JPS6328905B2 - - Google Patents

Info

Publication number
JPS6328905B2
JPS6328905B2 JP55063172A JP6317280A JPS6328905B2 JP S6328905 B2 JPS6328905 B2 JP S6328905B2 JP 55063172 A JP55063172 A JP 55063172A JP 6317280 A JP6317280 A JP 6317280A JP S6328905 B2 JPS6328905 B2 JP S6328905B2
Authority
JP
Japan
Prior art keywords
reaction
compound
dimethylamino
cyanide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063172A
Other languages
Japanese (ja)
Other versions
JPS56158757A (en
Inventor
Kazuo Konishi
Hiroyuki Mitsudera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP6317280A priority Critical patent/JPS56158757A/en
Priority to KR1019810001425A priority patent/KR840001373B1/en
Publication of JPS56158757A publication Critical patent/JPS56158757A/en
Publication of JPS6328905B2 publication Critical patent/JPS6328905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C331/00Derivatives of thiocyanic acid or of isothiocyanic acid
    • C07C331/02Thiocyanates
    • C07C331/12Thiocyanates having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not being part of nitro or nitroso groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、2−ジメチルアミノ−1,3−ビス
(アレンスルホニルチオ)プロパン()と青酸
塩とを反応させることを特徴とする2−ジメチル
アミノ−1,3−ジチオシアナートプロパン
()の製造法に関するものである。 本発明の目的化合物である()は文献上公知
の化合物であり、この化合物自身も強力な殺虫殺
ダニ作用を有することが特公昭51−42177に述べ
られているが、また同時に、さらに強力な殺虫作
用を有するチオールカルバメート誘導体への重要
な製造中間体であることが特公昭42−10969に述
べられている。 この化合物の製造法については、対応するジハ
ライド化合物にチオシアン酸塩(ロダン酸塩)を
反応させる方法が特公昭39−18012に、また対応
するチオ硫酸エステル塩(ブンテ塩)にシアン化
物を反応させる方法が特公昭44−19524に、また
対応するジチオール化合物にシアン化ハロゲン
(シアノーゲンハライド)を反応させる方法が特
開昭47−34316にそれぞれ述べられている。 本発明者らは、さらにより容易に、より高純度
に、かつより高収率にこの目的化合物()を製
造する方法を探索開発すべく、鋭意研究を続けて
きた結果、()と青酸塩が意外にも好収率で
()を生成するとの知見を得て、これを基とし
て本発明を完成するに至つた。 本発明の原料化合物である()は文献上公知
の化合物であり、その製造法については、対応す
るジクロライド化合物などにアレンチオスルホン
酸塩を反応させることにより、容易に、高純度
に、かつ高収率に製造できることが特公昭45−
18847に述べられており、かつ本化合物自身も強
力な殺虫作用を有することが、特公昭46−13755
に述べられている。 しかしながら、本化合物()の各種試薬に対
する化学反応はほとんど知られておらず、塩基性
物質と処理することによつて4−ジメチルアミノ
−1,2−ジチオランを与えることが特公昭45−
15261に述べられている。 本発明者らは、化合物()と塩基物質の一種
ともいえる青酸塩とを反応させたところ、上記と
全く異質の化学反応を示し、きわめて温和な条件
下で反応が円滑に進行して短時間内で終結し、定
量的な収率で目的化合物たるジチオシアナート体
()を与えることを知つた。 さらに本発明の反応により副生するアレンスル
フイン酸塩は水溶性であり、主生成物である脂溶
性の目的化合物()とは反応終了後容易に分離
することができる。例えば反応溶媒として水を用
いた場合は、主生成物を分離後、水性母液を濃縮
乾固すると、高純度品としてアレンスルフイン酸
塩を定量的に回収することができる。 このアレンスルフイン酸塩は、たとえばアミン
の存在下に硫黄と処理することにより、原料化合
物()の原料であるアレンチオスルホン酸塩へ
容易に再生することができる。したがつて、本発
明の反応においては癈出すべき癈棄物は全くな
く、公害防止対策上からも、省資源の観点からも
きわめて有利な製造法ということができる。 本発明に用いる原料化合物()におけるアレ
ンとは、たとえばベンゼン、トルエン、キシレ
ン、エチルベンゼン、クメン、ナフタレン等の芳
香族炭化水素であり、さらにたとえばハロゲン
(クロル、ブロム等)、ニトロ、アセチルアミノ、
低級アルコキシ(メトキシ、エトキシ等)、低級
アルキルチオ(メチルチオ、エチルチオ等)等が
置換した芳香族炭化水素たとえばクロルベンゼ
ン、ジクロロベンゼン、ブロモベンゼン、ニトロ
ベンゼン、アセタミドベンゼン、メトキシベンゼ
ン、メチルチオベンゼンなどであつてもよい。 本発明に用いる具体的な原料()としては、 (1) 2−ジメチルアミノ−1,3−ビス(ベンゼ
ンスルホニルチオ)プロパン、m.p.83〜4℃ (2) 2−ジメチルアミノ−1,3−ビス(2−メ
チルベンゼンスルホニルチオ)プロパン修酸
塩、m.p.131〜2℃(分解) (3) 2−ジメチルアミノ−1,3−ビス(4−メ
チルベンゼンスルホニルチオ)プロパン、m.
p.114〜5℃ (4) 2−ジメチルアミノ−1,3−ビス(4−ク
ロロベンゼンスルホニルチオ)プロパン、m.
p.143〜4℃ (5) 2−ジメチルアミノ−1,3−ビス(4−メ
トキシベンゼンスルホニルチオ)プロパン、
m.p.115.5〜7℃ (6) 2−ジメチルアミノ−1,3−ビス(β−ナ
フタレンスルホニルチオ)プロパン、m.p.110
〜5℃ などがある。 本発明に用いる青酸塩(シアン化物)は通常容
易に市販品として入手し得る固形のシアン化ナト
リウム、シアン化カリウムなど青酸のアルカリ金
属塩でよく、所望によつてはアンモニウム塩やア
ルカリ土類金属塩、重金属塩も用いることができ
る。本反応は短時間内に定量的に進行するので、
反応に必要な青酸塩の使用量は化学量論的には原
料化合物()1モルに対して丁度対応する2モ
ルで充分であり、所望によつては僅かに過量を用
いてもよいが、資源節約の面からも、反応後の癈
液処理の観点からも過度の過量使用は望ましくな
い。 本発明の反応に用いる溶媒としては、原料化合
物()と青酸塩の一方または両者を溶解し得う
る溶媒が好ましいが、ともに溶解し難い溶媒であ
つても充分進行する。ただし、極端に液性が酸性
またはアルカリ性に片寄る溶媒は試薬の性質上ま
たは原料・目的化合物()、()の性質上好ま
しくなく、したがつてほぼ中性の溶媒であれば反
応を阻害しない限りいかなる溶媒でも用い得る。
すなわち、溶媒としては、例えばメタノール、エ
タノール、イソプロパノールなどの低級脂肪族ア
ルコール類、たとえばアセトン、メチルエチルケ
トン、メチルイソブチルケトンなどの低級脂肪族
ケトン類、ジエチルエーテル、テトラヒドロフラ
ン、ジオキサンなどの低級鎖状または環状脂肪族
エーテル類、たとえば酢酸エチル、アセトニトリ
ル、ジメチルホルムアミドなどの低級脂肪族カル
ボン酸誘導体、たとえば二硫化炭素、ジメチルス
ルホキシド、テトラメチレンスルホンなどの低級
鎖状または環状脂肪族硫黄化合物などを用いるこ
とができる。また所望によつては水やたとえば塩
化メチレン、クロロホルム、四塩化炭素などの低
級脂肪族ハロゲン化炭化水素類、たとえばベンゼ
ン、トルエン、キシレン、クロルベンゼンなどの
芳香族炭化水素類などを用いることもできる。こ
れらの溶媒はそれぞれ単独で用いてもよく、また
適当な混合比で2種またはそれ以上の溶媒を混合
して用いてもよい。さらに、相互に混和し合わな
い組合せ、たとえば水と芳香族炭化水素や脂肪族
ハロゲン化炭化水素を組合わせて用いる場合には
二層系となるが、この様な場合には四級アンモニ
ウム塩、スルホニウム塩、ホスホニウム塩などの
所謂相間移動触媒を少量添加すると好ましい結果
が得られる。 本発明の反応は原料化合物()と青酸塩を溶
媒中で接触させることにより、直ちに反応が開始
し、場合によつてはむしろ発熱的でさえある。生
成物である目的化合物()は、遊離塩基の状態
では低融点の固体であり、かつ熱に対しては安定
性を欠く性質なので、反応温度は45℃以下に保つ
のが望ましく、通常は室温またはそれ以下に保つ
のが好ましい。したがつて、場合によつてはむし
ろ反応容器を外部から冷却する必要がある。 また、本発明の反応は上記条件下できわめて円
滑に進行し、通常数時間以内に完結するが、場合
によつては数分乃至十数分でも終了する。生成物
である目的化合物()はまたアルカリに対して
も安定性を欠くので、不必要に反応時間を延長
し、過量のシアンイオンや副生しているアレンス
ルフイン酸イオンと長時間接触させておくことは
着色や収率低下の原因となり、不利になるので反
応終了後は直ちに反応系を冷却して結晶析出を促
進するかまたは可溶溶媒へ抽出転溶して反応系か
ら単離するのが望ましい。 本反応の完結は生成した目的化合物()の系
外への析出または薄層クロマトグラフ(TLC)
や高速液体クロマトグラフ(HLC)などの機器
分析手段により容易に確認することができる。 本発明の製造法により製造される目的化合物
()は粗製のままでも充分高純度であり、その
ままで充分製造中間体としても使用し得るが、所
望によつては適当な溶媒から再結晶精製すること
も可能であり、また場合によつては有機・無機の
酸塩として安定性を確保してから、再結晶により
精製することもできる。 以下、実施例を挙げて具体的に本発明を説明す
る。 実施例 1 水50mlにシアン化ナトリウム(青酸ソーダ)
2.2g(純度95%、0.042モル)を溶かし、室温で
かきまぜながらこれに2−ジメチルアミノ−1,
3−ビス(ベンゼンスルホニルチオ)プロパン
8.6g(0.02モル)を少しづつ加える。この間少
し発熱して内温が2℃ほど上昇する。そのまま、
さらに室温で約1時間かきまぜつづけた後、反応
容器を氷水で冷却して内温を10℃まで下げる。析
出した類白色結晶性粉末をろ取し、少量の水で洗
い、減圧下にデシケーター中で乾燥する。収量は
3.8g(95%)で、融点50〜52℃を示し、別に合
成した標品の2−ジメチルアミノ−1,3−ジチ
オシアナートプロパンと一致した。反応母液を減
圧下に濃縮乾固すると、白色結晶7.0gが得られ
る。これを高速液体クロマトグラフを用いて、別
に調製した標品のベンゼンスルフイン酸ナトリウ
ム(2水和物)と比較したところ、純度91.5%、
したがつて回収率97%であつた。 上記実施例1に準じて反応を行ない、次表に示
す結果を得た。
The present invention provides 2-dimethylamino-1,3-dithiocyanatopropane (2), which is characterized by reacting 2-dimethylamino-1,3-bis(alesulfonylthio)propane (2) with a cyanide salt. It concerns the manufacturing method. The target compound of the present invention () is a compound known in the literature, and it is stated in Japanese Patent Publication No. 51-42177 that this compound itself has a strong insecticidal and acaricidal action. It is stated in Japanese Patent Publication No. 42-10969 that it is an important intermediate in the production of thiol carbamate derivatives that have insecticidal activity. Regarding the production method of this compound, a method of reacting a thiocyanate (rhodanate) with the corresponding dihalide compound is described in Japanese Patent Publication No. 18012/1973, and a method of reacting a cyanide with the corresponding thiosulfate salt (Bunte salt). A method is described in Japanese Patent Publication No. 44-19524, and a method of reacting a corresponding dithiol compound with a cyanogen halide is described in Japanese Patent Publication No. 47-34316. The present inventors have continued their intensive research in order to explore and develop a method for producing the target compound () even more easily, with higher purity, and with higher yield. It was discovered that () was produced in a surprisingly good yield, and based on this, the present invention was completed. (), which is the starting material compound of the present invention, is a compound known in the literature, and its production method is such that it can be easily produced with high purity and high purity by reacting the corresponding dichloride compound with allenethiosulfonate. The fact that it could be produced with high yield was recognized
18847, and that this compound itself also has a strong insecticidal effect, as reported in Japanese Patent Publication No. 46-13755.
It is stated in However, little is known about the chemical reactions of this compound (2) with various reagents, and it is believed that 4-dimethylamino-1,2-dithiolane can be obtained by treating it with a basic substance.
15261. When the present inventors reacted the compound () with cyanide, which can be said to be a type of basic substance, a chemical reaction completely different from that described above was observed, and the reaction proceeded smoothly under extremely mild conditions and in a short time. It was found that the target compound, the dithiocyanate derivative (), was obtained in quantitative yield. Furthermore, the allene sulfinate by-produced by the reaction of the present invention is water-soluble and can be easily separated from the main product, the fat-soluble target compound (), after the reaction is completed. For example, when water is used as the reaction solvent, by separating the main product and concentrating the aqueous mother liquor to dryness, allene sulfinate can be quantitatively recovered as a high-purity product. This allene sulfinate can be easily regenerated into allenethiosulfonate, which is the raw material for the raw material compound (), by treating it with sulfur in the presence of an amine, for example. Therefore, in the reaction of the present invention, there are no combustion wastes to be produced, and the production method can be said to be extremely advantageous from the viewpoint of pollution prevention measures and resource saving. Allen in the raw material compound () used in the present invention is, for example, an aromatic hydrocarbon such as benzene, toluene, xylene, ethylbenzene, cumene, naphthalene, etc., and furthermore, for example, halogen (chloro, brome, etc.), nitro, acetylamino,
Aromatic hydrocarbons substituted with lower alkoxy (methoxy, ethoxy, etc.), lower alkylthio (methylthio, ethylthio, etc.), such as chlorobenzene, dichlorobenzene, bromobenzene, nitrobenzene, acetamidobenzene, methoxybenzene, methylthiobenzene, etc. It's okay. Specific raw materials () used in the present invention include (1) 2-dimethylamino-1,3-bis(benzenesulfonylthio)propane, mp83-4°C (2) 2-dimethylamino-1,3-bis (2-Methylbenzenesulfonylthio)propane oxalate, mp131~2℃ (decomposition) (3) 2-dimethylamino-1,3-bis(4-methylbenzenesulfonylthio)propane, m.
p.114~5℃ (4) 2-dimethylamino-1,3-bis(4-chlorobenzenesulfonylthio)propane, m.
p.143~4℃ (5) 2-dimethylamino-1,3-bis(4-methoxybenzenesulfonylthio)propane,
mp115.5~7℃ (6) 2-dimethylamino-1,3-bis(β-naphthalenesulfonylthio)propane, mp110
-5℃ etc. The cyanide used in the present invention may be a solid alkali metal salt of cyanide such as sodium cyanide or potassium cyanide, which is usually easily available as a commercial product, and if desired, an ammonium salt or an alkaline earth metal salt, Heavy metal salts can also be used. This reaction progresses quantitatively within a short time, so
The amount of cyanide necessary for the reaction is stoichiometrically sufficient to be 2 moles exactly corresponding to 1 mole of the starting compound (), and a slight excess may be used if desired. Excessive use is undesirable from the viewpoint of saving resources and treating the eruption solution after the reaction. As the solvent used in the reaction of the present invention, a solvent capable of dissolving one or both of the raw material compound () and the cyanide salt is preferable, but the reaction proceeds satisfactorily even if it is a solvent in which both are difficult to dissolve. However, solvents whose liquid properties tend to be extremely acidic or alkaline are unfavorable due to the properties of the reagent or the properties of the raw materials and target compounds () and (). Therefore, as long as the solvent is approximately neutral, as long as it does not inhibit the reaction. Any solvent can be used.
That is, examples of the solvent include lower aliphatic alcohols such as methanol, ethanol, and isopropanol, lower aliphatic ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and lower chain or cyclic aliphatic substances such as diethyl ether, tetrahydrofuran, and dioxane. Group ethers such as lower aliphatic carboxylic acid derivatives such as ethyl acetate, acetonitrile and dimethylformamide, lower chain or cycloaliphatic sulfur compounds such as carbon disulfide, dimethyl sulfoxide and tetramethylene sulfone, etc. can be used. If desired, water, lower aliphatic halogenated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride, aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene may also be used. . Each of these solvents may be used alone, or two or more solvents may be used as a mixture at an appropriate mixing ratio. Furthermore, when a mutually immiscible combination is used, for example, a combination of water and an aromatic hydrocarbon or an aliphatic halogenated hydrocarbon, a two-layer system is formed; in such a case, a quaternary ammonium salt, Favorable results can be obtained by adding a small amount of a so-called phase transfer catalyst such as a sulfonium salt or a phosphonium salt. The reaction of the present invention starts immediately by bringing the raw material compound (2) into contact with the cyanide salt in a solvent, and is even exothermic in some cases. The product, the target compound (), is a solid with a low melting point in its free base state and is unstable to heat, so it is desirable to keep the reaction temperature below 45°C, usually at room temperature. It is preferable to keep it at or below that level. Therefore, it may even be necessary to cool the reaction vessel externally. Further, the reaction of the present invention proceeds very smoothly under the above conditions and is usually completed within several hours, but may be completed within several minutes to more than ten minutes in some cases. The target compound (), which is the product, also lacks stability against alkalis, so the reaction time is unnecessarily extended and it is left in contact with excess cyanide ions and by-produced allenesulfinate ions for a long time. Leaving it for a while may cause coloration and decrease in yield, which is disadvantageous, so immediately after the reaction is completed, the reaction system should be cooled to promote crystal precipitation, or isolated from the reaction system by extraction and transfer into a soluble solvent. is desirable. The completion of this reaction is the precipitation of the generated target compound () out of the system or thin layer chromatography (TLC).
It can be easily confirmed by instrumental analysis methods such as high-performance liquid chromatography (HLC). The target compound () produced by the production method of the present invention has sufficiently high purity even in its crude form, and can be used as a production intermediate as it is, but if desired, it may be purified by recrystallization from an appropriate solvent. In some cases, it is also possible to secure stability as an organic or inorganic acid salt and then purify it by recrystallization. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Sodium cyanide (sodium cyanide) in 50ml of water
Dissolve 2.2g (95% purity, 0.042 mol) and add 2-dimethylamino-1, 2-dimethylamino-1, while stirring at room temperature.
3-bis(benzenesulfonylthio)propane
Add 8.6g (0.02mol) little by little. During this time, it generates a little heat and the internal temperature rises by about 2 degrees Celsius. As it is,
After continuing stirring at room temperature for about 1 hour, the reaction vessel was cooled with ice water to lower the internal temperature to 10°C. The precipitated white crystalline powder is collected by filtration, washed with a small amount of water, and dried in a desiccator under reduced pressure. The yield is
3.8 g (95%) showed a melting point of 50 to 52°C, which was consistent with the separately synthesized standard 2-dimethylamino-1,3-dithiocyanatopropane. The reaction mother liquor was concentrated to dryness under reduced pressure to obtain 7.0 g of white crystals. When this was compared with a separately prepared standard sodium benzenesulfinate (dihydrate) using high performance liquid chromatography, the purity was 91.5%.
Therefore, the recovery rate was 97%. A reaction was carried out according to Example 1 above, and the results shown in the following table were obtained.

【表】 *2 反応の間中窒素ガスを通気した。
[Table] *2 Nitrogen gas was bubbled throughout the reaction.

Claims (1)

【特許請求の範囲】[Claims] 1 2−ジメチルアミノ−1,3−ビス(アレン
スルホニルチオ)プロパンと青酸塩とを反応させ
ることを特徴とする2−ジメチルアミノ−1,3
−ジチオシアナートプロパンの製造法。
1 2-dimethylamino-1,3 characterized by reacting 2-dimethylamino-1,3-bis(alesulfonylthio)propane with a cyanide salt
- A method for producing dithiocyanate propane.
JP6317280A 1980-05-12 1980-05-12 Preparation of thiocyanate compound Granted JPS56158757A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6317280A JPS56158757A (en) 1980-05-12 1980-05-12 Preparation of thiocyanate compound
KR1019810001425A KR840001373B1 (en) 1980-05-12 1981-04-25 Process for the preparation of 2-dimethylmino-1,3-dithio cyanatopropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317280A JPS56158757A (en) 1980-05-12 1980-05-12 Preparation of thiocyanate compound

Publications (2)

Publication Number Publication Date
JPS56158757A JPS56158757A (en) 1981-12-07
JPS6328905B2 true JPS6328905B2 (en) 1988-06-10

Family

ID=13221567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317280A Granted JPS56158757A (en) 1980-05-12 1980-05-12 Preparation of thiocyanate compound

Country Status (2)

Country Link
JP (1) JPS56158757A (en)
KR (1) KR840001373B1 (en)

Also Published As

Publication number Publication date
KR840001373B1 (en) 1984-09-21
KR830005130A (en) 1983-08-03
JPS56158757A (en) 1981-12-07

Similar Documents

Publication Publication Date Title
JPS5934702B2 (en) Method for producing α・α-dimethylbenzyl isocyanate or its nuclear substituted product
JPS6328905B2 (en)
JP2590246B2 (en) Process for producing 3-trifluoromethylbenzenesulfonyl chlorides
EP0844239B1 (en) Method for producing homocystine
KR860002166B1 (en) An improved process for preparing sulfonamides
JPS6354712B2 (en)
US5338886A (en) Process for preparation of aromatic thiols
EP1678129B1 (en) Improved process for preparing benzhydrylthioacetamide
JPH0124790B2 (en)
JPWO2002022535A1 (en) Method for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
US2986581A (en) Production of aromatic disulfides
US4461918A (en) Process for producing pentachloronitrobenzene from hexachlorobenzene
JPS6127980A (en) Preparation of hydroxyflavan compound
CN110078674B (en) Preparation method of 2-alkyl amino pyrimidone
JPS602302B2 (en) Cis-β-(trimethylammonium)-acrylonitrile tosylate and its production method
JPH0625151A (en) Production of o-benzenedithiol compound
KR800001589B1 (en) Process for the preparation of cloro sulfonyl benzyl cloride
JPS6348260A (en) Production of alkali metallic salt of benzenesulfinic acid
SU882187A1 (en) 1,1-dioxo-3-hydroxythiolanyl-4-isothiouronic salts as initial substance for synthesis of 3,4-thriiranothiolan-1,1-dioxide
JPH0586042A (en) Process for producing 2-mercapto-phenothiazine
JPH04234358A (en) Process for producing 2,6-t-butyl-4-mercapto- phenol
JP2706517B2 (en) Novel disulfide and method for producing tolnaftate using the disulfide as a raw material
WO2004039769A1 (en) A process for the production of highly pure n-(4-cyano-3­trifluoromethylphenyl)-3-(4-fluorophenylthio)-2-hydroxy-2­methylpropanamide
JPS6019288B2 (en) Method for producing optically active N-substituted diarylsulfuimine
CN112094210A (en) Preparation method of substituted sulfinate