JPS63288135A - Ophthalmic measuring apparatus - Google Patents

Ophthalmic measuring apparatus

Info

Publication number
JPS63288135A
JPS63288135A JP62121415A JP12141587A JPS63288135A JP S63288135 A JPS63288135 A JP S63288135A JP 62121415 A JP62121415 A JP 62121415A JP 12141587 A JP12141587 A JP 12141587A JP S63288135 A JPS63288135 A JP S63288135A
Authority
JP
Japan
Prior art keywords
light
laser
laser beam
polarizing plate
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121415A
Other languages
Japanese (ja)
Inventor
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP62121415A priority Critical patent/JPS63288135A/en
Priority to EP88304394A priority patent/EP0292216B1/en
Priority to DE88304394T priority patent/DE3885341T2/en
Publication of JPS63288135A publication Critical patent/JPS63288135A/en
Priority to US07/430,062 priority patent/US4991954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To perform accurate measurement regardless of the output variation of a laser beam source, by controlling the quantity of the laser beam projected on the predetermined point in an eye by a beam quantity control means so as to make the same almost constant regardless of the output variation of the laser beam source. CONSTITUTION:A polarizing plate 2a has a polarizing direction P and an He-Ne laser beam source 1 has a linear polarizing direction shown by Q and, therefore, the quantity of transmitted beam can be arbitrarily controlled by revolving the polarizing plate 2a. The signal from a photodiode 3' is inputted to a beam control circuit 42 containing a motor and the automatic control of the quantity of laser beam is performed so as to make the quantity of the laser beam incident to the photodiode 3' constant. That is, when the quantity of beam is desired to increase, the polarizing plate 2a is rotated so that the polarizing direction Q of laser coincides with the polarizing direction P of the polarizing plate 2a and, when the quantity of beam is reduced, the polarizing plate 2a is rotated in a direction wherein the direction P, Q become 90 deg.. As mentioned above, the almost constant quantity of beam is obtained through adjustment regardless of the power variation of the laser beam source.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼科測定装置、さらに詳細にはレーザー光を光
学系を通して眼内、特に前房の所定の点に照射し、その
眼内からのレーザー散乱光を検出して眼科疾患を測定す
る眼科測定装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ophthalmological measurement device, and more specifically, a laser beam is irradiated into the eye, particularly at a predetermined point in the anterior chamber, through an optical system, and a laser beam is emitted from the eye. The present invention relates to an ophthalmological measurement device that measures ophthalmological diseases by detecting laser scattered light.

[従来の技術1 前房肉蛋白濃度測定は眼内縁即ち血液房水棚を判定する
上で極めて重要である。従来は細隙灯顕微鏡を用いての
グレーディングによる目視判定が繁用されている一方、
定量的な方法としては写真計測法が報告されているが容
易に臨床応用できる方法は未だできていない。
[Prior Art 1 Measuring anterior chamber protein concentration is extremely important in determining the intraocular rim, ie, the aqueous humor shelf. Conventionally, visual judgment by grading using a slit lamp microscope has been frequently used,
A photometric method has been reported as a quantitative method, but a method that can be easily applied clinically has not yet been developed.

従来の目視判定では個人差により判定基準が異なりデー
タの新憑性に欠けるという問題点があるので、これを解
決するためにレーザー光を眼内に照射し、そこからの散
乱光を受光して定1正分析することにより眼科測定をす
ることが行なわれている。
Conventional visual judgment has the problem that the judgment criteria vary depending on individual differences and the data lacks freshness.To solve this problem, we irradiate the inside of the eye with a laser beam and receive the scattered light from it. Ophthalmological measurements are carried out by performing constant 1-positive analysis.

[発明が解決しようとする問題点] 通常、上述したレーザー光を発射するレーザー光源には
数%のパワー変動があり、それにより眼内から得られる
散乱光強度も変動する。散乱光強度と前m肉蛋白濃度と
の間には強い相関関係(直線)があるため、散乱光強度
変化は、ただちに測定誤差につながり、再現性が劣化し
、測定精度が悪くなってしまう。
[Problems to be Solved by the Invention] Normally, the power of the laser light source that emits the above-mentioned laser light varies by several percent, and as a result, the intensity of scattered light obtained from within the eye also varies. Since there is a strong correlation (straight line) between the scattered light intensity and the meat protein concentration, changes in the scattered light intensity immediately lead to measurement errors, resulting in poor reproducibility and poor measurement accuracy.

従って1本発明はこのような問題点を解決するために、
レーザー光源の出力変動に無関係に正確な測定が可能な
眼科測定装置を提供することを目的とする。
Therefore, in order to solve these problems, the present invention has the following features:
It is an object of the present invention to provide an ophthalmological measuring device that can perform accurate measurements regardless of output fluctuations of a laser light source.

[問題点を解決するための手段] 本発明は、このような問題点を解決するために、レーザ
ー光源の出射部に光量調節手段を設け、[I[!内の所
定点に投光されるレーザー光量をレーザー光源の出力変
動に無関係にほぼ一定になるように調光する構成を採用
した。
[Means for Solving the Problems] In order to solve these problems, the present invention provides a light amount adjusting means in the emission part of the laser light source, and [I[! A configuration was adopted in which the amount of laser light projected onto a predetermined point within the area is adjusted to be approximately constant regardless of fluctuations in the output of the laser light source.

[作 用] このような構成では、レーザー光量の変動がほぼなくな
るので、精度のよい測定が可能になる。
[Function] With such a configuration, fluctuations in the amount of laser light are almost eliminated, making it possible to measure with high precision.

[実施例] 以下、図面に示す実施例に基づき本発明の詳細な説明す
る。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図、第2図には本発明に関わる眼科測定装との概略
構成が図示されており、同図において符号lで示すもの
は例えばヘリウムネオンで構成されるレーザー光源で、
このレーザー光源1は架台2上に配置される。レーザー
光源lからの光は偏光板、透過率可変型NDフィルタ等
の光量調節手段2.ビームスプリッタ3、プリズム4,
5゜6、レンズ7、ビームスプリッタ8.レンズ9、プ
リズム10を介して被検眼11の比肩11aの1点に集
光するように結像される。ビームスプリッタ3によって
分離されたレーザー光は、レーザー光源1からでるレー
ザー光量をモニタするために設けられた光量センサーと
して機能する例えばフォトダイオード3′に入射される
。フォトダイオード3′の出力は自動調光回路42に入
力され、光量調節手段2にフィードバックされレーザー
光qを所定の光量に2II節する。
FIG. 1 and FIG. 2 show a schematic configuration of an ophthalmological measuring device according to the present invention, and in the same figure, what is indicated by the symbol l is a laser light source made of, for example, helium neon,
This laser light source 1 is arranged on a pedestal 2. The light from the laser light source 1 is transmitted through light amount adjusting means such as a polarizing plate or a variable transmittance ND filter. Beam splitter 3, prism 4,
5°6, lens 7, beam splitter 8. The light is imaged through the lens 9 and prism 10 so as to be focused on one point 11a of the eye 11 to be examined. The laser light separated by the beam splitter 3 is incident on, for example, a photodiode 3' which functions as a light amount sensor provided to monitor the amount of laser light emitted from the laser light source 1. The output of the photodiode 3' is input to the automatic light control circuit 42 and fed back to the light amount adjusting means 2 to adjust the laser light q to a predetermined light amount.

このレーザー投光部にはスリット光用光源12が設けら
れ、この光源12からの光はスリット光用シャッタ13
. スリット14を経てビームスプリッタ8.レンズ9
.プリズム10を介し比肩11aにスリット像として結
像される。このスリット像は、上述したレーザー光源か
らの光が点状に結像されるため、その周囲を照明して点
像の位ごを容易に確認するためのものである。
This laser projector is provided with a slit light light source 12, and the light from this light source 12 is transmitted to a slit light shutter 13.
.. Beam splitter 8. via slit 14. lens 9
.. A slit image is formed on the mirror 11a through the prism 10. Since this slit image is formed by light from the laser light source described above into a point shape, the slit image is used to illuminate the periphery of the slit image to easily confirm the position of the point image.

またスリット14のスリット幅並びにスリット長さはX
!J整ノブ15及び切換ノブ16を介してそれぞれ調整
ないし切り換えることができる。
Also, the slit width and slit length of the slit 14 are
! They can be adjusted or switched via the J adjustment knob 15 and the switching knob 16, respectively.

比肩11aにおける計測点からのレーザー散乱光の一部
は検出部29の対物レンズ20を経てハーフミラ−また
はビームスプリッタ21により分割されてその一部はレ
ンズ22、スリット26aを有するマスク26.シャッ
タ26′を経て光電変換素子として機能する光電子増倍
管(フォトマル)27に入射される。またビームスプリ
ッタ21により分割された他方の散乱光は変倍レンズ3
0、プリズム31.34を経て接眼レンズ32により検
者33によって観察することができる。
A part of the laser scattered light from the measurement point at the comparison point 11a passes through the objective lens 20 of the detection unit 29 and is split by a half mirror or beam splitter 21, and part of it is sent to the lens 22 and the mask 26 having a slit 26a. The light passes through a shutter 26' and enters a photomultiplier tube (photomultiplier) 27 which functions as a photoelectric conversion element. The other scattered light split by the beam splitter 21 is sent to the variable magnification lens 3.
0, it can be observed by the examiner 33 through the eyepiece 32 through the prisms 31 and 34.

また光電子増倍管27の出力はアンプ28を経てカウン
ター40に入力され、光電子増倍管によって検出された
散乱光強度が単位時間当りのパルス数として計数される
。このカウンター40の出力即ち、サンプリング回数や
総パルス数は、各中位時間ごとに割り当てられたメモリ
25内に格納される。メモリ25に格納されたデータは
演算装置41により後述するように演算処理され、前房
内折白濃度が演算される。
The output of the photomultiplier tube 27 is input to a counter 40 via an amplifier 28, and the intensity of scattered light detected by the photomultiplier tube is counted as the number of pulses per unit time. The output of this counter 40, ie, the number of samplings and the total number of pulses, is stored in the memory 25 allocated for each intermediate time. The data stored in the memory 25 is subjected to arithmetic processing as described later by the arithmetic unit 41, and the intracameral whitening density is calculated.

なお検出部29は支柱70に取り付けられており、支柱
70とレーザー投光部が軸71を中心に互いに回動でき
るように取り付けられるので、レーザー投光系と受光系
の光軸は任意の角度に設定できる。
Note that the detection unit 29 is attached to a support 70, and the support 70 and the laser emitting unit are attached so that they can rotate relative to each other around an axis 71, so the optical axes of the laser emission system and the light receiving system can be set at any angle. Can be set to

また本発明では電源91から給電される発光ダイオード
等からなる固視灯90が被検者が固視できる位置に配置
される。この固視灯90の色光は、レーザー光源1の色
光と異なるように、例えばレーザー光源からの光が赤色
である場合は緑色のように選ばれる。またこの固視灯9
0はリンク機構92により矢印方向に回動でき被検者に
対して好適な位置に調節可能である。
Further, in the present invention, a fixation lamp 90 made of a light emitting diode or the like and supplied with power from a power source 91 is arranged at a position where the subject can fixate the fixation lamp. The colored light of this fixation lamp 90 is selected to be different from the colored light of the laser light source 1, such as green if the light from the laser light source is red. Also, this fixation light 9
0 can be rotated in the direction of the arrow by a link mechanism 92 and adjusted to a suitable position for the subject.

また架台2上には押しボタン46を備えた例えばジョイ
スティック45のような入力装置が設けられており、こ
れを操作することによりレーザー用フィルタ3、スリッ
ト光用シャッタ13、フォトマルシャッタ26′等をそ
れぞれの光学系に挿入または離脱させることができる。
Further, an input device such as a joystick 45 equipped with a push button 46 is provided on the pedestal 2, and by operating the input device, the laser filter 3, the slit light shutter 13, the photomarshutter 26', etc. It can be inserted into or removed from each optical system.

次にこのように構成された装置の動作を説明する。測定
に際しては先ず光源12を点灯し、ビームスプリッタ8
.10、レンズ9を介して前房11aの測定点Pを含む
部分にスリ7)14のスリット像を結像する。続いてレ
ーザー光源からの光をその光学系を介して測定点Pに集
光させる。
Next, the operation of the device configured as described above will be explained. For measurement, first turn on the light source 12, then turn on the beam splitter 8.
.. 10. A slit image of the pickpocket 7) 14 is formed on a portion of the anterior chamber 11a including the measurement point P via the lens 9. Subsequently, the light from the laser light source is focused on the measurement point P via the optical system.

通常レーザー光源には数%のパワー変動があり、それに
より測定誤差が発生するのを避けるためにレーザー光量
を一定に調節する手段が設けられる。光A 31 節手
段2が偏光板2aで構成される場合には、第3図(A)
に図示したように偏光板2aは光路1aを中心に回動す
るように取り付けられる。偏光板2aは第3図CB)に
図示したように偏光方向Pを有しており、またHe−N
eレーザー光源1はQで示した直線偏光方向を有するの
で、偏光板2aを回動させることにより、透過光量を任
意にiA節することができる。
Normally, a laser light source has a power fluctuation of several percent, and in order to avoid measurement errors caused by this, a means is provided to adjust the amount of laser light to a constant level. Light A 31 When the dividing means 2 is composed of a polarizing plate 2a, as shown in FIG. 3(A)
As shown in the figure, the polarizing plate 2a is attached so as to rotate around the optical path 1a. The polarizing plate 2a has a polarization direction P as shown in FIG.
Since the e-laser light source 1 has a linear polarization direction indicated by Q, the amount of transmitted light can be arbitrarily adjusted by iA by rotating the polarizing plate 2a.

例えば、フォトダイオード3′からの信号をモータ等を
含む調光回路42に入力させ、フォトダイオード3′に
入射される光量が一定になるように自動調光を行なう、
すなわち、光量を増加させたいときはレーザーの偏光方
向Qと偏光板2aの偏光方向Pが一致するように、また
減少させるときにはP、Qが90°になる方向に回転さ
せる。
For example, a signal from the photodiode 3' is inputted to a dimming circuit 42 including a motor, etc., and automatic dimming is performed so that the amount of light incident on the photodiode 3' is constant.
That is, when it is desired to increase the amount of light, it is rotated so that the polarization direction Q of the laser and the polarization direction P of the polarizing plate 2a match, and when it is desired to decrease it, it is rotated so that P and Q are 90 degrees.

このように測定点Pに集光されたレーザー光束は・ レ
ーザー光源のパワー変動に無関係にほぼ一定の光量に2
11節される。
The laser beam focused on the measurement point P in this way has an almost constant light intensity regardless of the power fluctuation of the laser light source2.
Verse 11 is given.

測w 点pで散乱された光はその一部がビームスブリ7
タ21により検者33の方向により向けられa 74さ
れると同時にレンズ22.プリズム23、マスク26を
介して光電子増倍管27に入射される。
Measurement w A part of the light scattered at point p is beam
At the same time, the lens 22 is directed toward the examiner 33 by the lens 21. The light enters a photomultiplier tube 27 via a prism 23 and a mask 26.

光電子増倍管27は、スリット26aを介して入射され
るレーザー散乱光を受光し、前房11a内の蛋白粒子に
よって散乱される散乱光の強度を検出し、それに応じて
パルス列に変換され単位時間当りのパルス数としてカウ
ンター40で計数され、その計数値が各単位時間ごとに
割り当てられたメモリ25に格納される。演算装置41
では、メモリ25に格納されているデータを演算して前
回内蛋白濃度を演算する。
The photomultiplier tube 27 receives the laser scattered light incident through the slit 26a, detects the intensity of the scattered light scattered by protein particles in the anterior chamber 11a, and converts it into a pulse train according to the intensity of the scattered light for a unit time. The number of pulses per pulse is counted by a counter 40, and the counted value is stored in the memory 25 allocated for each unit time. Arithmetic device 41
Now, the data stored in the memory 25 is operated to calculate the previous protein concentration.

第4図(A)、(B)には光量2g1ft′1手段が透
過率可変型NDにュートラルデンシティ)フィルタで4
IIir:#、される実施例が図示されている。この場
合にはレーザー光源1は必ずしも直線偏光を有しなくて
も、任意の偏光特性でよい、第4図(A)に図示したN
Dフィルタ2bは光軸からずれた0を中心に回動できる
ように取り付けられ、Slから32へその透過濃度が変
化するように、また第4図(B)に図示したNDフィル
タ2cは、光軸1aに対して進入退避可能に取り付けら
れ同様に濃度が51から52に可変なフィルタとして構
成される。
In Figures 4 (A) and (B), the light amount of 2g1ft'1 is 4
IIir:#, an embodiment is shown. In this case, the laser light source 1 does not necessarily have linear polarization, but may have any polarization characteristics, as shown in FIG. 4(A).
The D filter 2b is mounted so as to be able to rotate about 0, which is offset from the optical axis, so that its transmission density changes from Sl to 32, and the ND filter 2c shown in FIG. It is attached to the shaft 1a so that it can be moved in and out of the shaft 1a, and is similarly constructed as a filter whose density is variable from 51 to 52.

各フィルタは、第3図の実施例と同様にフォトダイオー
ド3′に入射される光量が所定の値になるように回動な
いし移動され、自動調光が行なわれる。
As in the embodiment shown in FIG. 3, each filter is rotated or moved so that the amount of light incident on the photodiode 3' becomes a predetermined value, and automatic light adjustment is performed.

なお、上記の実施例において透過光量を最大にしても所
定レベルに調光できないときは、レーザー光源の寿命と
判断するようにする。
Note that in the above embodiment, when the light cannot be adjusted to a predetermined level even if the amount of transmitted light is maximized, it is determined that the life of the laser light source has come to an end.

[発明の効果] 以上、説明したように本発明では、レーザー光源の出射
部に光量調節手段が配置され、それによりレーザー光源
に出力変動があってもレーザー光にの変動をなくすこと
ができるので、再現性のよい精度の向上した眼科測定が
可能になる。
[Effects of the Invention] As explained above, in the present invention, the light amount adjusting means is disposed at the emission part of the laser light source, so that even if there is an output fluctuation in the laser light source, fluctuations in the laser light can be eliminated. , it becomes possible to perform ophthalmological measurements with improved accuracy and good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の外観を示す斜視図、第2図
は装置の光学的配置を示す構成図、第3図(A)は偏光
板を光量調節手段とした場合の構成図、第3図(B)は
、偏光特性による調光状態を示した説明図、第4図(A
)、(B)はNDフィルタを用いた場合の調光状態を示
した説明図である。 l・・・レーザー光源  2・・・光量調節手段3′・
・・フォトダイオード 12・・・スリット光用光源
FIG. 1 is a perspective view showing the external appearance of the device according to the present invention, FIG. 2 is a configuration diagram showing the optical arrangement of the device, and FIG. Figure 3 (B) is an explanatory diagram showing the dimming state depending on polarization characteristics, and Figure 4 (A
) and (B) are explanatory diagrams showing a dimming state when an ND filter is used. l...Laser light source 2...Light amount adjustment means 3'.
...Photodiode 12...Light source for slit light

Claims (1)

【特許請求の範囲】 1)レーザー光源からの光を眼内の所定の点に集光させ
るレーザー投光部と、 レーザー光源の出射部に配置された光量調節手段と、 眼内からのレーザー散乱光を受光する光電変換素子と、 光電変換素子からの信号を処理して眼科測定を行なう処
理手段とを設け、 前記光量調節手段により、眼内の所定点に投光されるレ
ーザー光量をレーザー光源の出力変動に無関係にほぼ一
定になるように調光することを特徴とする眼科測定装置
。 2)前記光量調節手段を偏光板あるいは透過率可変型N
Dフィルタから構成した特許請求の範囲第1項に記載の
眼科測定装置。 3)前記光量調節手段の後に光量モニタ用のビームスプ
リッタを配置した特許請求の範囲第1項又は第2項に記
載の眼科測定装置。
[Claims] 1) A laser projecting unit that focuses light from a laser light source on a predetermined point within the eye, a light amount adjusting means disposed at the output unit of the laser light source, and a laser scattering unit from within the eye. A photoelectric conversion element that receives light and a processing means that processes a signal from the photoelectric conversion element to perform an ophthalmological measurement are provided, and the light amount adjustment means adjusts the amount of laser light projected to a predetermined point within the eye from the laser light source. An ophthalmological measuring device characterized in that the light is adjusted to be almost constant regardless of output fluctuations. 2) The light amount adjusting means is a polarizing plate or a variable transmittance type N.
The ophthalmological measurement device according to claim 1, which is constructed from a D filter. 3) The ophthalmological measuring device according to claim 1 or 2, wherein a beam splitter for monitoring light amount is disposed after the light amount adjusting means.
JP62121415A 1987-05-20 1987-05-20 Ophthalmic measuring apparatus Pending JPS63288135A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62121415A JPS63288135A (en) 1987-05-20 1987-05-20 Ophthalmic measuring apparatus
EP88304394A EP0292216B1 (en) 1987-05-20 1988-05-16 Ophthalmic disease detection apparatus
DE88304394T DE3885341T2 (en) 1987-05-20 1988-05-16 Device for diagnosing eye disorders.
US07/430,062 US4991954A (en) 1987-05-20 1989-10-30 Ophthalmic disease detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121415A JPS63288135A (en) 1987-05-20 1987-05-20 Ophthalmic measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63288135A true JPS63288135A (en) 1988-11-25

Family

ID=14810598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121415A Pending JPS63288135A (en) 1987-05-20 1987-05-20 Ophthalmic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63288135A (en)

Similar Documents

Publication Publication Date Title
JP5184662B2 (en) Integrated device for non-contact measurement of the axial length of the eye and / or the curvature of the cornea and / or the depth of the anterior chamber, suitable for the calculation of intraocular lenses
JPS61268229A (en) Ophthalmic measuring apparatus
JPS61268230A (en) Ophthalmic measuring apparatus
JPS63135128A (en) Ophthalmic measuring apparatus
US4838683A (en) Ophthalmic measuring method and apparatus
JPS62120834A (en) Ophthalmic measuring apparatus
US4950068A (en) Ophthalmic disease detection apparatus
US4991954A (en) Ophthalmic disease detection apparatus
US5355186A (en) Ophthalmic measurement apparatus
JP2520426B2 (en) Ophthalmic measuring device
CZ6295A3 (en) Process and apparatus for determining refractive deflection of a wheel
JPH0277228A (en) Ophthalmological measuring instrument
JP2994703B2 (en) Ophthalmic measurement device
JPS63288135A (en) Ophthalmic measuring apparatus
JPH06277179A (en) Ophthalmic measuring apparatus
JP2516631B2 (en) Ophthalmic measuring device
JPH0489027A (en) Ophthalmic measuring device
JP3518927B2 (en) Ophthalmic equipment
JPH0556922A (en) Ophthalmometer
JPH08206069A (en) Ophthalmological measuring device
JPS63288136A (en) Ophthalmic measuring apparatus
JPS63288134A (en) Ophthalmic measuring apparatus
JP2557393B2 (en) Ophthalmic measuring device
JPS63279822A (en) Ophthalmic measuring apparatus
JPH0397436A (en) Corneal shape measuring device