JPS63288134A - Ophthalmic measuring apparatus - Google Patents

Ophthalmic measuring apparatus

Info

Publication number
JPS63288134A
JPS63288134A JP62121414A JP12141487A JPS63288134A JP S63288134 A JPS63288134 A JP S63288134A JP 62121414 A JP62121414 A JP 62121414A JP 12141487 A JP12141487 A JP 12141487A JP S63288134 A JPS63288134 A JP S63288134A
Authority
JP
Japan
Prior art keywords
light
laser
laser beam
slit
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62121414A
Other languages
Japanese (ja)
Other versions
JPH0580898B2 (en
Inventor
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP62121414A priority Critical patent/JPS63288134A/en
Priority to DE88304394T priority patent/DE3885341T2/en
Priority to EP88304394A priority patent/EP0292216B1/en
Publication of JPS63288134A publication Critical patent/JPS63288134A/en
Priority to US07/430,062 priority patent/US4991954A/en
Publication of JPH0580898B2 publication Critical patent/JPH0580898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To enhance the use efficiency of a laser beam source and to reduce the load of a patient by making it possible to use a low output laser beam source, by providing a treatment means for treating the signal from a beam receiving part to perform ophthalmic measurement and converting laser beam to one almost having only the linear polarized beam component of scattering beam. CONSTITUTION:In measurement, a slit beam source 12 is allowed to light and the slit image of a slit 14 is formed to the part including a measuring point P of the anterior chamber 11a through a polarizing beam splitter 8, a lens 9 and a prism (or mirror) 10. Continuously, the beam from a laser beam source 1 is condensed to the measuring point P through the optical system thereof. A part of the beam scattered at the measuring pint P is turned to the direction of an examine 33 by a beam splitter 21 to perform observation and, at the same time, allowed to be incident to a photomultiplier tube 27 through a lens 22, a prism 23 and a mask 26. Since only an S-polarized beam component is contained in the laser beam from the laser beam source 1, the incident quantity of beam can be reduced by the portion of a P-polarized beam component.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼科測定装置、さらに詳細にはレーザー光を光
学系を通して眼内、特に前房の所定の点に照射し、その
眼内からのレーザー散乱光を検出して眼科疾患を測定す
る眼科測定装てに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ophthalmological measurement device, and more specifically, a laser beam is irradiated into the eye, particularly at a predetermined point in the anterior chamber, through an optical system, and a laser beam is emitted from the eye. The present invention relates to an ophthalmological measurement device that measures ophthalmological diseases by detecting laser scattered light.

[従来の技術] 前房肉蛋白濃度測定は眼内炎症即ち血液房水棚を判定す
る上で極めて1要である。従来は細隙灯顕微鏡を用いて
のグレーディングによる目視判定が繁用されている一方
、定量的な方法としては写真計測法が報告されているが
容易に臨床応用できる方法は未だできていない。
[Prior Art] Measuring anterior chamber protein concentration is extremely important in determining intraocular inflammation, ie, blood aqueous humor shelf. Conventionally, visual judgment by grading using a slit lamp microscope has been frequently used, while photographic measurement has been reported as a quantitative method, but a method that can be easily applied clinically has not yet been developed.

従来の目視判定では個人差により判定7ji準が異なり
データの新1性に欠けるという問題点があるので、これ
を解決するためにレーザー光を眼内に照射し、そこから
の散乱光を受光して定量分析することにより眼科測定を
することが行なわれている。
Conventional visual judgment has the problem that the judgment standard differs due to individual differences and the data lacks novelty.To solve this problem, a laser beam is irradiated into the eye and the scattered light from it is received. Ophthalmological measurements are performed by quantitatively analyzing the

[発明が解決しようとする問題点コ 上述した眼科測定において、通常第3図に図示したよう
にレーザー投光系L1と受光系L2の光軸がほぼ90°
に設定されて測定が行なわれるので、受光部は側方散乱
光を信号として受光することになりほぼS偏光成分B(
紙面に垂直な直線成分)のみとなっている、従ってレー
ザー光源にランダム偏光のレーザー光源を用いると、P
偏光成分A(二重矢印の直線成分)は被検眼11を通過
してしまい、患者に負担になるとともにレーザー光源の
使用効率が低下するという問題点がある。
[Problems to be Solved by the Invention] In the above-mentioned ophthalmological measurements, normally the optical axes of the laser projecting system L1 and the light receiving system L2 are approximately 90° as shown in FIG.
Since the measurement is performed with the setting set to
Therefore, if a randomly polarized laser light source is used as the laser light source, P
The polarized light component A (the linear component indicated by the double arrow) passes through the eye 11 to be examined, which poses a problem in that it is a burden on the patient and the efficiency of use of the laser light source is reduced.

従って、本発明はこのような従来の問題点を解決するた
めになされたもので、レーザー光源の使用効率を高め、
低出力のレーザー光源を使用でき、用溝の負担を軽減さ
せる眼科測定装置を提供することを目的とする。
Therefore, the present invention has been made to solve these conventional problems, and improves the usage efficiency of the laser light source.
It is an object of the present invention to provide an ophthalmological measuring device that can use a low-power laser light source and that reduces the burden on the medical groove.

[問題点を解決するための手段] 本発明は、このような問題点を解決するためにレーザー
投光部の光軸とほぼ直交する光軸上に受光部を配置した
眼科測定装置で、レーザー光をほぼ散乱光の直線偏光成
分のみを有するレーザー光とする構成を採用した。
[Means for Solving the Problems] In order to solve these problems, the present invention provides an ophthalmological measuring device in which a light receiving section is arranged on an optical axis substantially perpendicular to the optical axis of a laser projecting section. A configuration was adopted in which the light is a laser beam having almost only a linearly polarized component of scattered light.

[作 用] このような構成では、レーザー光はS偏光成分のみをも
つレーザー光となるので、P偏光成分の分を減少させる
ことができ入射光量を半分近くに減少できる。
[Function] With such a configuration, the laser beam becomes a laser beam having only an S-polarized component, so the amount of the P-polarized component can be reduced, and the amount of incident light can be reduced to nearly half.

[実施例] 以下、図面に示す実施例に基づき本発明の詳細な説明す
る。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

:i’S 1図、第2図には本発明に関わる眼科測定装
置の概略構成が図示されており、同図において符号1で
示すものはヘリウムネオン、アルゴン等で構成される直
線偏光のレーザー光束を発射するレーザー光源で、この
レーザー光源1は架台2上に配こされる。レーザー光源
lからの光はレーザー用フィルタ3、プリズム4、可動
ミラー5゜プリズム6、レンズ7、偏光ビームスプリッ
タ8、レンズ9.プリズム10を介して被検眼11の比
肩11aの1点に集光するように結像される。
:i'S Figures 1 and 2 show the schematic configuration of the ophthalmological measuring device according to the present invention, and in the figures, the reference numeral 1 indicates a linearly polarized laser composed of helium neon, argon, etc. A laser light source that emits a beam of light, and this laser light source 1 is placed on a pedestal 2. The light from the laser light source 1 passes through a laser filter 3, a prism 4, a movable mirror 5° prism 6, a lens 7, a polarizing beam splitter 8, a lens 9. An image is formed through the prism 10 so as to condense the light onto one point on the eye 11 to be examined.

このレーザー投光部にはスリット光用光源12が設けら
れ、この光源12からの光はスリット光用シャ7タ13
.スリット14を経てビームスプリッタ8.レンズ9.
プリズム10を介し比肩11aにスリット像として結像
される。このスリット像は、上述したレーザー光源から
の光が点状に結像されるため、その周囲を照明して点像
の位置を容易に確認するためのものである。
This laser projector is provided with a slit light source 12, and the light from this light source 12 is transmitted to a slit light shutter 13.
.. Beam splitter 8. via slit 14. Lens 9.
A slit image is formed on the mirror 11a through the prism 10. This slit image is formed by light from the above-mentioned laser light source into a point image, and is used to illuminate the periphery of the slit image to easily confirm the position of the point image.

またスリット14のスリット幅並びにスリット長さは調
整ノブ15及び切換ノブ16を介してそれぞれ調整ない
し切り換えることができる。
Further, the slit width and slit length of the slit 14 can be adjusted or switched via the adjustment knob 15 and the switching knob 16, respectively.

比肩11aにおける計測点からのレーザー散乱光の一部
は検出部29の対物レンズ20を経てハーフミラ−また
はビームスプリッタ21により分割されてその一部はレ
ンズ22.スリット26aを有するマスク26.シャッ
タ26′を経て光電変換素子として機能する光電子増信
管(フォトマル)27に入射される。またビームスプリ
ッタ21により分割された他方の散乱光は変倍レンズ3
0.プリズム31.34を経て接眼レンズ32により検
者33によってi5!察することができる。
A portion of the laser scattered light from the measurement point at the comparison point 11a passes through the objective lens 20 of the detection unit 29, is split by a half mirror or beam splitter 21, and a portion is sent to the lens 22. Mask 26 with slit 26a. The light passes through the shutter 26' and enters a photomultiplier tube 27 that functions as a photoelectric conversion element. The other scattered light split by the beam splitter 21 is sent to the variable magnification lens 3.
0. i5! by the examiner 33 through the prisms 31 and 34 and the eyepiece 32! can be understood.

また光電子増倍管27の出力はアンプ28を経てカウン
ター40に入力され、光電子増倍管によって検出された
散乱光強度が単位時間当りのパルス数として計数される
。このカウンター40の出力即ち、サンプリング回数や
総パルス数は、各単位時間ごとに割り当てられたメモリ
25内に格納される。メモリ25に格納されたデータは
演算装置41により後述するように演算処理され、前房
肉蛋白濃度がrA′nされる。
The output of the photomultiplier tube 27 is input to a counter 40 via an amplifier 28, and the intensity of scattered light detected by the photomultiplier tube is counted as the number of pulses per unit time. The output of this counter 40, ie, the number of sampling times and the total number of pulses, is stored in the memory 25 allocated for each unit time. The data stored in the memory 25 is subjected to arithmetic processing as described later by the arithmetic unit 41, and the anterior chamber meat protein concentration is calculated as rA'n.

また、可動ミラー5は演n装置41に接続されたミラー
駆動回路60を介して揺動され、それにより、レーザー
光をスキャニングし、前房内のレーザー光点を移動させ
ることができる。
Furthermore, the movable mirror 5 is oscillated via a mirror drive circuit 60 connected to the controller 41, thereby scanning the laser light and moving the laser light spot in the anterior chamber.

さらに検出部29内には、角膜反射光51を受光するこ
とにより被検眼と装置の位置合わせを行なう光学系が収
納されている。角膜反射光51はプリズム61を経て受
光され、プリズム62、シャッタ64.マスク63.レ
ンズ65を通りハーフミラ−21で反射されて検者33
の方向に導かれる。このプリズム61.62は角膜反射
光を効率よく受光できるように調整されている。なおこ
のシャッタ64と光電子増倍管27の前に配置されたシ
ャッタ26′は連動しており、シャッタ26′が開いて
いる間はシャッタ64は閉じるように構成されている。
Further, the detection unit 29 houses an optical system that aligns the eye to be examined and the apparatus by receiving the corneal reflected light 51. The corneal reflected light 51 is received through a prism 61, a prism 62, a shutter 64 . Mask 63. It passes through the lens 65 and is reflected by the half mirror 21 to the examiner 33.
be guided in the direction of The prisms 61 and 62 are adjusted to efficiently receive corneal reflected light. Note that this shutter 64 and a shutter 26' disposed in front of the photomultiplier tube 27 are interlocked, and the shutter 64 is configured to be closed while the shutter 26' is open.

なお検出部29は支柱70に取り付けられており、支柱
70とレーザー投光部が軸71を中心に互いに回動でき
るように取り付けられるので、レーザー投光系と受光系
の光軸は任意の角度に設定でき、本発明実施例では約9
0’に設定して測定が行なわれる。
Note that the detection unit 29 is attached to a support 70, and the support 70 and the laser emitting unit are attached so that they can rotate relative to each other around an axis 71, so the optical axes of the laser emission system and the light receiving system can be set at any angle. can be set to approximately 9 in the embodiment of the present invention.
The measurement is performed with the setting set to 0'.

また本発明では電源91から給電される発光ダイオード
等からなる固視灯90が被検者が固視できる位置に配置
される。この固視灯9oの色光は、レーザー光源lの色
光と異なるように1例えばレーザー光源からの光が赤色
である場合は緑色のように選ばれる。またこの固視灯9
0はリンク機構92により矢印方向に回動でき被検者に
対して好適な位置に調節可能である。
Further, in the present invention, a fixation lamp 90 made of a light emitting diode or the like and supplied with power from a power source 91 is arranged at a position where the subject can fixate the fixation lamp. The colored light of the fixation lamp 9o is selected to be different from the colored light of the laser light source 1, such as green if the light from the laser light source is red. Also, this fixation light 9
0 can be rotated in the direction of the arrow by a link mechanism 92 and adjusted to a suitable position for the subject.

また架台2上には押しボタン46を備えた例えばジョイ
スティック45のような入力装置が設けられており、こ
れを操作することによりレーザー用フィルタ3.スリッ
ト光用シャッタ13.  フォトマルシャッタ26′、
位置合わせ用シャッタ64kgをそれぞれの光学系に挿
入または離脱させることができる。
Further, an input device such as a joystick 45 equipped with a push button 46 is provided on the pedestal 2, and by operating the input device, the laser filter 3. Slit light shutter 13. Photomar shutter 26',
A positioning shutter weighing 64 kg can be inserted into or removed from each optical system.

次にこのように構成された装置の動作を説明する。測定
に際しては先ず光源12を点灯し、偏光ビームスプリッ
タ8.レンズ9、プリズム(又はミラー10)を介して
前房11aの測定点Pを含む部分にスリット14のスリ
ット像を結像する。
Next, the operation of the device configured as described above will be explained. For measurement, first turn on the light source 12, then turn on the polarizing beam splitter 8. A slit image of the slit 14 is formed on a portion of the anterior chamber 11a including the measurement point P via the lens 9 and the prism (or the mirror 10).

続いてレーザー光源からの光をその光学系を介して測定
点Pに集光させる。
Subsequently, the light from the laser light source is focused on the measurement point P via the optical system.

測定点Pで散乱された光はその一部がビームスプリフタ
21により検者33の方向により向けられa察されると
同時にレンズ22、プリズム23、マスク26を介して
光電子増倍管27に入射される。
A part of the light scattered at the measurement point P is directed towards the examiner 33 by the beam splitter 21 and is detected at the same time as it enters the photomultiplier tube 27 via the lens 22, prism 23, and mask 26. be done.

本発明実施例によれば、レーザー光源lからのレーザー
光にはS偏光成分のみが含まれているから第3図におい
てP偏光成分Aの分だけ入射光量を減少させることがで
きる。
According to the embodiment of the present invention, since the laser beam from the laser light source 1 contains only the S-polarized component, the amount of incident light can be reduced by the amount of the P-polarized component A in FIG.

なお5本発明実施例ではレーザー投光部に偏光ビームス
プリッタ8が使用されているが、これはスリット光用光
源12としてハロゲンランプが使用されるので、ハロゲ
ン照明系の光軸とレーザー光の光軸を合成するのに偏光
ビームスプリフタを使用すればレーザー光の光量減衰は
小さくてすむ、なおレーザーの偏光方向は偏光ビームス
プリフタに対しP偏光として入射させる。
5. In the embodiment of the present invention, a polarizing beam splitter 8 is used in the laser projector, but since a halogen lamp is used as the slit light source 12, the optical axis of the halogen illumination system and the laser beam If a polarization beam splitter is used to combine the axes, the light intensity attenuation of the laser light can be small, and the polarization direction of the laser is made to enter the polarization beam splitter as P-polarized light.

光電子増倍管27は、スリ7)26aを介して入射され
るレーザー散乱光を受光し、前EIl l a内の蛋白
粒子によって散乱される散乱光の強度を検出し、それに
応じてパルス列に変換され単位時間当りのパルス数とし
てカウンター40で計数され、その計数値が各単位時間
ごとに割り当てられたメモリ25に格納される。演算型
2141では。
The photomultiplier tube 27 receives the laser scattered light incident through the pickpocket 7) 26a, detects the intensity of the scattered light scattered by the protein particles in the front EIl a, and converts it into a pulse train accordingly. The counter 40 counts the number of pulses per unit time, and the counted value is stored in the memory 25 allocated for each unit time. In the operation type 2141.

メモリ25に格納されているデータを演算して前房肉蛋
白濃度を演算する。
The anterior chamber meat protein concentration is calculated by calculating the data stored in the memory 25.

この場合、第4図に図示したようにシャッタ64の前段
に集光レンズ66を配置し、また絞り63′に透過部又
は拡散面63′aを有する絞りを用い、角膜反射光51
が透過部63′aに集光するようにすると好ましい、こ
の実施例では[(される角膜反射光像が明るくなり、こ
の明るさは作動距離に関係するので作動距離を概略モニ
ターできる利点がある。
In this case, as shown in FIG. 4, a condensing lens 66 is arranged in front of the shutter 64, and an aperture having a transmitting part or a diffusing surface 63'a is used as the aperture 63', so that the corneal reflected light 51
It is preferable that the light is focused on the transmission part 63'a. In this embodiment, the corneal reflected light image becomes brighter, and this brightness is related to the working distance, so there is an advantage that the working distance can be approximately monitored. .

また第2図において、プリズム61.62間をライトガ
イドで結合してもよく、更にプリズム62の代わりに拡
散板を用いるようにしてもよい、また投光系と受光系が
所定の配置関係(その先軸が例えば、後述するように9
0’に設定される)をとるので、角膜反射光の受光面を
投光部に固定させるようにすることもできる。
In addition, in FIG. 2, the prisms 61 and 62 may be connected by a light guide, a diffuser plate may be used instead of the prism 62, and the light emitting system and the light receiving system may be arranged in a predetermined arrangement relationship ( For example, the leading axis is 9 as described below.
0'), it is also possible to fix the light-receiving surface of the corneal reflected light to the light projector.

また測定部位の受光部の位と合わせについては第5図(
A)、(B)に図示したようにスケール又は目印を付し
たスリガラス等の受光板72を検者が肉眼で観察するよ
うにしてもよい、受光板72で観察される角膜反射光像
72aは、被検限11と装置の位置関係により、その大
きさ及び位置が点線で図示したように異なるので、簡単
な方法で位置合わせが可能になる。また、第5図(C)
、(D)に図示したように受光板72に複数の受光素子
(フォトダイオード)を配こし1位置合わせをすること
も可能である。第5図(C)の例では4個の受光素子7
3aが受光せず、一方4個の受光素子73bが受光した
ときに、位置合わせされた状態となり、また第5図(D
)の例では受光素子74aが受光せず、四分割された受
光素子74b及び受光素子74cが受光しているときに
位置合わせされた状態となる。
Also, see Figure 5 (
As shown in A) and (B), the examiner may observe with the naked eye a light receiving plate 72 made of ground glass or the like with scales or marks attached. , the size and position differ depending on the positional relationship between the test region 11 and the device, as shown by dotted lines, so positioning can be done in a simple manner. Also, Figure 5 (C)
, (D), it is also possible to arrange a plurality of light receiving elements (photodiodes) on the light receiving plate 72 and align them in one position. In the example of FIG. 5(C), four light receiving elements 7 are used.
When the light receiving element 3a does not receive light and the four light receiving elements 73b receive light, the position is aligned and the state shown in FIG. 5 (D
), the light receiving element 74a does not receive light, and the light receiving element 74b and 74c, which are divided into four parts, are aligned when receiving light.

第5図の各実施例では、簡単な構成で3次元の位置合わ
せが可能になり、指標用光源、指標などアライメント用
投光系に関するものが不要になる。また受光素子を用い
る場合は、その受光状態に従って位置合わせ表示を行な
うことが可能になる。
In each of the embodiments shown in FIG. 5, three-dimensional alignment is possible with a simple configuration, and there is no need for anything related to the alignment light projection system, such as an index light source or index. Furthermore, when using a light receiving element, it becomes possible to perform positioning display according to the light receiving state of the light receiving element.

なお、角膜の曲率半径は6〜8日園程度であり、一方萌
房木の深さは3Ilffi程度なので、前房水に集光す
るような光線の角膜反射光は一度集光してから拡散光と
なる。この集光した点を位ご決めに利用すると輝度も高
く位置合わせ用の情報を得るのに好都合であるが、前房
水のどこを測定するかによっては、角膜にかなり近い所
に集光することがあるので、拡散状態になっている場所
を選んで受光面を選定するのが好ましい。
Note that the radius of curvature of the cornea is about 6 to 8 degrees, and the depth of the cornea is about 3 Ilffi, so the corneal reflection of light that is focused on the anterior aqueous humor is concentrated once and then diffused. Becomes light. Using this focused point for positioning has high brightness and is convenient for obtaining positioning information, but depending on where the anterior aqueous humor is measured, the light may be focused quite close to the cornea. Therefore, it is preferable to select a light-receiving surface in a place where the light is in a diffused state.

また本実施例では、受光部と投光部は、f56図に図示
したように、その先軸81.82がほぼ90°になるよ
うに配置される。このとき受光部レンズ22によるマス
ク26の像26′はビームウェスト80にマストと共役
関係な位置で投光系の光軸上に形成される。
Further, in this embodiment, the light receiving section and the light projecting section are arranged so that their front axes 81 and 82 are at approximately 90 degrees, as shown in Fig. f56. At this time, an image 26' of the mask 26 by the light receiving lens 22 is formed on the beam waist 80 at a position conjugate with the mast and on the optical axis of the light projection system.

[発明の効果] 以上、説明したように本発明では、レーザー光をほぼ9
0°からの側方散乱光の直線偏光成分(S)のみを有す
るレーザー光としたので、P偏光成分の分を減らし、入
射光量を半減させることができる。従って低出力のレー
ザー光源を使用でき 、tB者への負担を軽減できると
ともに低価格でコンパクトなレーザー光源とすることが
できる。
[Effects of the Invention] As explained above, in the present invention, the laser beam is
Since the laser beam has only the linearly polarized component (S) of the side scattered light from 0°, the amount of the P-polarized component can be reduced and the amount of incident light can be halved. Therefore, a low-output laser light source can be used, the burden on the TB person can be reduced, and the laser light source can be made low-cost and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の外観を示す斜視[ffl 
、第2図は装置の光学的配置を示す構成図、第3図はレ
ーザー光のP、S偏光成分の入射、受光を説明する説明
図、第4図は角膜反射光を観察する光学系の配置図、第
5図(A)は角膜反射光を観察する光学系の他の実施例
図、第5図(B)〜(D)は受光板の異なる実施例を示
す説明図、第6図は投光部と受光部の光軸配置が約90
°であるときの配置図である。 1・・・レーザー光源 8・・・偏光ビームスプリッタ 12・・・スリット光用光源
FIG. 1 is a perspective view showing the appearance of the device according to the present invention [ffl
, Figure 2 is a configuration diagram showing the optical arrangement of the device, Figure 3 is an explanatory diagram explaining the incidence and reception of P and S polarized components of laser light, and Figure 4 is a diagram of the optical system for observing corneal reflected light. Layout diagram, FIG. 5(A) is another embodiment of the optical system for observing corneal reflected light, FIGS. 5(B) to (D) are explanatory diagrams showing different embodiments of the light receiving plate, and FIG. The optical axis arrangement of the emitter and receiver is approximately 90
FIG. 1... Laser light source 8... Polarizing beam splitter 12... Light source for slit light

Claims (1)

【特許請求の範囲】 1)直線偏光レーザー光を発生するレーザー光源と、 レーザー光源からの光を眼内の所定の点に集光させるレ
ーザー投光部と、 前記レーザー投光部の光軸とほぼ直交する光軸上に配置
され眼内からのレーザー散乱光を受光する受光部と、 受光部からの信号を処理して眼科測定を行なう処理手段
とを設け、 前記レーザー光をほぼ散乱光の直線偏光成分のみを有す
るレーザー光としたことを特徴とする眼科測定装置。 2)照明系光軸とレーザー光光軸を合成するのに偏光ビ
ームスプリッタを用いるようにした特許請求の範囲第1
項に記載の眼科測定装置。
[Scope of Claims] 1) A laser light source that generates linearly polarized laser light; a laser projector that focuses the light from the laser light source on a predetermined point within the eye; and an optical axis of the laser projector. A light receiving section arranged on optical axes that are substantially orthogonal to each other and receiving laser scattered light from within the eye, and a processing means that processes the signal from the light receiving section to perform ophthalmological measurements are provided, and the laser light is divided into substantially scattered light. An ophthalmological measuring device characterized by using a laser beam having only a linearly polarized component. 2) Claim 1 in which a polarizing beam splitter is used to combine the optical axis of the illumination system and the optical axis of the laser beam.
The ophthalmological measuring device described in Section.
JP62121414A 1987-05-20 1987-05-20 Ophthalmic measuring apparatus Granted JPS63288134A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62121414A JPS63288134A (en) 1987-05-20 1987-05-20 Ophthalmic measuring apparatus
DE88304394T DE3885341T2 (en) 1987-05-20 1988-05-16 Device for diagnosing eye disorders.
EP88304394A EP0292216B1 (en) 1987-05-20 1988-05-16 Ophthalmic disease detection apparatus
US07/430,062 US4991954A (en) 1987-05-20 1989-10-30 Ophthalmic disease detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121414A JPS63288134A (en) 1987-05-20 1987-05-20 Ophthalmic measuring apparatus

Publications (2)

Publication Number Publication Date
JPS63288134A true JPS63288134A (en) 1988-11-25
JPH0580898B2 JPH0580898B2 (en) 1993-11-10

Family

ID=14810575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121414A Granted JPS63288134A (en) 1987-05-20 1987-05-20 Ophthalmic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63288134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193638A (en) * 1989-01-23 1990-07-31 Kowa Co Ophthalmologic measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193638A (en) * 1989-01-23 1990-07-31 Kowa Co Ophthalmologic measuring device

Also Published As

Publication number Publication date
JPH0580898B2 (en) 1993-11-10

Similar Documents

Publication Publication Date Title
JP2520418B2 (en) Ophthalmic measuring device
JPS61268229A (en) Ophthalmic measuring apparatus
JP2854657B2 (en) Ophthalmic measurement device
JP2931325B2 (en) Ophthalmic measurement device
JPS62120834A (en) Ophthalmic measuring apparatus
US4950068A (en) Ophthalmic disease detection apparatus
JP3605131B2 (en) Ophthalmic instruments
EP0292216B1 (en) Ophthalmic disease detection apparatus
JP2520426B2 (en) Ophthalmic measuring device
JPH07313466A (en) Fundus oculi photographing system
US4988184A (en) Ophthalmic disease detection apparatus
JPS63288134A (en) Ophthalmic measuring apparatus
JPH0489027A (en) Ophthalmic measuring device
JPH02193637A (en) Ophthalmologic measuring device
JPH0277228A (en) Ophthalmological measuring instrument
JPH0282938A (en) Ophthalmic measuring apparatus
EP0380260A2 (en) Ophthalmic measurement apparatus
JPH0654807A (en) Ophthalmic device
JP4838428B2 (en) Ophthalmic equipment
JPH06142047A (en) Ophthalmic apparatus
JP2002345753A (en) Dioptometer
JPH09276224A (en) Ophthalmic device
JPH06121774A (en) Ophthalmology refractometer
JPS63288136A (en) Ophthalmic measuring apparatus
JPH0137605Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 14