and challenges in the frame of Generation IV International Forum
EP2894635B1 (en) Passive shutdown system and method of operating a liquid metal cooled reactor using the same
WO2007136261A1 (en) A nuclear reactor
KR101549603B1 (en) A passive safety device and a nuclear fuel assembly with the passive safety device
EP2270815A2 (en) Nuclear reactor with inherent shutdown and associated control method
JPS592878B2 (en) Device that controls neutron flux in a nuclear reactor
JPS6212893A (en) Controller for nuclear reactor
US8559585B2 (en) Cold shutdown assembly for sodium cooled reactor
US3377251A (en) Nuclear reactor for use in space
JP2023520355A (en) reactor controller
JPS62223696A (en) Controller for nuclear reactor
US6804320B2 (en) Automatically scramming nuclear reactor system
JP2501338B2 (en) Reactor shutdown device
JP2022032025A (en) Integrated type fast neutron reactor including exclusive safety device for reducing core meltdown accident
Kwon et al. Evaluation of Inherent Safety Features of the KALIMER-600 Design Concept for Anticipated Transient Without Scram Events
Carlsson et al. Emergency decay heat removal by reactor vessel auxiliary cooling system from an accelerator-driven system
US20030194043A1 (en) Nuclear reactor system and method for automatically scramming the same
JPH0422231B2 (en)
Niwa et al. Future needs on the in-pile safety experiments for the commercialization of FBRS
JPS62161085A (en) Automatic stop device for nuclear reactor
JPS6333677B2 (en)
Dubberley et al. Super Prism metal core margins to severe core damage
JP2914805B2 (en) Fast reactor core
Kwon et al. Scoping System Analysis of KALIMER-600 Design Concept
JPS63259495A (en) Advanced reactor stop mechanism