JPS6328710B2 - - Google Patents
Info
- Publication number
- JPS6328710B2 JPS6328710B2 JP54082414A JP8241479A JPS6328710B2 JP S6328710 B2 JPS6328710 B2 JP S6328710B2 JP 54082414 A JP54082414 A JP 54082414A JP 8241479 A JP8241479 A JP 8241479A JP S6328710 B2 JPS6328710 B2 JP S6328710B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- gas
- chamber
- flexible
- torch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 65
- 239000007789 gas Substances 0.000 claims description 57
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- 239000001307 helium Substances 0.000 claims description 14
- 229910052734 helium Inorganic materials 0.000 claims description 14
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229920000914 Metallic fiber Polymers 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 238000003912 environmental pollution Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000009189 diving Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000005336 safety glass Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- -1 nitrogen Chemical compound 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Description
【発明の詳細な説明】
この発明は乾式水中溶接において人体に有害な
成分の作業雰囲気内への拡散を防止するための乾
式水中溶接に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to dry underwater welding for preventing components harmful to the human body from diffusing into the working atmosphere during dry underwater welding.
一般に高水深での水中溶接にはチヤンバを使つ
た乾式法が採用される。第1図にそのチヤンバの
一例を示す。このチヤンバ1は底にはパンチング
プレートなどの通水板が張られて水中に通じてお
り、チヤンバ内圧力は水深に相応する高圧になつ
ている。そして、溶接工及び溶接母材は完全に水
が排除された作業環境におかれている。チヤンバ
1内へ送り込んだ気体が空気の場合、溶接作業者
がチヤンバ1から陸上へ戻ると、急激な気圧変化
のため、体内の血液等に溶解した窒素が沸とう
し、潜水病を起す危険がある。 Generally, a dry method using a chamber is used for underwater welding at high water depths. FIG. 1 shows an example of the chamber. The chamber 1 has a water passage plate such as a punching plate attached to the bottom and communicates with the water, and the pressure inside the chamber is high enough to correspond to the depth of the water. The welder and the welding base material are placed in a working environment completely free of water. If the gas sent into chamber 1 is air, when the welder returns to land from chamber 1, the nitrogen dissolved in the blood in the body will boil due to the sudden change in atmospheric pressure, and there is a risk of diving sickness. be.
そのため水深30m程度まではチヤンバ内へ空気
をそのまゝ送つてよいが、それ以上の水深では人
体に対する吸収排出速度を速く、溶解度を小さく
し、さらに窒素による麻酔作用を防止し、呼吸抵
抗を減少させるためチヤンバ内気体を(ヘリウム
+酸素)又は(ヘリウム+窒素+酸素)の混合ガ
スとする。その酸素量は水深100mで2.8%、300
mでは1%という低濃度であるから、成分のコン
トロールには万全を期さねばならない。このた
め、溶接はヘリウムガス中で行われることになる
が、ヘリウムガスの多い雰囲気中で溶接すると、
タングステン電極を使用する溶接法では電極が異
常消耗し、さらにアークが不安定で荒れやすくな
る。さらには水中溶接が対象とする水中構造物の
溶接、切断には強力なアーク又はプラズマを必要
とし、それらは多量の排ガスを伴う。無論、地上
でも使われるガス吸引管をアークの近くに開口さ
せれば、汚染を軽減できるが、排ガスを全く外へ
散らさないほど強力に吸引すれば、強風中の溶接
同様、溶接アーク、溶接金属に悪影響を生ずる。
そのため従来は排ガス処理も、作業者が吐出す炭
酸ガス等と共に、チヤンバ内雰囲気制御にゆだね
るのが一般であつた。 Therefore, air can be sent directly into the chamber up to a depth of about 30 meters, but at deeper water depths, the rate of absorption and excretion into the human body is increased, the solubility is reduced, and the anesthetic effect of nitrogen is prevented, reducing respiratory resistance. In order to do this, the gas inside the chamber is a mixed gas of (helium + oxygen) or (helium + nitrogen + oxygen). The amount of oxygen is 2.8% at a depth of 100m, 300
Since the concentration in M is as low as 1%, every possible care must be taken to control the components. For this reason, welding is performed in helium gas, but if welding is performed in an atmosphere containing a large amount of helium gas,
Welding methods that use tungsten electrodes cause abnormal wear on the electrodes, and the arc becomes unstable and rough. Furthermore, welding and cutting of underwater structures targeted by underwater welding require a powerful arc or plasma, which is accompanied by a large amount of exhaust gas. Of course, contamination can be reduced by opening a gas suction pipe, which is also used on the ground, near the arc, but if the suction is strong enough to prevent any exhaust gas from escaping, the welding arc and welding metal will be removed just like welding in strong winds. This will have an adverse effect on
Therefore, in the past, it was common to leave exhaust gas treatment, along with carbon dioxide gas etc. discharged by the operator, to the control of the atmosphere inside the chamber.
しかし、前述のように溶接による汚染がなくて
も、難しいチヤンバ内雰囲気制御に、さらに余分
な負担を加える事は作業者の健康管理上、ゆるが
せにできない問題であつた。この発明はそれを解
決したのである。 However, as mentioned above, even if there is no contamination due to welding, adding an additional burden to the difficult chamber atmosphere control is a problem that cannot be ignored in terms of health management of workers. This invention solved that problem.
以下、この発明を図面を参照しながら説明す
る。 The present invention will be explained below with reference to the drawings.
この発明の乾式水中溶接法は、まず水中構造
物、図示例では水中パイプ・ライン4aの溶接部
分Wをチヤンバ1内へ入れねばならないが、これ
は周知技術による。溶接法は有害ガスの多い被覆
アーク溶接棒を用いず、不活性シールド・ガスを
使用するアーク又はプラズマ溶接とする。従来の
溶接設備はそのまゝ利用してよい。一例として
TIG溶接の従来設備を第2図に示し、第3図に同
じ設備のトーチだけ、この発明を適用したものを
示す。 In the dry underwater welding method of the present invention, the underwater structure, in the illustrated example, the welded portion W of the underwater pipeline 4a, must be placed into the chamber 1, but this is in accordance with well-known technology. The welding method is arc or plasma welding, which uses an inert shielding gas, without using a covered arc welding rod that contains a lot of harmful gas. Conventional welding equipment may be used as is. As an example
FIG. 2 shows conventional TIG welding equipment, and FIG. 3 shows the same equipment with only a torch to which the present invention is applied.
溶接電源2は垂下特性のもので、その(+)側
端子はアース・ケーブル3を介して溶接母材4に
接続され、(−)側端子はトーチ・ケーブル5を
介して電極6に接続されている。7は電極6と母
材4との間に発生するアーク、8は溶融金属であ
る。シールド・ガスSは、わが国では一般にアル
ゴンが使用され、入口9から、図では先端部だけ
画いたトーチ10′のシールド・ガス・ノズル
10a′へ入り、溶接部へ放出されて溶融池を守る。 The welding power source 2 has drooping characteristics, and its (+) side terminal is connected to the welding base material 4 via the earth cable 3, and its (-) side terminal is connected to the electrode 6 via the torch cable 5. ing. 7 is an arc generated between the electrode 6 and the base material 4, and 8 is molten metal. In Japan, argon is generally used as the shielding gas S, and from the inlet 9, the shielding gas nozzle of the torch 10', only the tip of which is shown in the figure.
10a′ and is discharged into the weld area to protect the molten pool.
この発明を適用した第3図のトーチ10が、第
2図のトーチ10′と異る点は、電極6外周のシ
ールド・ガス・ノズル10aのさらに外周に、柔
軟な弾性と耐熱性をもつ線又は繊維群からなり、
微量のアーク光を透過せしめるスカート形可撓ブ
ラジ(環状ブラシ形ノズル)14を先端に付した
吸収ノズル11を加えた事である。吸引部はシー
ルドガスノズル10aと可撓壁との中間にあり、
無論、吸引ノズル11は、その排気口13を真空
ポンプ12に接続しており、排気は水中又は水上
へ放出され回収されない。 The torch 10 shown in FIG. 3 to which this invention is applied differs from the torch 10' shown in FIG. or consisting of a group of fibers,
This is the addition of an absorption nozzle 11 having a skirt-shaped flexible brush (annular brush-shaped nozzle) 14 at its tip that allows a minute amount of arc light to pass through. The suction part is located between the shield gas nozzle 10a and the flexible wall,
Of course, the suction nozzle 11 has its exhaust port 13 connected to the vacuum pump 12, and the exhaust gas is discharged into or onto the water and is not collected.
トーチ10の操作は、図では略した周辺の柄部
を握つて第1図に示すように半自動溶接してもよ
く、またこの場合ならパイプ自動溶接装置に固定
して全自動溶接してもよい。溶接中、スカート形
可撓ブラシ14がやゝ撓むようにトーチ10を溶
接部外周の母材4表面へ押付けて、トーチ10を
持つ手が多少揺れても、また母材表面に高低があ
つても、可撓ブラシ14の先端が常に母材4に接
して、その隔壁作用を失わないようにする。その
ため、電極6の先端と可撓ブラシ14先端とを適
当に位置調整し、上の状態で適当なアーク長が保
たれるようにする。 The torch 10 may be operated semi-automatically by gripping the peripheral handle (not shown) as shown in FIG. 1, or in this case, it may be fixed to an automatic pipe welding device for fully automatic welding. . During welding, the torch 10 is pressed against the surface of the base material 4 on the outer periphery of the welding part so that the skirt-shaped flexible brush 14 is slightly bent, even if the hand holding the torch 10 shakes a little or even if there are heights on the surface of the base material. The tip of the flexible brush 14 is always in contact with the base material 4 so as not to lose its partitioning effect. Therefore, the positions of the tip of the electrode 6 and the tip of the flexible brush 14 are adjusted appropriately so that an appropriate arc length is maintained in the upper state.
また吸引ノズル11の排気量を、送給シール
ド・ガスS、アーク熱による発生ガス、金属蒸気
の全量を排出し、さらに可撓ブラシ14自身、及
び可撓ブラシ14、母材4間間隙から小量のチヤ
ンバ内気体を吸引し、排出するに適した量とする
ようポンプ又はフアン12、管路、排出口13等
を設計する。実験では、第6図に示すごとく、一
例として、ノズルと母材との間隔を20mmにとり、
送給シールドガス流量Q1を30Nl/minの条件を
とると、排気量Q2と送給シールドガス流量の比
Q2/Q1とチヤンバ内に放出されるガス量Q3との
関係は、Q2/Q1を大にとるほどQ3は少なくなり、
Q2/Q1が同一でも可撓壁(環状ブラシ形ノズル)
を使用すると特に少なくなつており、可撓壁の効
果は顕著である。図中Aは可撓壁なしで電流を
100A流した場合、aは可撓壁を使用し電流を
100A流した場合、Bは可撓壁なしで電流を流さ
ない場合、bは可撓壁を使用し電流を流さない場
合である。チヤンバ中に放出されるQ3の量は送
給シールドガス流量、電流値により変るが、ふつ
うは排気量Q2を送給シールド・ガスの流量Q1の
1.5〜3倍程度にすれば、チヤンバ1内へアルゴ
ンガス、オゾン、ヒユーム等、アークにより発生
する有害物質を出す事がなかつたが、実施時、簡
単に試験して適当な排気量に調節すればよい。 In addition, the exhaust volume of the suction nozzle 11 is reduced so that the entire amount of the supplied shield gas S, the gas generated by the arc heat, and the metal vapor is exhausted, and the flexible brush 14 itself and the gap between the flexible brush 14 and the base material 4 are reduced. The pump or fan 12, conduit, discharge port 13, etc. are designed to draw in and discharge an appropriate amount of gas from the chamber. In the experiment, as shown in Figure 6, as an example, the distance between the nozzle and the base material was set to 20 mm.
If the feed shield gas flow rate Q 1 is set to 30Nl/min, the ratio of the displacement amount Q 2 to the feed shield gas flow rate is
The relationship between Q 2 /Q 1 and the amount of gas released into the chamber Q 3 is that the larger Q 2 /Q 1 is, the smaller Q 3 is.
Flexible wall even if Q 2 /Q 1 are the same (annular brush type nozzle)
The effect of the flexible wall is remarkable. A in the figure shows the current flow without a flexible wall.
When 100A flows, a uses a flexible wall to carry the current.
When 100 A is applied, B is the case where there is no flexible wall and no current is passed, and b is the case where the flexible wall is used and no current is passed. The amount of Q 3 released into the chamber varies depending on the flow rate of the shield gas supplied and the current value, but usually the exhaust volume Q 2 is equal to the flow rate Q 1 of the shield gas supplied.
If the volume was increased by 1.5 to 3 times, harmful substances generated by the arc, such as argon gas, ozone, and fume, would not be emitted into chamber 1, but it is necessary to conduct a simple test and adjust the exhaust volume to an appropriate value. Bye.
実験に用いた可撓ブラシ14の通気性は、使用
状態により違うが、水頭で20〜150mmの流路抵抗
を生ずる程度である。その気密性と可撓性は相反
する傾向にあり、気密性不足は排気量でカバーで
きる。排気量は有害ガスが外部へ洩出るのを防ぐ
ため、逆に外部のガスGを吸込むよう可撓ブラシ
14内を減圧できればよく、余分に吸込む必要は
ない。 The air permeability of the flexible brush 14 used in the experiment varies depending on the conditions of use, but is at a level that causes a flow path resistance of 20 to 150 mm at the water head. Airtightness and flexibility tend to be contradictory, and the lack of airtightness can be compensated for by the displacement. In order to prevent harmful gases from leaking to the outside, the exhaust amount only needs to be able to reduce the pressure inside the flexible brush 14 so as to suck in the external gas G, and there is no need to suck in excess gas.
シールド・ガスは、大気圧下ではアルゴンで
も、ヘリウムでもあまり変らないが、水中深くな
り気圧が高まるほど、ヘリウムは所要アーク電圧
を高める。チヤンバ内気圧が30bar以上になると
ヘリウムの場合、アーク電圧が60V近くなり、電
源としては普通のアーク溶接機は使用できなくな
る。また気圧が高いほどアークが収縮し、電極先
端に集中する傾向も、アルゴンよりヘリウムの方
が著しい。 Under atmospheric pressure, the shielding gas is either argon or helium.However, the deeper you go underwater and the higher the pressure, the higher the required arc voltage for helium. If the pressure inside the chamber exceeds 30 bar, the arc voltage will approach 60 V in the case of helium, making it impossible to use an ordinary arc welding machine as a power source. Furthermore, the higher the atmospheric pressure, the more the arc contracts and tends to concentrate at the tip of the electrode, which is more pronounced in helium than in argon.
実験ではヘリウムを使つた場合、気圧8barで
電極先端が焼損しはじめ、16barではアーク不安
定、32barでは溶接不良となる。 In experiments, when helium was used, the electrode tip began to burn out at a pressure of 8 bar, arc became unstable at 16 bar, and welding failed at 32 bar.
従つて、深い水中での実施時、使用するシール
ド・ガスはヘリウムよりも気圧の影響が少いアル
ゴンが決定的に勝つている。 Therefore, when carrying out operations deep underwater, argon is decisively superior to helium as it is less affected by atmospheric pressure as a shielding gas.
なお、アルゴンは窒素同様、それ自体の毒性は
ないが、窒素、ヘリウムに比べ水(血液等)への
溶解度が著しく高く、人体からの排出速度が遅い
ので、潜水病を助長するおそれが少くない。従つ
てチヤンバ内でアルゴンを使用する場合、これを
一たんチヤンバ内へ放散し、その後、換気により
排出するのでなく、(チヤンバ内ヘリウムからア
ルゴンを分離すること困難)この発明のようにア
ーク周辺から直ちに捕捉、排出する事が望ましい
のである。 Argon, like nitrogen, is not toxic in itself, but it has a significantly higher solubility in water (blood, etc.) than nitrogen or helium, and is excreted from the human body at a slower rate, so there is a high risk of promoting diving disease. . Therefore, when using argon in the chamber, instead of dissipating it into the chamber and then exhausting it through ventilation (because it is difficult to separate argon from the helium in the chamber), it is removed from around the arc as in this invention. It is desirable to capture and discharge them immediately.
次にこの発明の溶接装置について説明する。溶
接装置はアーク、プラズマいずれにおいても、従
来の溶接装置をそのまゝ使い、トーチのガス・ノ
ズルの外周にスカート形可撓ブラシつき吸引ノズ
ルを加え、これに接続する排気装置を揃えるだけ
でよい。第3図のTIG溶接トーチ10はMIG用、
プラズマ溶接用トーチと考えてもよく、要はその
シールド・ガス・ノズル10aの外周に、可撓ブ
ラシ14つき吸引ノズル11を上部は気密に取付
け、ポンプ又はフアン12によつて排気できるよ
うにするのである。排気装置は周知技術によるの
で、この発明の溶接装置としての特徴は、可撓ブ
ラシ14つき吸引ノズル11に絞られてくる。 Next, the welding apparatus of the present invention will be explained. For either arc or plasma welding, conventional welding equipment can be used as is, simply adding a suction nozzle with a skirt-shaped flexible brush around the outer circumference of the torch's gas nozzle, and arranging an exhaust device to connect to this. . The TIG welding torch 10 in Figure 3 is for MIG,
It can be thought of as a plasma welding torch, and the point is that a suction nozzle 11 with a flexible brush 14 is attached to the outer periphery of the shield gas nozzle 10a in an airtight manner at the upper part, so that exhaust can be exhausted by a pump or fan 12. It is. Since the exhaust device is based on well-known technology, the features of the welding device of the present invention are focused on the suction nozzle 11 with the flexible brush 14.
溶接時にシールドガスとして使用する有害ガス
及び溶接時発生する有害ガス、金属蒸気を従来の
吸引、排出装置により完全に排出しようとすれ
ば、吸引による風がアークを不安定ならしめる事
は前述した。この発明の吸引ノズル11は、トー
チのシールド・ガス・ノズル10aの外周を取巻
き、スカート形可撓ブラシ14により母材表面と
接触を保つて、アーク付近を外気から一応遮断し
てしまう。そのため、アーク付近に発生する有害
ガス、金属蒸気は静に放射状に外周へ吸引され、
中央のアーク(プラズマ状ガス体ゆえ風に敏感)
に影響を与えないで排出される。 As mentioned above, if the harmful gas used as a shielding gas during welding and the harmful gas and metal vapor generated during welding are completely exhausted by conventional suction and exhaust devices, the suction wind will make the arc unstable. The suction nozzle 11 of the present invention surrounds the outer periphery of the shield gas nozzle 10a of the torch, maintains contact with the surface of the base material by means of a skirt-shaped flexible brush 14, and temporarily isolates the vicinity of the arc from the outside air. Therefore, harmful gases and metal vapors generated near the arc are silently drawn radially to the outer periphery.
Central arc (sensitive to wind due to plasma-like gas body)
is discharged without affecting the
そして、そのスカート形可撓ブラシ14は、柔
軟な弾性をもつているので、これを軽く母材側へ
押付けながら移動すれば、母材表面の起伏やトー
チを握る手の揺れに順応して屈伸し、発生ガス、
蒸気を閉じ込める隔壁作用を維持する。また可撓
ブラシ14として、金属細線、非金属繊維の一方
又は双方を環状ブラシ形に結束したものは、微量
のアーク光を透過せしめる性質があるので、強烈
なアーク、プラズマ光を安全ガラスなしで監視し
つゝ溶接を進められる大きな利点がある。上記金
属細線としては耐熱性ステンレス鋼の0.1〜0.2mm
径のもの、非金属繊維としては炭素繊維を使い、
好結果を得ているが、他にも好適なものは少くな
いはずである。 The skirt-shaped flexible brush 14 has flexible elasticity, so if you move it while lightly pressing it against the base material, it will bend and expand according to the undulations of the base material surface and the shaking of the hand holding the torch. and generated gas,
Maintains a barrier effect that traps vapor. Furthermore, as the flexible brush 14, one made of thin metal wires, non-metallic fibers, or both bundled into an annular brush shape has the property of allowing a small amount of arc light to pass through, so it is possible to block intense arc and plasma light without using safety glass. This has the great advantage of being able to proceed with welding while monitoring. The metal wire mentioned above is 0.1 to 0.2 mm of heat-resistant stainless steel.
diameter, carbon fiber is used as the non-metallic fiber,
Good results have been obtained, but there are probably many other suitable methods as well.
環状ブラシ形に揃えた細線又は繊維の上部を結
束する手段は溶接、ろう接、編組、挾持等、いず
れでもよく、吸引ノズル11端への接続法も、図
示例はろう接であるが、ネジ止等により着脱可能
にするのも良い。第4図のように深い溶接開先1
5がある場合、その形に合わせた可撓ブラシ14
を使い、隅肉溶接をする場合、角形の隅肉用可撓
ブラシを使うというように交換可能にしておくと
便利である。もつても、第5図に示すように、比
較的、浅い開発15に対しては、可撓ブラシ14
のスカートをやゝ長くしておく事により、開先形
状がV形でもU形でも、ブラシを溝へ押付けたよ
うに、なじむ。そして後方にできる溶接ビード1
6の突起にも当然なじむので、可撓ブラシ14の
隔壁効果は維持される。 The means for binding the upper parts of the thin wires or fibers arranged in the shape of an annular brush may be any method such as welding, brazing, braiding, or clamping, and the connection method to the end of the suction nozzle 11 may be brazing in the illustrated example, but screws may be used. It is also good to make it removable by stopping it. Deep welding groove 1 as shown in Figure 4
5, a flexible brush 14 that matches the shape
When performing fillet welding using a square fillet welding brush, it is convenient to make it replaceable, such as using a square flexible brush for fillet welding. However, as shown in FIG. 5, for a relatively shallow development 15, the flexible brush 14
By making the skirt slightly longer, whether the groove shape is V-shaped or U-shaped, it will fit in as if the brush was pressed into the groove. And weld bead 1 that forms at the rear
Since the flexible brush 14 naturally adapts to the protrusion 6, the partition effect of the flexible brush 14 is maintained.
可撓ブラシ14の細線の一部が開先15内へ入
込むため細線間隙が一部で増大し、遮断効果が弱
まることもあるが、吸引ノズル11の排気量にあ
る程度、余裕をみておけば、一時的に排出ガス量
がふえるだけで、発生ガスが外部へ出るおそれは
ない。可撓ブラシ14自身にある程度、気体を透
過させる機能があるため常時、外部気体が小量、
吸引排出されており、一時的に母材、可撓ブラシ
間間隙が増大しても、排気量が急変しない。これ
は可撓ブラシ14内雰囲気の安定、ひいてはアー
クの安定に貢献する。 Since some of the thin wires of the flexible brush 14 enter the groove 15, the gap between the thin wires increases in some parts, and the blocking effect may be weakened, but if you allow some margin for the displacement of the suction nozzle 11. , the amount of exhaust gas will only temporarily increase, but there is no risk that the generated gas will escape to the outside. Since the flexible brush 14 itself has a function of permeating gas to a certain extent, a small amount of external gas is always present.
The pump is sucked and discharged, so even if the gap between the base material and the flexible brush increases temporarily, the displacement will not change suddenly. This contributes to stabilizing the atmosphere within the flexible brush 14 and, in turn, stabilizing the arc.
以上、図示した実施例によつて、この発明の説
明をしたが、発明の要旨を変えることなく、技術
者が、その公知技術により、多様に変化、応用し
得るものである。例えば内圧を大気圧に維持する
チヤンバや、宇宙船、その他の密閉容器内の溶接
に、この発明方法を利用するとか、この発明を一
般溶接部に使用して、空気汚染とアーク光による
危害を完全防止し、あわせて強風下のアーク溶接
も可能ならしめるとか、溶接トーチを、加熱、切
断トーチに変える等、容易に考えられる。 Although the present invention has been described above with reference to the illustrated embodiments, it is possible for engineers to make various changes and applications using known techniques without changing the gist of the invention. For example, the method of this invention can be used for welding inside chambers that maintain internal pressure at atmospheric pressure, spacecraft, and other closed containers, or it can be used for general welding parts to prevent air contamination and danger from arc light. It is easy to think of ways to completely prevent this, and also make it possible to perform arc welding in strong winds, or change the welding torch to a heating or cutting torch.
この発明は、深海等におけるチヤンバ内溶接で
問題になる発生ガス、金属蒸気の処理を、溶接ト
ーチに特殊吸引、排気装置を加えるだけで、溶接
品質、作業性を落とすことなく、達成した。即
ち、トーチのガス・ノズル外周にスカート形可撓
ブラシつき吸引ノズルを加え排気装置につなぐだ
けであるから、設備は簡素で、トーチの軽快性を
損わない。スカート形可撓ブラシは柔軟で、しか
も弾性に富むから、これを溶接線上に押付けなが
らトーチを進めれば手先の動揺や、母材の起状に
影響されず非熟練者でも溶接できる。可撓ブラシ
は内部のアーク光を肉眼で見れる程度に弱めて透
過させるから、暗い安全ガラスを通さなくても溶
接状態を察知できる。 This invention has achieved the treatment of generated gas and metal vapor, which are problems in chamber welding in deep sea, etc., without compromising welding quality or workability, by simply adding a special suction and exhaust device to the welding torch. That is, since a suction nozzle with a skirt-shaped flexible brush is simply added to the outer periphery of the gas nozzle of the torch and connected to the exhaust device, the equipment is simple and the lightness of the torch is not impaired. The skirt-shaped flexible brush is flexible and highly elastic, so even unskilled workers can weld by pressing the brush onto the weld line while advancing the torch without being affected by hand movement or the unevenness of the base material. The flexible brush weakens the internal arc light enough to be visible to the naked eye and transmits it, allowing the welding condition to be detected without passing through dark safety glass.
また、このスカート形可撓ブラシはアーク外周
に出たシールド・ガス、発生ガス、金属蒸気を放
射状に外側へ吸引する事、常時、全周の細隙から
外気を吸入していて、一時的に外気侵入口が拡大
しても吸引ガス流の変動が少く、敏感なアークへ
の影響が最も少い吸引方式である。そして、アー
ク外周を外気から一応、遮断しているので、高価
なアルゴン等、シールドガスの使用量は従来に較
べ著減し、排気装置も小容量のものですむ。 In addition, this skirt-shaped flexible brush can radially suck shielding gas, generated gas, and metal vapor from the outer periphery of the arc, and constantly sucks in outside air from the slits around the entire circumference, temporarily Even if the outside air inlet is enlarged, there is little fluctuation in the suction gas flow, and this is the suction method that has the least effect on the sensitive arc. Furthermore, since the outer periphery of the arc is temporarily isolated from the outside air, the amount of expensive shielding gas such as argon used is significantly reduced compared to the conventional method, and the exhaust device can also be of small capacity.
第1図は、この発明による水中溶接実施状況説
明図、第2図は従来のTIG溶接装置説明図、第3
図はこの発明の溶接装置におけるトーチの要部説
明図、第4図は同じく深いV形開先の溶接状況、
第5図は同じく浅いV形開先の溶接状況説明図で
ある。第6図はチヤンバ中への放出量Q3とQ2/
Q1(Q2:排気量、Q1:送給シールドガス流量)の
関係を示すもので、図中A,a,B,bはそれぞ
れ(可撓壁なし、電流100A)、(可撓壁あり、電
流100A)、(可撓壁なし、電流0)、(可撓壁あり、
電流0)の曲線である。
10,10′…溶接トーチ、11…吸引ノズル、
14…スカート形可撓ブラシ。
Fig. 1 is an explanatory diagram of underwater welding according to the present invention, Fig. 2 is an explanatory diagram of a conventional TIG welding device, and Fig. 3
The figure is an explanatory diagram of the main parts of the torch in the welding device of the present invention, and Figure 4 is a welding situation of a deep V-shaped groove.
FIG. 5 is an explanatory diagram of the welding situation of a shallow V-shaped groove. Figure 6 shows the amount released into the chamber Q 3 and Q 2 /
This shows the relationship between Q 1 (Q 2 : displacement volume, Q 1 : supply shield gas flow rate), and in the figure, A, a, B, and b are respectively (no flexible wall, current 100 A) and (flexible wall). Yes, current 100A), (without flexible wall, current 0), (with flexible wall,
The current is 0). 10, 10′...Welding torch, 11...Suction nozzle,
14...Skirt-shaped flexible brush.
Claims (1)
溶接する乾式水中溶接において、用いる溶接法は
シールドガスを使用するアーク又はプラズマ溶接
法とし、その溶接トーチは、電極外周のシール
ド・ガス・ノズルのさらに外周に、柔軟な弾性と
耐熱性を有する金属細線又は非金属繊維の一方又
は双方を環状ブラシ形に結束し、微量のアーク光
の透光性を具備したスカート形可撓ブラシを先端
に付した吸引ノズルを付加した構造とし、溶接
中、上記可撓ブラシがやや撓むように溶接部外周
の母材表面にトーチを押付け、可撓ブラシを常に
母材と接触させて駆動することにより、シールド
ガス及び溶接により発生したガス、金属蒸気など
の有害成分の全量を上記吸引ノズルより排出し、
さらに可撓性ブラシの隙間及び可撓ブラシと母材
との間隙から吸引した少量のチヤンバ内気体を排
出することによつて、上記チヤンバ内の環境汚染
を防止することを特徴とする乾式水中溶接方法。 2 特許請求範囲1記載の乾式水中溶接法におい
て、チヤンバ内気体は(ヘリウム+酸素)又は
(ヘリウム+窒素+酸素)であり、トーチ用シー
ルド・ガスはアルゴンを主体とする乾式水中溶接
方法。[Claims] 1. In dry underwater welding in which the welding part of an underwater structure is placed in a chamber and welded, the welding method used is an arc or plasma welding method using shielding gas, and the welding torch is used to Further, around the outer periphery of the shielding gas nozzle, one or both of thin metal wires and non-metallic fibers having flexible elasticity and heat resistance are bundled into an annular brush shape, and a skirt can be formed to transmit a small amount of arc light. The structure includes a suction nozzle with a flexible brush at the tip, and during welding, the torch is pressed against the surface of the base material around the welding part so that the flexible brush is slightly bent, and the flexible brush is driven while always in contact with the base material. By doing so, the entire amount of harmful components such as shielding gas, gas generated by welding, and metal vapor is discharged from the suction nozzle,
Dry underwater welding is further characterized in that environmental pollution within the chamber is prevented by discharging a small amount of gas sucked into the chamber from the gap between the flexible brushes and the gap between the flexible brush and the base material. Method. 2. In the dry underwater welding method according to claim 1, the gas in the chamber is (helium + oxygen) or (helium + nitrogen + oxygen), and the torch shield gas is mainly argon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8241479A JPS566782A (en) | 1979-06-28 | 1979-06-28 | Dry type underwater welding method and welding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8241479A JPS566782A (en) | 1979-06-28 | 1979-06-28 | Dry type underwater welding method and welding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS566782A JPS566782A (en) | 1981-01-23 |
JPS6328710B2 true JPS6328710B2 (en) | 1988-06-09 |
Family
ID=13773924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8241479A Granted JPS566782A (en) | 1979-06-28 | 1979-06-28 | Dry type underwater welding method and welding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS566782A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63163281U (en) * | 1987-04-14 | 1988-10-25 | ||
US4845331A (en) * | 1987-12-24 | 1989-07-04 | Westinghouse Electric Corp. | Pressurized weld chamber |
JP2001219269A (en) | 2000-02-07 | 2001-08-14 | Hitachi Ltd | Device and method for submerged working |
KR101277481B1 (en) * | 2011-05-30 | 2013-06-21 | (주)화신정공 | Welding apparatus for pipe |
CN108817618B (en) * | 2018-06-27 | 2020-06-19 | 山东大学 | Underwater wet welding device and process capable of adaptively controlling bubbles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5257048A (en) * | 1975-11-07 | 1977-05-11 | Mitsubishi Heavy Ind Ltd | Underwater welding torch |
-
1979
- 1979-06-28 JP JP8241479A patent/JPS566782A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5257048A (en) * | 1975-11-07 | 1977-05-11 | Mitsubishi Heavy Ind Ltd | Underwater welding torch |
Also Published As
Publication number | Publication date |
---|---|
JPS566782A (en) | 1981-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK156702C (en) | Process for reducing the ozone formed by welding or machining by means of an electric arc | |
BRPI0709020A2 (en) | electric arc welding torches and method for extracting fumes from a welding site | |
US4154999A (en) | Method of arc welding | |
US3980860A (en) | Fume extracting torch handle | |
US8592710B2 (en) | System and method for weld removal, cutting, and gouging with vacuum removal of byproducts | |
US4139758A (en) | Method of arc welding under water | |
US4035602A (en) | Apparatus for underwater arc welding | |
JPS6328710B2 (en) | ||
NO763404L (en) | ||
GB1393561A (en) | Welding or cutting torches | |
US20150041441A1 (en) | System and Method for Weld Removal, Cutting, and Gouging With Vacuum Removal of Byproducts | |
IE44577B1 (en) | Methods of arc welding in a superatmospheric environment | |
US6437288B1 (en) | Process and unit for the mig welding of aluminum and its alloys | |
KR102155715B1 (en) | Welding dust collector | |
KR20220076636A (en) | Torch system enable to remove welding fume | |
GB2466254A (en) | Welding torch fume retention by outwardly dispersed gas and through-torch fume extraction. | |
CN211248738U (en) | Two protect welding machine protector | |
JP2009172652A (en) | Device for recovering weld fume | |
GB2055657A (en) | An attachment for reducing concentrations of ozone at an electric arc | |
JPS5927980Y2 (en) | Nozzle for dry underwater TIG/MIG welding in high water depths | |
SU712216A1 (en) | Torch for arc welding with annular gas shielding withdrawal of gas and dust | |
CN218253339U (en) | Take dust extraction's handheld welder pump drainage sleeve | |
CN207914794U (en) | A kind of new pattern laser welder | |
SU1110574A1 (en) | Hose to welding torches for arc welding | |
CN210280133U (en) | Automatic smoke pumping and exhausting device for electric welding |