JPS6328942B2 - - Google Patents

Info

Publication number
JPS6328942B2
JPS6328942B2 JP58158785A JP15878583A JPS6328942B2 JP S6328942 B2 JPS6328942 B2 JP S6328942B2 JP 58158785 A JP58158785 A JP 58158785A JP 15878583 A JP15878583 A JP 15878583A JP S6328942 B2 JPS6328942 B2 JP S6328942B2
Authority
JP
Japan
Prior art keywords
parts
composition
paint
zinc
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58158785A
Other languages
Japanese (ja)
Other versions
JPS6051756A (en
Inventor
Osamu Kawada
Taketoshi Maruoka
Takechika Yamaguchi
Koji Kobayashi
Yoshihiro Furubayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Nippon Paint Co Ltd
Mitsui Zosen KK
Kawasaki Motors Ltd
Original Assignee
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Nippon Paint Co Ltd
Kawasaki Jukogyo KK
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Mitsubishi Heavy Industries Ltd, Nippon Paint Co Ltd, Kawasaki Jukogyo KK, Mitsui Zosen KK filed Critical Hitachi Zosen Corp
Priority to JP15878583A priority Critical patent/JPS6051756A/en
Publication of JPS6051756A publication Critical patent/JPS6051756A/en
Publication of JPS6328942B2 publication Critical patent/JPS6328942B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉄鋼用一次防錆塗料組成物に関する。
更に詳しくは、大型鉄鋼構造物の一次防錆塗料と
して有効で且つ溶接および歪取り等の加熱時その
裏面において健全な塗膜を保持し得る塗料組成物
に関する。従来、船舶、橋梁等の大型鉄鋼構造物
の建設中の発錆を一時的に防止する目的で、一次
防錆塗料が該構造物に塗装されている。該塗料の
代表例としては、ポリビニルブチラール樹脂―リ
ン酸―クロム酸塩から成るウオツシユプライマ
ー、エポキシ樹脂―亜鉛末から成る有機ジンクリ
ツチペイント、エチルシリケート―亜鉛末から成
る無機ジンクリツチペイント、有機樹脂―エチル
シリケート―亜鉛末から成る新無機ジンクリツチ
ペイント等が挙げられる。構造物の一般部分につ
いては各々その目的とする防錆性が得られている
が、溶接裏面や歪取り裏面等のように高温に加熱
された部分については、塗膜の焼失や塗膜成分の
変質等により、発錆防止の目的が達成されていな
い。大型構造物においては、溶接個所や歪取り個
所が多く存在し、その結果一次防錆塗料を塗装し
ているにもかかわらず、上塗り塗装前の防錆作業
に多大の労力を要しているのが現状である。その
ために、溶接裏面や歪取り裏面の加熱部分におい
ても塗膜が健全な一次防錆塗料の開発が当該関係
者において望まれていた。 従来の一次防錆塗料のうち、主として無機物か
ら成る無機ジンクリツチペイントは、加熱時にお
いて塗膜の焼失が少なく、加熱後の付着性も防食
性も良好である。しかし、無機ジンクリツチペイ
ントはその大部分が亜鉛末であり、溶接溶断時の
亜鉛ヒユームの発生による衛生性や、アルキド塗
料を上塗りできないという上塗り選択性があり、
亜鉛末量を減少することが強く要望されている。
しかしながら、亜鉛末の量を減少していくと、結
合剤の特質から塗膜が硬く脆くなり、亀裂を生じ
易くなつて、塗膜形成が困難となる。そのため亜
鉛末の量を減少するには、新無機ジンクリツチペ
イントの如く有機樹脂の混入が必要となる。しか
し、新無機ジンクリツチペイントにおいては、加
熱部の有機樹脂が分解して、塗膜が残存しない状
態になる。 本発明者らは鋭意研究を進めた結果、亜鉛末の
量を減少しても、シリケート系結合剤の組成を特
定化することによつて良好な塗膜形成の可能な防
錆塗料組成物が得られ、なお且つ溶接裏面や歪取
り裏面に相当する高温加熱部でも健全な塗膜を保
持し、防食性の低下も少ないことを見出し、本発
明を完成するに至つた。 即ち、600℃で耐熱性を有し、かつ防錆剤を含
む鉄鋼用一次防錆塗料組成物において、結合剤と
して、テトラアルコキシシラン(アルキル基の炭
素数は1〜5)の酸性条件下加水分解初期縮合物
(a)100重量部に対しアルキルトリアルコキシシラ
ン(アルキル基の炭素数は1〜5)の酸性条件下
加水分解初期縮合物(b)10〜250重量部を配合する
ことを特徴とする組成物に存する。 本発明で使用する成分(a)の原材料であるテトラ
アルコキシシランとしては、具体的にはテトラメ
トキシシラン、テトラエトキシシラン、テトラプ
ロポキシシラン、テトライソプロポキシシラン、
テトラブトキシシラン等が挙げられる。その酸性
条件下加水分解初期縮合物(a)は無機ジンクリツチ
ペイント等に用いられる公知の剤である。しか
し、上述の如くそれ自体のみを結合剤として使用
する場合には、亜鉛末の量を減少させると良好な
塗膜を提供できない欠点がある。また、成分(b)の
原材料であるアルキルトリアルコキシシランとし
ては、具体的にはメチルトリメトキシシラン、メ
チルトリエトキシシラン、メチルトリプロポキシ
シラン、エチルトリメトキシシラン、エチルトリ
エトキシシラン、ブチルトリメトキシシラン、ア
ミルトリエトキシシラン等が挙げられる。その酸
性条件下加水分解初期縮合物(b)はプラスチツク表
面の改質剤等に用いられる公知の剤である。 上記両シラン化合物において、アルコキシ基を
構成しているアルキル基は、加水分解によつてア
ルコールを生成し、塗膜中から離散するが、炭素
数が6以上になるとその離散性が低下して塗膜の
乾燥が遅くなり好ましくない。従つて、上記アル
キル基は炭素数1〜5が望ましく、特に塗料の無
害性と乾燥性の点から炭素数2〜3のアルキル基
(即ち、エチル基、プロピル基またはイソプロピ
ル基)であることが有利である。また、ケイ素原
子と直接結合するアルキル基は、最終硬化塗膜に
おいても残存し、且つ600〜700℃の高温で分解す
るが、その炭素数が6以上になると塗膜の焼失量
が多くなり、高温加熱後の塗膜付着性が低下す
る。更に、上記アルキル基が炭素数1〜5の場合
においては、塗膜中に該アルキル基が残存してい
るにもかかわらず、塗膜の耐熱性はテトラアルコ
キシシランの場合より良好である。他方、アルキ
ルトリアルコキシシランの乾燥性はテトラアルコ
キシシランの場合よりも劣ることが判明した。 従つて、特定のテトラアルコキシシラン成分と
アルキルトリアルコキシシラン成分の併用によつ
て、塗料の乾燥性、造膜性および耐熱性が良好に
なることを知見したことに、本発明の特色があ
る。 本発明組成物の結合剤としての有効成分(a)およ
び(b)は、上記テトラアルコキシシランおよびアル
キルトリアルコキシシランを常法に従い酸性条件
下加水分解することにより得られる。即ち、後記
参考例に示す如く酸触媒下加水分解することによ
り得られる。本発明にあつては、加水分解によつ
て得られる有効成分(a)または(b)を含む反応系を、
そのまま目的組成物を製造するのに使用してよ
い。また、有効成分(a)および(b)を各別に得て目的
組成物を製造してもよく、またはテトラアルコキ
シシランとアルキルトリアルコキシシリケートの
混合物を加水分解に供して得られる有効成分(a)と
(b)の混合系を使用して目的組成物を製造してもよ
い。 本発明組成物にあつては、上記有効成分(a)100
部(重量部、以下同様)に対し有効成分(b)を10〜
250部、好ましくは40〜100部の割合で配合するこ
とが好ましい。有効成分(b)の配合量が過少である
と、造膜性が悪くなる傾向にあり、その結果塗膜
付着性が悪くなる傾向がある。他方、過剰である
と、乾燥性が悪く、防食性が低下する傾向にあ
る。 本発明組成物にあつては、上記有効成分(a)およ
び(b)の結合剤以外に、通常の防錆塗料と同様に各
種の防錆剤、顔料、溶剤、添加剤等を必要に応じ
て配合されてよい。防錆剤としては防錆金属粉
(例、亜鉛末、リン化鉄等)と一般防錆顔料(例、
リン酸亜鉛、リン酸アルミニウム、メタホウ酸バ
リウム、モリブデン酸亜鉛、モリブデン酸アルミ
ニウム等)がある。また体質顔料としてはタル
ク、マイカ、硫酸バリウム、クレー、炭酸カルシ
ウム、着色顔料としては亜鉛華、チタン白、弁柄
等が挙げられる。亜鉛末については、加熱部以外
の防食性は良好であるが、加熱部においては酸化
されその防食性を失うため、乾燥塗膜中50重量%
以下になるように配合することが望ましい。50重
量%以上でも本発明の目的を達成出来ないわけで
はないが、前記したとおり、亜鉛末の含量が増大
すれば亜鉛ヒユームの発生が大となり、かつ上塗
り塗料の密着性も劣つたものとなる。また、上記
以外の顔料も使用可能であるが、加熱によつて著
しく変色または変質しないものである必要があ
る。溶剤成分としては通常のイソプロピルアルコ
ール、n―ブチルアルコール、イソブチルアルコ
ール、ブチルセロソルブ、エチルセロソルブ等が
挙げられ、塗装作業性や塗膜乾燥性が最適になる
ように適当量配合されてよい。添加剤成分として
はタレ止め剤、湿潤剤、反応促進剤、付着付与
剤、色分れ防止剤、沈殿防止剤等の防錆塗料に通
常使用される剤が目的に応じて適当量配合されて
よい。 本発明組成物は常法に従つて調製できる。例え
ば、結合剤を含む液状成分とそれ以外の粉末成分
を含む系とを別容器に保存し、使用直前に両者を
混合すればよい。また、結合剤と反応する成分
(例、亜鉛末)以外の粉末成分の一部または全部
を結合剤を含む液状成分と共に分散し、使用直前
に該混合物と残りの成分を混合すればよい。液状
成分と粉末成分の分散には、通常の分散機である
ローミル、サンドグラインドミル、ボールミル等
が使用されてよい。このようにして得られる組成
物にあつては、結合剤濃度は一般に5〜15重量%
でよく、そしてエアスプレー、エアレススプレ
ー、ロールコータ、ハケ等通常の手段で鉄鋼構造
物に塗布し、自然乾燥または熱風乾燥にて乾燥さ
せればよい。 以上の構成から成る本発明組成物は、防錆塗料
としての機能を充分に発揮することができ、且つ
溶接裏面や歪取り裏面のように加熱された部分に
おいても健全な塗膜を残存させることができて防
食性を維持することができる。 本発明は上述の如くテトラアルコキシシランの
酸性条件下加水分解初期縮合物(a)とアルキルトリ
アルコキシシランの酸性条件下加水分解初期縮合
物(b)を結合剤として配合することに特徴を有する
のである。上記成分(a)および(b)を更にアルカリ性
条件下縮合させて得られる高縮合物を結合剤とし
て使用することが考えられるが、この場合には、
系をアルカリ性条件に変換した際、結合剤成分が
析出し、系がゲル化をきたして均一系の塗料を調
製できないことがある。また、膜厚を薄くする一
次防錆塗料は鋼板との強い結合性を要求されるの
であるが、酸性条件下加水分解初期縮合物に残存
するシラノール基が鋼板との結合性を高めるのに
有効である。しかるに、該初期縮合物を次いでア
ルカリ性に変換した場合シラノール基の減少が著
しく、従つて得られる塗料の塗膜は鋼板との付着
性が悪く、このため溶接裏面や歪取り裏面のよう
に急激に加熱された部分では塗膜の亀裂や剥離を
招くという問題を有する。 次に参考例、実施例および比較例を挙げて本発
明を具体的に説明する。なお、部とあるは重量部
を意味する。 参考例 1 結合剤の製造 (A) テトラアルコキシシランの加水分解初期縮合
物 テトラエトキシシラン(日本コルコート社製
「エチルシリケート28」) 100部 イソブチルアルコール 50 イソプロピルアルコール 24.7 水 16.6 0.1N塩酸 0.7 192.0部 (B) アルキルトリアルコキシシランの加水分解初
期縮合物 メチルトリエトキシシラン(試薬) 100 部 イソブチルアルコール 60 イソプロピルアルコール 75.6 水 14.4 0.1N塩酸 0.7 250.7部 (C) テトラアルコキシシランとアルキルトリアル
コキシシランの混合物の加水分解初期縮合物 テトラエトキシシラン(日本コルコート社製
「エチルシリケート28」) 208.3部 メチルトリエトキシシラン(試薬) 106.4 イソブチルアルコール 130 イソプロピルアルコール 169.9 水 49.9 0.1N塩酸 2.2 666.7部 水と塩酸を除いた残りの成分を反応容器に入
れ、40℃に保ち撹拌しながら水と塩酸を1時間に
わたり滴下する。滴下終了後1時間撹拌を継続し
て、結合剤A、B、Cを得る。 同様にしてテトラヘプトキシシランまたはエチ
ルトリイソプロポキシシランを使用して処理する
ことにより、結合剤D、Eを得る。 各結合剤A、B、C、D、Eにおける有効成分
量は15重量%である。 実施例1〜9および比較例1〜4 第1表に示す配合でもつて、顔料成分混合物に
結合剤成分を使用直前に混合し、充分撹拌し、必
要に応じてイソプロピルアルコールを加えて粘度
調整し、しかる後に塗装に供する。 得られる各塗料組成物を以下の試験に付す。 (1) 乾燥性試験 脱脂したミガキ鋼板(70×150×0.8mm)に塗
料組成物をエアスプレーにて塗布し、室内で放
置してJIS―K―5400にいう半硬化までの時間
を測定する。 (2) 塗膜付着性試験 サンドブラスト鋼板(70×150×1.6mm)に塗
料組成物をエアスプレーにて膜厚15〜20μで塗
布し、20℃、相対湿度75%で7日間乾燥した後
または更に電気炉にて10分間加熱、冷却した後
に粘着テープで塗膜の剥離状態を測定する。 〇:塗膜の剥離がほとんどない △:塗膜の剥離が少し認められる ×:塗膜の大部分が剥離する (3) 防錆性試験 上記(2)の方法で得た試験片(剥離試験前)を
JIS―K―5400の耐塩水噴霧試験240時間に付
し、発錆状態をASTM(D610)により判定す
る。 以上の試験結果を第2表に示す。該表から明ら
かな如く、テトラアルコキシシランとアルキルト
リアルコキシシランの有効成分の併用により調製
される塗料組成物は、乾燥性、耐熱性が実用範囲
にあり、且つ加熱後の防食性が優れた塗膜を提供
することができる。
The present invention relates to a primary antirust coating composition for steel.
More specifically, the present invention relates to a coating composition that is effective as a primary antirust coating for large steel structures and that can maintain a healthy coating film on the back surface during heating for welding, strain relief, etc. BACKGROUND OF THE INVENTION Conventionally, primary rust-preventing paints have been applied to large steel structures such as ships and bridges in order to temporarily prevent rust from forming during construction. Typical examples of such paints include wash primers made of polyvinyl butyral resin, phosphoric acid, and chromate, organic zinc-rich paints made of epoxy resin-zinc dust, inorganic zinc-rich paints made of ethyl silicate-zinc dust, and organic resins. Examples include new inorganic zinc-rich paints made of ethyl silicate and zinc powder. The desired rust prevention properties are obtained for the general parts of the structure, but for parts heated to high temperatures such as the back side of welding and strain relief, the paint film may be burnt off or the paint film components may be lost. Due to deterioration, etc., the purpose of preventing rusting has not been achieved. Large structures have many welding points and strain relief points, and as a result, even though they are coated with a primary anti-corrosion paint, it takes a lot of effort to prevent rust before applying the top coat. is the current situation. For this reason, those involved have desired the development of a primary rust-preventing paint that provides a healthy coating film even on the heated portions of the backside of welding and the backside of strain relief. Among conventional primary rust-preventing paints, inorganic zinc-rich paints mainly composed of inorganic substances have less paint film burnout during heating, and have good adhesion and anti-corrosion properties after heating. However, most of the inorganic zinc-rich paint is made of zinc powder, and it is not sanitary due to the generation of zinc fume during welding and fusing, and it is selective in overcoating because it cannot be overcoated with alkyd paint.
There is a strong desire to reduce the amount of zinc dust.
However, as the amount of zinc dust is reduced, the coating film becomes hard and brittle due to the characteristics of the binder, making it more likely to crack, making it difficult to form a coating film. Therefore, in order to reduce the amount of zinc dust, it is necessary to mix in an organic resin such as a new inorganic zinc-rich paint. However, in the new inorganic zinc-rich paint, the organic resin in the heated part decomposes, leaving no paint film. As a result of intensive research, the inventors of the present invention have developed a rust-preventing paint composition that can form a good film even when the amount of zinc dust is reduced by specifying the composition of the silicate binder. The present inventors have found that a healthy coating film can be obtained even in the high-temperature heated portion corresponding to the welded back surface or the strain relief back surface, and that the corrosion resistance is less deteriorated, leading to the completion of the present invention. That is, in a primary rust preventive paint composition for steel that is heat resistant at 600°C and contains a rust preventive agent, tetraalkoxysilane (alkyl group has 1 to 5 carbon atoms) is hydrated under acidic conditions as a binder. Decomposition initial condensate
A composition characterized in that (a) 100 parts by weight is blended with an initial condensate of alkyltrialkoxysilane (the alkyl group has 1 to 5 carbon atoms) hydrolyzed under acidic conditions (b) 10 to 250 parts by weight. exists in Specifically, the tetraalkoxysilane that is a raw material for component (a) used in the present invention includes tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane,
Examples include tetrabutoxysilane. The initial condensate (a) hydrolyzed under acidic conditions is a known agent used in inorganic zinc-rich paints and the like. However, as mentioned above, when using only zinc dust as a binder, there is a drawback that a good coating film cannot be provided if the amount of zinc dust is reduced. In addition, specific examples of the alkyltrialkoxysilane that is a raw material for component (b) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and butyltrimethoxysilane. , amyltriethoxysilane, and the like. The initial condensate (b) hydrolyzed under acidic conditions is a known agent used as a modifier for plastic surfaces. In both of the above silane compounds, the alkyl group constituting the alkoxy group produces alcohol through hydrolysis and is dispersed from the coating film, but when the number of carbon atoms exceeds 6, the dispersibility decreases and the coating film becomes This is not preferable because the drying of the membrane becomes slow. Therefore, the alkyl group desirably has 1 to 5 carbon atoms, and is preferably an alkyl group having 2 to 3 carbon atoms (i.e., ethyl group, propyl group, or isopropyl group) from the viewpoint of the harmlessness and drying properties of the paint. It's advantageous. In addition, alkyl groups that bond directly to silicon atoms remain even in the final cured coating film and decompose at high temperatures of 600 to 700°C, but when the number of carbon atoms exceeds 6, the amount of the coating film burned out increases. Coating film adhesion decreases after high temperature heating. Furthermore, when the alkyl group has 1 to 5 carbon atoms, the heat resistance of the coating film is better than that of tetraalkoxysilane, even though the alkyl group remains in the coating film. On the other hand, the drying properties of alkyltrialkoxysilanes were found to be inferior to those of tetraalkoxysilanes. Therefore, the present invention is characterized by the discovery that the drying properties, film-forming properties, and heat resistance of a coating material can be improved by using a specific tetraalkoxysilane component and an alkyltrialkoxysilane component in combination. The active ingredients (a) and (b) as binders of the composition of the present invention can be obtained by hydrolyzing the above-mentioned tetraalkoxysilane and alkyltrialkoxysilane under acidic conditions according to a conventional method. That is, it can be obtained by hydrolysis under an acid catalyst as shown in Reference Examples below. In the present invention, the reaction system containing the active ingredient (a) or (b) obtained by hydrolysis is
It may be used as is to produce the desired composition. Alternatively, the desired composition may be produced by separately obtaining the active ingredients (a) and (b), or the active ingredient (a) obtained by subjecting a mixture of tetraalkoxysilane and alkyltrialkoxysilicate to hydrolysis. and
The target composition may be manufactured using the mixture system (b). In the composition of the present invention, 100% of the above active ingredient (a)
10 to 10 parts (parts by weight, same hereinafter) of active ingredient (b)
It is preferable to mix it in a proportion of 250 parts, preferably 40 to 100 parts. If the amount of active ingredient (b) is too small, film forming properties tend to deteriorate, and as a result, coating film adhesion tends to deteriorate. On the other hand, if it is in excess, drying properties tend to be poor and corrosion resistance tends to decrease. In the composition of the present invention, in addition to the above-mentioned active ingredients (a) and (b) as binders, various rust preventive agents, pigments, solvents, additives, etc. may be added as necessary, as in ordinary rust preventive paints. may be blended. Rust preventive agents include rust preventive metal powders (e.g. zinc powder, iron phosphide, etc.) and general rust preventive pigments (e.g.
Zinc phosphate, aluminum phosphate, barium metaborate, zinc molybdate, aluminum molybdate, etc.). Examples of extender pigments include talc, mica, barium sulfate, clay, and calcium carbonate; examples of coloring pigments include zinc white, titanium white, and Bengara. Zinc dust has good corrosion resistance in areas other than heated areas, but it is oxidized and loses its corrosion resistance in heated areas, so it is reduced to 50% by weight in the dry coating film.
It is desirable to mix them as follows. Although it is not impossible to achieve the purpose of the present invention even if the amount is 50% by weight or more, as mentioned above, as the content of zinc dust increases, the generation of zinc fume increases and the adhesion of the top coat becomes poor. . Pigments other than those mentioned above can also be used, but they must not significantly change color or change in quality when heated. Examples of solvent components include common isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, butyl cellosolve, ethyl cellosolve, etc., and may be blended in an appropriate amount so as to optimize coating workability and coating drying properties. As additive components, agents normally used in anti-rust paints such as anti-sagging agents, wetting agents, reaction accelerators, adhesion agents, anti-color separation agents, and anti-settling agents are mixed in appropriate amounts depending on the purpose. good. The composition of the present invention can be prepared according to conventional methods. For example, a liquid component containing a binder and a system containing other powder components may be stored in separate containers, and the two may be mixed immediately before use. Alternatively, part or all of the powder components other than the components that react with the binder (eg, zinc dust) may be dispersed together with the liquid component containing the binder, and the mixture and the remaining components may be mixed immediately before use. For dispersing the liquid component and the powder component, a conventional dispersing machine such as a row mill, sand grind mill, or ball mill may be used. In the compositions thus obtained, the binder concentration is generally from 5 to 15% by weight.
It may be applied to the steel structure by ordinary means such as air spray, airless spray, roll coater, brush, etc., and then dried by air drying or hot air drying. The composition of the present invention having the above-mentioned structure can fully exhibit its function as a rust-preventing paint, and can also leave a healthy coating film on heated parts such as the back side of welding and the back side of strain relief. It is possible to maintain corrosion resistance. As described above, the present invention is characterized in that the initial condensate of tetraalkoxysilane hydrolyzed under acidic conditions (a) and the initial condensate of alkyltrialkoxysilane hydrolyzed under acidic conditions (b) are blended as binders. be. It is conceivable to use a high condensate obtained by further condensing the above components (a) and (b) under alkaline conditions as a binder, but in this case,
When the system is converted to alkaline conditions, the binder component may precipitate and the system may gel, making it impossible to prepare a uniform paint. In addition, the primary anticorrosive paint that reduces the film thickness is required to have strong bonding properties with the steel plate, and the silanol groups remaining in the initial condensate of hydrolysis under acidic conditions are effective in increasing the bonding property with the steel plate. It is. However, when the initial condensate is then converted to alkalinity, the silanol groups are significantly reduced, and the resulting paint film has poor adhesion to the steel plate. There is a problem in that the heated part causes cracking and peeling of the paint film. Next, the present invention will be specifically explained with reference to Reference Examples, Examples, and Comparative Examples. Note that parts refer to parts by weight. Reference example 1 Manufacture of binder (A) Hydrolyzed initial condensation product of tetraalkoxysilane Tetraethoxysilane (Nippon Colcoat Co., Ltd. "Ethylsilicate 28") 100 parts Isobutyl alcohol 50 Isopropyl alcohol 24.7 Water 16.6 0.1N Hydrochloric acid 0.7 192.0 parts ( B) Hydrolysis initial condensate of alkyltrialkoxysilane Methyltriethoxysilane (reagent) 100 parts Isobutyl alcohol 60 Isopropyl alcohol 75.6 Water 14.4 0.1N Hydrochloric acid 0.7 250.7 parts (C) Hydration of a mixture of tetraalkoxysilane and alkyltrialkoxysilane Decomposition initial condensate tetraethoxysilane (Ethylsilicate 28 manufactured by Nippon Colcoat) 208.3 parts Methyltriethoxysilane (reagent) 106.4 Isobutyl alcohol 130 Isopropyl alcohol 169.9 Water 49.9 0.1N Hydrochloric acid 2.2 666.7 parts Remaining water and hydrochloric acid removed The ingredients are placed in a reaction vessel, and water and hydrochloric acid are added dropwise over 1 hour while maintaining the temperature at 40°C and stirring. After the completion of the dropwise addition, stirring was continued for 1 hour to obtain binders A, B, and C. Binders D and E are obtained by similar treatment with tetraheptoxysilane or ethyltriisopropoxysilane. The amount of active ingredient in each binder A, B, C, D, E is 15% by weight. Examples 1 to 9 and Comparative Examples 1 to 4 Even with the formulations shown in Table 1, the binder component was mixed with the pigment component mixture immediately before use, thoroughly stirred, and if necessary, isopropyl alcohol was added to adjust the viscosity. , and then subjected to painting. Each of the resulting coating compositions was subjected to the following tests. (1) Drying test Apply the paint composition to a degreased polished steel plate (70 x 150 x 0.8 mm) using air spray, leave it indoors, and measure the time until semi-hardening as specified in JIS-K-5400. . (2) Paint film adhesion test The paint composition was applied to a sandblasted steel plate (70 x 150 x 1.6 mm) with a film thickness of 15 to 20 μ by air spray, and after drying at 20°C and 75% relative humidity for 7 days, or Furthermore, after heating for 10 minutes in an electric furnace and cooling, the state of peeling of the coating film was measured using adhesive tape. 〇: Almost no peeling of the paint film △: Slight peeling of the paint film ×: Most of the paint film peels off (3) Rust prevention test Test piece obtained by method (2) above (peel test before)
Subjected to JIS-K-5400 salt water spray test for 240 hours, and the state of rusting determined by ASTM (D610). The above test results are shown in Table 2. As is clear from the table, the coating composition prepared by combining the active ingredients of tetraalkoxysilane and alkyltrialkoxysilane has drying properties and heat resistance within a practical range, and has excellent corrosion resistance after heating. A membrane can be provided.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 600℃で耐熱性を有し、かつ防錆剤を含む鉄
鋼用一次防錆塗料組成物において、結合剤とし
て、テトラアルコキシシラン(アルキル基の炭素
数は1〜5)の酸性条件下加水分解初期縮合物(a)
100重量部に対しアルキルトリアルコキシシラン
(アルキル基の炭素数は1〜5)の酸性条件下加
水分解初期縮合物(b)10〜250重量部を配合するこ
とを特徴とする組成物。 2 成分(b)を40〜100重量部配合する上記第1項
の組成物。
[Scope of Claims] 1. A primary rust preventive paint composition for steel that is heat resistant at 600°C and contains a rust preventive agent, wherein the binder is a tetraalkoxysilane (the number of carbon atoms in the alkyl group is 1 to 5). Initial condensate (a) hydrolyzed under acidic conditions of
1. A composition comprising 10 to 250 parts by weight of an initial condensate (b) of an alkyltrialkoxysilane (alkyl group having 1 to 5 carbon atoms) hydrolyzed under acidic conditions to 100 parts by weight. 2. The composition of item 1 above, which contains 40 to 100 parts by weight of component (b).
JP15878583A 1983-08-30 1983-08-30 Corrosion-resistant paint composition Granted JPS6051756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15878583A JPS6051756A (en) 1983-08-30 1983-08-30 Corrosion-resistant paint composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15878583A JPS6051756A (en) 1983-08-30 1983-08-30 Corrosion-resistant paint composition

Publications (2)

Publication Number Publication Date
JPS6051756A JPS6051756A (en) 1985-03-23
JPS6328942B2 true JPS6328942B2 (en) 1988-06-10

Family

ID=15679279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15878583A Granted JPS6051756A (en) 1983-08-30 1983-08-30 Corrosion-resistant paint composition

Country Status (1)

Country Link
JP (1) JPS6051756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530442A (en) * 1999-06-04 2003-10-14 グロス ゲオルク Coating method and coating mixture

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292799A (en) * 1992-07-31 1994-03-08 Suzuki Sangyo Co., Ltd. Solvent-free, cold-setting organosiloxane composition and its use
US5668212A (en) * 1992-10-06 1997-09-16 Shizu Naito Aqueous organosiloxane liquid composition and its use
US5432007A (en) * 1992-10-06 1995-07-11 Shizu Naito Solvent-free organosiloxane composition and its use
JP4889135B2 (en) * 1998-11-25 2012-03-07 大日本印刷株式会社 Antireflection film
JP2007284600A (en) * 2006-04-18 2007-11-01 Nippon Steel Corp Coating composition containing high corrosion-proof zinc powder
JP2008195862A (en) * 2007-02-14 2008-08-28 Jsr Corp Composition for forming insulation film, and silica based film and method of forming the same
JP7203569B2 (en) * 2018-10-31 2023-01-13 中国塗料株式会社 Antirust paint composition and its use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573870A (en) * 1980-06-10 1982-01-09 Dainippon Toryo Co Ltd Zinc-rich paint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573870A (en) * 1980-06-10 1982-01-09 Dainippon Toryo Co Ltd Zinc-rich paint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530442A (en) * 1999-06-04 2003-10-14 グロス ゲオルク Coating method and coating mixture

Also Published As

Publication number Publication date
JPS6051756A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
KR101014740B1 (en) Chromium-free metal surface treatment agent
RU2182161C2 (en) Covering composition, backing with cover, method of backing preparing, method of preparing covering composition
US4439239A (en) Pigmented coating composition containing a mixture of alkoxysilanes
US5077332A (en) Chromate-free wash primer
US6638628B2 (en) Silicate coating compositions
JP6289382B2 (en) Primary rust preventive paint composition and painted steel structure coated with the same
US3372038A (en) Silicate coatings
JPH11510536A (en) Coating mixture, process for its preparation and its use in coating applications
JPS6328942B2 (en)
US5246488A (en) Temporary rust resisting coating composition
JP2922964B2 (en) Primary rust preventive paint for steel
JPS6157349B2 (en)
JPS60179180A (en) Anticorrosive coating method
JP2002115084A (en) Surface treating agent, surface treatment film and surface modified metallic material
JP7329599B2 (en) Heat-resistant paint composition, heat-resistant coating film, substrate with heat-resistant coating film, and method for producing the same
JPH0446932A (en) Resin composition for zinc-rich paint
KR100405652B1 (en) Heat resistant and corrosion resistant inorganic coating composition
JPH0359942B2 (en)
JP2637549B2 (en) Primary rust preventive paint composition
JPS6253552B2 (en)
EP0335350B1 (en) Temporary rust resisting coating composition
JP2000309748A (en) Heat-resistant coating composition for steel material, coated film thereof, large-sized steel structure covered therewith, and painting method for steel structure
JPS6253551B2 (en)
JPS63157878A (en) Metal surface treating composition and surface treatment with same
JPS61101565A (en) Inorganic paint