JPS63289344A - Vibro-isolating support device - Google Patents

Vibro-isolating support device

Info

Publication number
JPS63289344A
JPS63289344A JP12118787A JP12118787A JPS63289344A JP S63289344 A JPS63289344 A JP S63289344A JP 12118787 A JP12118787 A JP 12118787A JP 12118787 A JP12118787 A JP 12118787A JP S63289344 A JPS63289344 A JP S63289344A
Authority
JP
Japan
Prior art keywords
support device
seismic isolation
sliding member
rubber
air spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12118787A
Other languages
Japanese (ja)
Inventor
Naoaki Tokuda
徳田 直明
Akihiro Kashiwazaki
柏崎 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12118787A priority Critical patent/JPS63289344A/en
Publication of JPS63289344A publication Critical patent/JPS63289344A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/002Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising at least one fluid spring

Abstract

PURPOSE:To make a large vibration in the horizontal direction absorbable by installing an air spring and a laminated rubber vibration isolator, extending each cylinder body of both inner and outer cylinders to the lower part from a diaphragm lower end, and attaching a sliding member to a clearance in this extended part in the circumferential direction. CONSTITUTION:When a large roll acts on a vibro-isolating support device, an outer cylinder 3, receiving horizontal force, comes into contact with an inner cylinder 5 via the sliding member 20 attached to the clearance in the circumferential direction without contacting with the inner cylinder 5 directly. Consequently, vertical relative motion of these inner and outer cylinders 5 and 3 is almost in no case checked and, what is more, a diaphragm 4 forming an air spring 1 receives no damage so that, even if such a case, function of the vibro-isolating support device is maintainable. That is, vertical movements are absorbed by the air spring 1, while horizontal movements by a laminated rubber vibration isolator 2, respectively, thus a vibro-isolating function can be brought into full play.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は原子炉建屋、原子炉関連機器、その他の重要構
造物等の免震支持装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a seismic isolation support device for a nuclear reactor building, reactor related equipment, other important structures, etc.

〈従来技術およびその問題点〉 原子炉等の重要構造物が地震により破壊されると重大な
災害となるおそれがあるので、建屋を含めて免震構造と
することが提案されている。
<Prior Art and its Problems> If an important structure such as a nuclear reactor is destroyed by an earthquake, it may cause a serious disaster, so it has been proposed to have a seismic isolation structure including the building.

免震構造は地震のピーク周波数が5〜10Hzであるこ
とに着目し、ばねで支持された重量物の固有振動数を1
 Hz以下とすることにより、地面から重量物に伝わる
振動をばねにより吸収し遮断しようとするものである。
The base isolation structure focuses on the fact that the peak frequency of earthquakes is 5 to 10 Hz, and the natural frequency of heavy objects supported by springs is set to 1.
By setting the frequency to Hz or less, the vibration transmitted from the ground to the heavy object is absorbed and blocked by the spring.

かかる免震用のばね装置の1つとして積層防震ゴムがあ
る。積層防震ゴムは第4図に示すように上下2枚の鋼板
a、aの間に薄いゴムibと鋼板Cを交互に積み重ねて
互いに接着したちのである。かかる積層前震ゴムは、ゴ
ムの弾性力学的特性のため垂直方向の荷重に対しては剛
でばね定数が大きく、水平方向の加重に対しては@でば
ね定数が小さいという特性をもっており、垂直方向と水
平方向のばね定数の比は1ooo倍にも及ぶ場合がある
。かかる積層前震ゴムを支持装置として使用すると、水
平方向の免震は得られても垂直方向の免震が1qられな
いという問題がある。
One such spring device for seismic isolation is a laminated seismic isolation rubber. As shown in Fig. 4, the laminated seismic rubber is made by stacking thin rubber ib and steel plates C alternately between two upper and lower steel plates a and a and bonding them together. Due to the elastodynamic properties of rubber, such laminated foreshock rubber has the characteristics that it is rigid and has a large spring constant against loads in the vertical direction, and has a small spring constant against loads in the horizontal direction. The ratio of the spring constant in the horizontal direction and the spring constant in the horizontal direction may be as high as 100 times. When such a laminated forearthquake rubber is used as a support device, there is a problem in that although seismic isolation in the horizontal direction can be obtained, seismic isolation in the vertical direction cannot be achieved by 1q.

一方ばね装置の1つとして第5図に示すような空気ばね
がある。図の如く、金属性のシリンダ(外商)dとピス
トン(内筒)eとの間に断面U字状のゴム膜rを設けた
構造のもので、この膜により気密が保たれ、膜の変形に
よって全体の伸縮が行われる。内部に密閉された空気の
圧力により外力に対抗するものであり、垂直方向の外力
の変化に対して、シリングとピストンが相対的に動いて
内容積が変化し、それにより圧力が変化して外力と釣合
うようになっている。
On the other hand, as one type of spring device, there is an air spring as shown in FIG. As shown in the figure, it has a structure in which a rubber membrane r with a U-shaped cross section is provided between a metal cylinder (gaisho) d and a piston (inner cylinder) e. The entire expansion and contraction is performed by It counteracts external force by the pressure of air sealed inside.In response to changes in external force in the vertical direction, the shilling and piston move relative to each other and the internal volume changes, which changes the pressure and counteracts the external force. It is designed to be balanced.

水平方向の外力に対しては、第6図に示すように、横方
向にδだけ変位したとき、押された側のゴム膜[の0字
が下方に垂れ下がり横方向の受圧面積は増大し、反対側
は逆に受圧面積が減少するので受圧面積の差が発生しこ
の差は変位δにほぼ比例するので、変位δに比例した復
元カリが働くことになる。
In response to an external force in the horizontal direction, as shown in Figure 6, when the rubber membrane is displaced by δ in the lateral direction, the 0 character of the rubber membrane on the pressed side hangs downward, and the lateral pressure-receiving area increases. On the other side, the pressure-receiving area decreases, creating a difference in the pressure-receiving area, and this difference is approximately proportional to the displacement δ, so that a restoration force proportional to the displacement δ acts.

かかる空気ばねを免震支持装置として使用すると、垂直
方向および水平方向の免震は得られるが、ゴム膜の強度
上水平方向に許容ストロークを十分とることが困難で、
地震の大きな簾中に耐えられないという問題がある。
When such an air spring is used as a seismic isolation support device, seismic isolation in the vertical and horizontal directions can be obtained, but it is difficult to obtain a sufficient permissible stroke in the horizontal direction due to the strength of the rubber membrane.
The problem is that it cannot withstand large earthquakes.

かかる問題を解決するため第3図に示す免震支持装置が
提案されている(特願昭61−229766 )。
In order to solve this problem, a seismic isolation support device shown in FIG. 3 has been proposed (Japanese Patent Application No. 61-229766).

第3図において、1は空気ばね、2は積層前震ゴム、3
は外筒、4はダイヤフラム、5は内筒、6はゴム製のス
トッパ、7は内筒ゴム、8は外筒ゴム、9は防露ゴム、
10は円環状の鋼板、11は下部鋼板である。
In Figure 3, 1 is an air spring, 2 is a laminated foreshock rubber, and 3
is an outer cylinder, 4 is a diaphragm, 5 is an inner cylinder, 6 is a rubber stopper, 7 is an inner cylinder rubber, 8 is an outer cylinder rubber, 9 is a dew-proof rubber,
10 is an annular steel plate, and 11 is a lower steel plate.

図のように空気ばね1は外筒3と内筒5との間にダイヤ
フラム4が設けられた構造であり、外筒3および内筒4
はそれぞれ、円板3a、5aに円筒3b、5bが同心に
溶接された構造となっており、外筒2と内筒5との間の
空間は、ダイヤフラム4により密閉され、圧力空気が封
入されている。
As shown in the figure, the air spring 1 has a structure in which a diaphragm 4 is provided between an outer cylinder 3 and an inner cylinder 5.
have a structure in which cylinders 3b and 5b are concentrically welded to disks 3a and 5a, respectively, and the space between the outer cylinder 2 and the inner cylinder 5 is sealed by a diaphragm 4 and filled with pressurized air. ing.

内筒上面にはゴム製円筒状のストッパ6が固着されてお
り、空気を抜いたときに外筒の円板3a下面ど当接して
外筒3を支持するようになっている。外商の円筒3b内
面および内筒の円筒5b外面にはそれぞれ外筒ゴム8お
よび内筒ゴム7が固着されており、ダイヤフラム4を保
護している。円筒の円板5a下面には積層前震ゴム2が
固着されており、積層防震ゴム下端には下部鋼板11が
固着されている。
A cylindrical stopper 6 made of rubber is fixed to the upper surface of the inner cylinder, and comes into contact with the lower surface of the disk 3a of the outer cylinder to support the outer cylinder 3 when the air is removed. An outer cylinder rubber 8 and an inner cylinder rubber 7 are fixed to the inner surface of the outer cylinder 3b and the outer surface of the inner cylinder 5b, respectively, to protect the diaphragm 4. A laminated foreshock rubber 2 is fixed to the lower surface of the cylindrical disk 5a, and a lower steel plate 11 is fixed to the lower end of the laminated seismic insulation rubber.

積層前震ゴム2は、中実円筒のものでは、所要のばね定
数とした場合直径が細くなり過ぎ、バックリングの虞れ
があるので、図のように中空円筒状のものを使用する。
If the laminated foreshock rubber 2 is a solid cylinder, the diameter will be too small if the required spring constant is set, and there is a risk of buckling, so a hollow cylinder as shown in the figure is used.

積層前震ゴム2は図のように円筒状の防露ゴム9に多数
の円環状の鋼板10を埋め込み接着した構造となってい
る。
As shown in the figure, the laminated foreshock rubber 2 has a structure in which a large number of annular steel plates 10 are embedded and bonded to a cylindrical dew-proof rubber 9.

尚、積層前震ゴム2は鋼板10間のゴム厚さが大きく、
垂直方向のばね定数が小さいと荷重が大きいのでクリー
プを起して好ましくない。通常垂直方向と水平方向のば
ね定数の比は100〜1000倍のものを使用する。
In addition, the laminated foreshock rubber 2 has a large rubber thickness between the steel plates 10,
If the spring constant in the vertical direction is small, the load will be large, which may cause creep, which is undesirable. Usually, the ratio of the spring constants in the vertical direction and the horizontal direction is 100 to 1000 times.

地震の垂直方向の振動は下部鋼板11から積層前震ゴム
2を介して空気ばねの内筒5まで伝わるが、空気ばね1
により遮断されるので建物には伝わらない。又水平方向
の振動は積層前震ゴム2と空気ばね1により吸収され、
しかも積層前震ゴム2の許容変位が大きいので、地震の
横方向の搬巾がたとえ空気ばね1の許容ストロークを越
えても振動が建物に伝わることはない。
The vertical vibration of an earthquake is transmitted from the lower steel plate 11 to the inner cylinder 5 of the air spring via the laminated foreshock rubber 2, but the air spring 1
Since the signal is blocked by , it is not transmitted to the building. In addition, horizontal vibrations are absorbed by the laminated foreshock rubber 2 and air spring 1,
Moreover, since the permissible displacement of the laminated foreshock rubber 2 is large, even if the lateral width of the earthquake exceeds the permissible stroke of the air spring 1, vibrations will not be transmitted to the building.

以上のべたような第3図に示す免震支持装置では次のよ
うな問題がある。即ち水平方向のス1〜ロークが十数セ
ンチに及ぶ大きな横ゆれを吸収しようとすると、空気ば
ねの水平許容スi・口−りが小さいことと設計上横方向
のばね定数があまり大きくとれない〈即ちあまり硬いば
ねにできない)ことなどのため、内筒2と外筒5が=6
− 当接してしまう。そうすると空気ばねの上下方向の動き
が妨げられるとともにダイヤフラム4が傷つく虞れがあ
り、免震支持装置として機能しなくなってしまう。
The seismic isolation support device shown in FIG. 3 as described above has the following problems. In other words, when attempting to absorb large lateral vibrations with a horizontal stroke of more than 10 centimeters, the horizontal permissible swing of the air spring is small and the lateral spring constant cannot be set very large due to the design. (In other words, it cannot be made into a very hard spring), so the inner cylinder 2 and outer cylinder 5 are set to = 6.
− They come into contact with each other. If this happens, the vertical movement of the air spring will be hindered, and there is a risk that the diaphragm 4 will be damaged, making it unable to function as a seismic isolation support device.

〈発明の目的〉 本発明は従来技術のかかる問題点に鑑み案出されたも・
ので、水平方向の大きなゆれを吸収できる免震支持装置
を提供することを目的とする。
<Object of the invention> The present invention has been devised in view of the problems of the prior art.
Therefore, it is an object of the present invention to provide a seismic isolation support device that can absorb large horizontal vibrations.

〈問題点を解決するための手段〉 上記目的を達成するため本発明の免震支持装置は外筒と
内筒と両筒を連結して両筒の間に密閉空間を形成するダ
イヤフラムとからなる空気ばねと、該空気ばねの内筒の
天板の下面に固着した積層防震ゴムとを備えてなり、外
筒および内筒の円筒体はダイヤフラム下端より下方に延
長され、延長部分の環状の間隙には周方向に滑り部材が
取付けられていることを特徴とするものである。
<Means for Solving the Problems> In order to achieve the above object, the seismic isolation support device of the present invention includes an outer cylinder, an inner cylinder, and a diaphragm that connects the two cylinders to form a sealed space between the two cylinders. It comprises an air spring and a laminated earthquake-proofing rubber fixed to the lower surface of the top plate of the inner cylinder of the air spring, and the cylindrical bodies of the outer cylinder and the inner cylinder extend downward from the lower end of the diaphragm, and the annular gap of the extended part It is characterized in that a sliding member is attached in the circumferential direction.

〈作  用〉 本発明の免震支持装置に大きな横ゆれが作用すると水平
方向の力を受けた外筒は内筒と直接当接することなく、
滑り部材を介して当接するので、内・外商の上下方向の
相対運動はほとんど阻害されることはなく、またダイヤ
フラムが損傷を受けることもないので、かかる場合にお
いても免震支持装置の機能が維持される。即ち上下動き
は空気ばねが、水平方向の動ぎは積層防震ゴムがそれぞ
れ受は持ち免震機能を発揮する。
<Function> When a large lateral vibration acts on the seismic isolation support device of the present invention, the outer cylinder that receives the horizontal force does not come into direct contact with the inner cylinder,
Since they come into contact via a sliding member, the relative movement of the inner and outer parts in the vertical direction is hardly hindered, and the diaphragm is not damaged, so the function of the seismic isolation support device is maintained even in such cases. be done. That is, the vertical movement is supported by air springs, and the horizontal movement is supported by laminated seismic isolation rubber, which exerts a seismic isolation function.

〈実施例〉 以下本発明の一実施例について図面を参照しつつ説明す
る。第1図は本発明の免震支持装置の断面図、第2図は
第1図のI[”4断面図である。第1図および第2図に
おいて1は空気ばね、2は積層防震ゴム、3は外筒、4
はダイヤフラム、5は内筒、6はゴム製のストッパ、7
は内筒ゴム、8は外筒ゴム、9は前震ゴム、10は円環
状の鋼板、11は下部鋼板、12は間隙、3C15Cは
それぞれ内筒および外筒の円筒体、20は滑り部材、2
1は円筒体3C15Cの剛性を増すためのリブである。
<Example> An example of the present invention will be described below with reference to the drawings. Fig. 1 is a sectional view of the seismic isolation support device of the present invention, and Fig. 2 is a sectional view of I[''4 in Fig. 1. In Fig. 1 and Fig. 2, 1 is an air spring, and 2 is a laminated seismic isolation rubber. , 3 is the outer cylinder, 4
is a diaphragm, 5 is an inner cylinder, 6 is a rubber stopper, 7
is an inner cylinder rubber, 8 is an outer cylinder rubber, 9 is a foreshock rubber, 10 is an annular steel plate, 11 is a lower steel plate, 12 is a gap, 3C15C is a cylindrical body of the inner cylinder and outer cylinder, respectively, 20 is a sliding member, 2
1 is a rib for increasing the rigidity of the cylindrical body 3C15C.

尚第1図に示−す本発明の免震支持装置は、第3図に示
す従来の免震支持装置の一部改良に関するものなので共
通する部材については同一の何月を付してあり、説明を
省略する。
The seismic isolation support device of the present invention shown in FIG. 1 is a partial improvement of the conventional seismic isolation support device shown in FIG. The explanation will be omitted.

第1図に示すように内筒3、外筒5の円筒体3C15C
はダイヤフラムのU字部より下方に延長されており、両
回筒体の隙間12には内筒の円筒体3Cの下端付近に滑
り部材20が取付けられている。滑り部材は円環状の部
材を円周方向に等間隔で切断したブロック形状をしてお
り、先端部の摺動面にはルブリボンドく商品名)などの
固体皮膜潤滑剤20aが付着しである。
As shown in FIG. 1, the cylindrical body 3C15C of the inner cylinder 3 and outer cylinder 5
extends downward from the U-shaped portion of the diaphragm, and a sliding member 20 is attached near the lower end of the inner cylinder 3C in the gap 12 between the two rotating cylinders. The sliding member has a block shape obtained by cutting an annular member at equal intervals in the circumferential direction, and a solid film lubricant 20a such as Lubribond (trade name) is adhered to the sliding surface at the tip.

滑り部材20の支持装置における高さ方向の取付位置は
積層防震ゴム2のほぼ中間の高さと同じレベルにあるこ
とが好ましい。即ち外筒5に水平方向の力を受け、それ
が滑り部材20を介して内筒に伝えられると第7図に示
すように積層防震ゴムに曲げモーメントを発生させるが
、かかる曲げモーメントは、積層防震ゴム2の中間の高
さで零になりかつこの状態でモーメントの最大値の絶対
値が最も小さいので垂直力と水平力が同時に加えられた
ときの積層防震ゴム2の円筒面の座屈に対する抵抗力が
最も大きくなるからである。
The mounting position of the sliding member 20 on the support device in the height direction is preferably at the same level as approximately the middle height of the laminated seismic insulating rubber 2. That is, when the outer cylinder 5 receives a horizontal force and is transmitted to the inner cylinder via the sliding member 20, a bending moment is generated in the laminated seismic insulation rubber as shown in FIG. The moment becomes zero at the middle height of the seismic isolation rubber 2, and the absolute value of the maximum value of the moment is the smallest in this state. This is because the resistance is the greatest.

尚滑り部材20は外筒5の円筒体5C内面に取りつけて
もよいし、内筒、外筒の両方に取りつけてもよい。また
滑り部材20はブロック状でなく環状であってもよいし
内部にコロやボールを内蔵したアンチフリクションタイ
プのものであってもよい。
The sliding member 20 may be attached to the inner surface of the cylindrical body 5C of the outer tube 5, or may be attached to both the inner tube and the outer tube. Further, the sliding member 20 may be annular instead of block-shaped, or may be of an anti-friction type with rollers or balls built therein.

次に作用を説明する。Next, the effect will be explained.

以上述べたような構造なので、水平方向の力は外筒5か
ら内筒3に滑り部材20を介して伝えられる。従って水
平方向の免震性能はすべて積層防震ゴム2より受けもた
れることになる。一方垂直方向の免震性能は空気はね1
により受けもたれるが、水平方向と垂直方向の振動が同
時に加えられた場合には、滑り部材20が内外筒の間に
介在しており、内・外筒は上下方向に自由に相対運動が
行われるので、水平方向、垂直方向の免震機能は共に発
揮できる。
With the structure described above, horizontal force is transmitted from the outer cylinder 5 to the inner cylinder 3 via the sliding member 20. Therefore, the seismic isolation performance in the horizontal direction is entirely dependent on the laminated seismic isolation rubber 2. On the other hand, the vertical seismic isolation performance is air splash 1
However, when horizontal and vertical vibrations are applied simultaneously, the sliding member 20 is interposed between the inner and outer cylinders, and the inner and outer cylinders are free to move relative to each other in the vertical direction. Therefore, both horizontal and vertical seismic isolation functions can be achieved.

〈変形例〉 第8図は本発明の変形実施例を示す部分断面図である。<Modified example> FIG. 8 is a partial sectional view showing a modified embodiment of the present invention.

本例では滑り部材は内・外筒の円筒体3C150間の間
隙12に適当な隙間13を残して取イ」けられている。
In this example, the sliding member is removed leaving an appropriate gap 13 in the gap 12 between the inner and outer cylindrical bodies 3C150.

本例の場合には水平力に対し−C空気ばねが反力を発生
させるので、図のようにダイヤフラムのU字形の下端は
滑り部材20の直上まC下げることが望ましい。
In this example, since the -C air spring generates a reaction force against the horizontal force, it is desirable to lower the U-shaped lower end of the diaphragm to just above the sliding member 20 as shown in the figure.

以上述べたように滑り部材20の先端部と外筒の円筒体
5Cの内面との間に隙間13が形成されているので水平
方向の振巾が小さい場合には滑り部材20は円筒体5C
と接触せず、摺動抵抗がなく、除振機能は従来のもの(
第3図参照)と全く同じである。例えば隙間13を10
mmとし、空気ばね1と積層防震ゴム2の水平方向のば
ね定数の化を3:1 とすると、水平方向のゆれの両撮
巾が80mm未満であれば滑り部材20と円筒体5Gの
内面とは当接しない。
As described above, since the gap 13 is formed between the tip of the sliding member 20 and the inner surface of the cylindrical body 5C of the outer cylinder, when the horizontal swing width is small, the sliding member 20 moves to the cylindrical body 5C.
There is no contact with the metal, there is no sliding resistance, and the vibration isolation function is better than that of the conventional one (
(See Figure 3). For example, change gap 13 to 10
mm, and if the horizontal spring constant of the air spring 1 and the laminated seismic insulation rubber 2 is 3:1, then if both widths of horizontal vibration are less than 80 mm, the sliding member 20 and the inner surface of the cylindrical body 5G does not come into contact.

〈発明の効果〉 以上述べたように本発明には以下の効果がある。<Effect of the invention> As described above, the present invention has the following effects.

〈1)内外筒間に滑り部材を介在させて、内外筒を当接
させるようにしたので、水平方向の大きなゆれに対して
も免震支持HHとして十分対応できる。
(1) Since a sliding member is interposed between the inner and outer cylinders so that the inner and outer cylinders are in contact with each other, the seismic isolation support HH can sufficiently cope with large vibrations in the horizontal direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の免震支持装置の断面図、第2図は第1
図の■−■矢ン児断面図、第3図は従来の免震支持装置
の断面図、第4図は積層防震ゴムの側面図、第5図は空
気ばねの断面図、第6図は空気ばねに水平方向の荷重を
かけたとぎの復元力が発生するメカニズムを説明する断
面図、第7図は水平方向の荷重に対する曲げモーメント
図、第8図は変形例の部分断面図である。 1・・・・・・空気ばね 2・・・・・・積層防震ゴム 3・・・・・・外筒 4・・・・・・ダイヤフラム 5・・・・・・内筒 20・・・・・・滑り部材 第4図 第5図 e 第6図 「−1柄 第7図 第8図 年≠δ )
Fig. 1 is a sectional view of the seismic isolation support device of the present invention, and Fig. 2 is a sectional view of the seismic isolation support device of the present invention.
Figure 3 is a cross-sectional view of a conventional seismic isolation support device, Figure 4 is a side view of a laminated seismic isolation rubber, Figure 5 is a cross-sectional view of an air spring, and Figure 6 is a cross-sectional view of a conventional seismic isolation support device. FIG. 7 is a cross-sectional view illustrating the mechanism by which a restoring force is generated when a horizontal load is applied to an air spring, FIG. 7 is a bending moment diagram against a horizontal load, and FIG. 8 is a partial cross-sectional view of a modified example. 1... Air spring 2... Laminated seismic rubber 3... Outer cylinder 4... Diaphragm 5... Inner cylinder 20... ...Sliding member Fig. 4 Fig. 5 e Fig. 6 ``-1 pattern Fig. 7 Fig. 8 Year≠δ)

Claims (1)

【特許請求の範囲】 1)外筒と内筒と両筒を連結して両筒の間に密閉空間を
形成するダイヤフラムとからなる空気ばねと、該空気ば
ねの内筒の天板の下面に固着した積層防震ゴムとを備え
てなり、外筒および内筒の円筒体はダイヤフラム下端よ
り下方に延長され、延長部分の環状の間隙には周方向に
滑り部材が取付けられていることを特徴とする免震支持
装置。 2)滑り部材は内・外筒の間隙に所要の隙間を残して取
付けられている特許請求の範囲第1項記載の免震支持装
置。 3)滑り部材は内・外筒の間隙に隙間なく取付けられて
いる特許請求の範囲第1項記載の免震支持装置。 4)滑り部材の支持装置における高さ方向の取付位置は
積層防震ゴムのほぼ中間の高さと同じレベルである特許
請求の範囲第1項ないし第3項記載の免震支持装置。
[Scope of Claims] 1) An air spring consisting of an outer cylinder, an inner cylinder, and a diaphragm that connects the two cylinders to form a sealed space between the two cylinders, and a lower surface of the top plate of the inner cylinder of the air spring. The cylindrical bodies of the outer cylinder and the inner cylinder extend downward from the lower end of the diaphragm, and a sliding member is installed in the annular gap in the extended part in the circumferential direction. Seismic isolation support device. 2) The seismic isolation support device according to claim 1, wherein the sliding member is attached with a required gap left between the inner and outer cylinders. 3) The seismic isolation support device according to claim 1, wherein the sliding member is attached without any gap between the inner and outer cylinders. 4) The seismic isolation support device according to claims 1 to 3, wherein the mounting position in the height direction of the sliding member support device is at the same level as approximately the middle height of the laminated seismic insulation rubber.
JP12118787A 1987-05-20 1987-05-20 Vibro-isolating support device Pending JPS63289344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12118787A JPS63289344A (en) 1987-05-20 1987-05-20 Vibro-isolating support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12118787A JPS63289344A (en) 1987-05-20 1987-05-20 Vibro-isolating support device

Publications (1)

Publication Number Publication Date
JPS63289344A true JPS63289344A (en) 1988-11-25

Family

ID=14805010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12118787A Pending JPS63289344A (en) 1987-05-20 1987-05-20 Vibro-isolating support device

Country Status (1)

Country Link
JP (1) JPS63289344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133592A (en) * 2012-05-21 2013-06-05 住友电气工业株式会社 Moving body anti-vibration mechanism, moving body air spring and moving body vehicle using the moving body anti-vibration mechanism and moving body air spring
CN106051017A (en) * 2016-07-05 2016-10-26 中国船舶重工集团公司第七〇九研究所 Large-load low-frequency air sac vibration isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133592A (en) * 2012-05-21 2013-06-05 住友电气工业株式会社 Moving body anti-vibration mechanism, moving body air spring and moving body vehicle using the moving body anti-vibration mechanism and moving body air spring
CN103133592B (en) * 2012-05-21 2015-08-05 住友电气工业株式会社 Moving body aseismatic mechanism and moving body pneumatic spring, use the moving body vehicle of this moving body aseismatic mechanism or pneumatic spring
CN106051017A (en) * 2016-07-05 2016-10-26 中国船舶重工集团公司第七〇九研究所 Large-load low-frequency air sac vibration isolator

Similar Documents

Publication Publication Date Title
JPH0358009B2 (en)
US10619700B2 (en) Seismic isolation apparatus
JPS63289344A (en) Vibro-isolating support device
JP3114624B2 (en) Seismic isolation device
JP2001241502A (en) Sliding brace for isolating seismic vibrations
JP2002130370A (en) Seismic isolator
JPH02266135A (en) Three-dimensional earthquake-proof and vibro-eliminator
JPS62146371A (en) Earthquakeproof device
JP2526557B2 (en) Seismic isolation support device
JP2018091035A (en) Attachment structure of building oil damper
JPH0323002Y2 (en)
JPH0520808Y2 (en)
JP4066490B2 (en) Hydraulic support device
JP3829593B2 (en) Isolation device
JPS6332278Y2 (en)
JPH07317371A (en) Free vibro-isolator
JP2706366B2 (en) Seismic isolation device using liquefaction characteristics of sand
JP3854613B2 (en) Vibration isolation and vibration control structure for structures under elevated
JP2662774B2 (en) Seismic isolation bearing structure for structures
JPH033724Y2 (en)
JPS6354955B2 (en)
JP2000074137A (en) Base isolation device
JPH069259Y2 (en) Elastic seismic isolation support device
JPS59179970A (en) Earthquake-proof apparatus
JPH11182094A (en) Base isolation device