JPS63285863A - Conductive polymer electrode material and lithium secondary battery - Google Patents

Conductive polymer electrode material and lithium secondary battery

Info

Publication number
JPS63285863A
JPS63285863A JP62119105A JP11910587A JPS63285863A JP S63285863 A JPS63285863 A JP S63285863A JP 62119105 A JP62119105 A JP 62119105A JP 11910587 A JP11910587 A JP 11910587A JP S63285863 A JPS63285863 A JP S63285863A
Authority
JP
Japan
Prior art keywords
conductive polymer
conductive
electrode material
film
polyaniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62119105A
Other languages
Japanese (ja)
Inventor
Hideki Nishihama
西浜 秀樹
Kazuhide Miyazaki
宮崎 和英
Masaki Sawaura
沢浦 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP62119105A priority Critical patent/JPS63285863A/en
Publication of JPS63285863A publication Critical patent/JPS63285863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the utilization of an electrode material and to increase the capacity of a battery by combining specific conductive polymers, and stacking them for use as electrode material. CONSTITUTION:A conductive polymer composite (A) is obtained by forming a conductive support (a) such as graphite fibers and a conductive polymer (b) such as conductive polyaniline in one film. A conductive polymer (B) is a film of the conductive polymer (b). A conductive polymer electrode material is obtained by stacking a plurality of the composite (A), alternately stacking the polymers (B) and the supports (a), or alternately stacking the composites (A) and the polymers (B). By using this electrode material in a battery, an electrolyte penetrates between layers and the utilization of the electrode material is increased. A lithium battery using this electrode material in a positive electrode is made compact and lightweight and the capacity of the battery is increased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は単位重量当りの利用率を大幅に向上させた導電
性高分子電極材及びそれを用いたリチウム二次電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a conductive polymer electrode material with significantly improved utilization rate per unit weight, and a lithium secondary battery using the same.

〈従来の技術〉 高分子化合物は本来絶縁体であるが、ある種の化合物、
いわゆるドーピング剤(ドーパント)を添加する(以下
、ドーピングという)ことにより導電性が発現するもの
が知られている。かかる高分子化合物は、ポリアニリン
<Prior art> Polymer compounds are originally insulators, but some compounds,
It is known that conductivity is developed by adding a so-called doping agent (dopant) (hereinafter referred to as doping). Such a polymer compound is polyaniline.

ポリピロール、ポリチオフェン、ポリアセチレンなどで
あり、これらにドーピング剤を添加した導電性高分子は
、半導体から金属並みの導電性を有することから、実用
化を1指した各種研究が行われている。本発明者らも、
ポリアニリンを流延成形法により直接シート成形したポ
リアニリンフィルムが、導電性及び強度・柔軟性に優れ
、各種導体材料、電池材料として有効であることを見出
し、先に特許出願した(特願昭62−31602号)。
Conductive polymers such as polypyrrole, polythiophene, and polyacetylene, which are made by adding doping agents, have conductivity comparable to that of semiconductors or metals, and various studies are being conducted with the aim of putting them into practical use. The inventors also
We discovered that a polyaniline film made by directly molding polyaniline into a sheet using a casting method has excellent conductivity, strength, and flexibility, and is effective as a variety of conductor materials and battery materials, and filed a patent application (Japanese Patent Application 1983- No. 31602).

そして、このような導電性高分子は電池の正極として用
いた場合には一般に作動電位が3、Ov付近と高いとと
もに、特にポリアニリン、ポリピロール等を用いると比
較的平坦性の良好な電位が得られ、しかもサイクル寿命
が数百回以上と大きいという理由により、電極材の材料
として注目され始めてきた。
When such conductive polymers are used as battery positive electrodes, they generally have a high operating potential of around 3.0V, and especially when polyaniline, polypyrrole, etc. are used, a relatively flat potential can be obtained. Moreover, because of its long cycle life of several hundred cycles or more, it has begun to attract attention as a material for electrode materials.

〈発明が解決しようとする問題点〉 ところが、前述したようなポリアニリン等の導電性高分
子材料を用いて例えばリチウム二次電池を構成しても、
実際には理論的に考えられる容量の約1/2〜1/3シ
か得られないので、従来においては実用に供しうる容量
を有するリチウム二次電池を製造するのは不可能であっ
た。なお、これは、電池の正極に用いた導電性高分子の
利用率が著しく低いことに起因すると思われる。
<Problems to be Solved by the Invention> However, even if a lithium secondary battery is constructed using a conductive polymer material such as polyaniline as described above,
In reality, only about 1/2 to 1/3 of the theoretical capacity can be obtained, so it has been impossible to manufacture a lithium secondary battery with a capacity that can be put to practical use in the past. Note that this seems to be due to the extremely low utilization rate of the conductive polymer used in the positive electrode of the battery.

本発明はこのような事情に鑑み、その利用率を大幅に向
上させた導電性高分子電極材及びそれを用いて容量を大
幅に高めたリチウム二次電池を提供することを目的とす
る。
In view of these circumstances, an object of the present invention is to provide a conductive polymer electrode material whose utilization rate is significantly improved, and a lithium secondary battery using the same which has a significantly increased capacity.

く問題点を解決するための手段〉 そこで、導電性高分子材料を電極として効果的に利用す
る方法について種々検討を重ねた結果、導電性高分子材
料を電極に用いた場合、電極反応に有効に関与するのは
その表面層のみであり、その内部にいく程電池反応に関
与する率が低いので電極材全体としての利用率が低くな
り、理論値に近い容量が全(得られないということを知
見した。また、単位重量当りの利用率の高い薄膜を用い
、この薄膜を積層することで利用率の高い電極材を得よ
うとしても、この電極材を用いて電池を構成した場合に
は薄膜同志が密着した状態となってしまうので厚い膜を
使用したときと同様に利用率の低い電極材となってしま
うことを知見した。
Measures to solve these problems> Therefore, as a result of various studies on how to effectively use conductive polymer materials as electrodes, we found that using conductive polymer materials as electrodes is effective for electrode reactions. It is only the surface layer that is involved in the reaction, and the further inside the layer, the lower the rate of involvement in the battery reaction, so the utilization rate of the electrode material as a whole decreases, meaning that the full capacity close to the theoretical value cannot be obtained. In addition, even if a thin film with a high utilization rate per unit weight is used and an attempt is made to obtain an electrode material with a high utilization rate by stacking these thin films, if a battery is constructed using this electrode material, It has been found that because the thin films come into close contact with each other, the electrode material has a low utilization rate, similar to when a thick film is used.

かかる知見をもとにさらに検討を重ねた結果、導電性高
分子の薄膜を積層した電極材とする場合には例えば電池
を構成した場合に薄膜と薄膜との間に電解液が入り込む
ようにすれば利用率を向上させることができることを知
見し、本発明を完成させた。
As a result of further studies based on this knowledge, we found that when using an electrode material in which conductive polymer thin films are laminated, for example, when constructing a battery, electrolyte solution should be allowed to enter between the thin films. The present invention was completed based on the finding that the utilization rate can be improved by using the above method.

すなわち、本発明にかかる導電性高分子電極材の構成は
、黒鉛m維、金属メッシュ3金属繊維等の導電性支持体
及び導電性ポリアニリン、導電性ポリピロール等の導電
性高分子を一体的にフィルム状にした導電性高分子複合
材と、導電性ポリアニリンフィルムp導電性ポリピロー
ルフィルム等の導電性高分子材とをそれぞれ単独である
いは両者を混在させて積層させたものであって且つ上記
導電性高分子材同志を重ね合せる場合にはこれら導電性
高分子材の間に上記導電性支持体を介在させてあること
を特徴とし、また本発明にかかるリチウム二次電池の構
成は、黒鉛繊維、金属メッシュ3金属!At等の導電性
支持体及び導電性ポリアニリン、導電性ポリピロール等
の導電性高分子を一体的にフィルム状にした導電性高分
子複合材と、導電性ポリアニリンフィルム−4’R性$
リビロールフィルム等の導電性高分子材とをそれぞれ単
独であるいは両者を混在させて積層させたものであって
且つ上記導電性高分子材同志を重ね合せる場合にはこれ
ら導電性高分子材の間に上記導電性支持体を介在させて
ある導電性高分子電極材を正極としたことを特徴とする
That is, the structure of the conductive polymer electrode material according to the present invention is such that a conductive support such as graphite m fibers or metal mesh 3 metal fibers and a conductive polymer such as conductive polyaniline or conductive polypyrrole are integrally formed into a film. A conductive polymer composite material formed into a shape and a conductive polymer material such as a conductive polyaniline film p-conductive polypyrrole film are laminated individually or in a mixture of the two, and the conductive polymer When molecular materials are stacked on top of each other, the conductive support is interposed between these conductive polymer materials. Mesh 3 metals! A conductive polymer composite material in which a conductive support such as At and a conductive polymer such as conductive polyaniline or conductive polypyrrole are integrally formed into a film, and conductive polyaniline film-4'R $
When a conductive polymer material such as Livirol film is laminated singly or in a mixture of both, and when the conductive polymer materials are laminated together, there is a gap between these conductive polymer materials. The present invention is characterized in that a conductive polymer electrode material in which the above-mentioned conductive support is interposed is used as a positive electrode.

このように、本発明の導電性高分子電極材は、導電性高
分子複合材を複数積層したもの、あるいは導電性高分子
材と導電性支持材とを交互に積層しLもの、あるいは導
電性高分子複合材と導電性高分子材とを交互に積層した
ものとなるが、さらにこれら積層したものをさらに重ね
合せてもよい。
As described above, the conductive polymer electrode material of the present invention can be made by laminating a plurality of conductive polymer composites, or by alternately laminating conductive polymer materials and conductive support materials, or by laminating a conductive polymer material and a conductive support material alternately, or The polymer composite material and the conductive polymer material are alternately laminated, but these laminated materials may be further laminated.

本発明で導電性高分子複合材とは導電性高分子と導電性
支持体とを一体的にフィルム状あるいはシート状(以下
、フィルム状という)にしたものであり、前述したよう
に利用率の関係からなるべく薄いものが好ましい。
In the present invention, the conductive polymer composite material is one in which a conductive polymer and a conductive support are integrally formed into a film or a sheet (hereinafter referred to as a film), and as mentioned above, it has a high utilization rate. It is preferable that the relationship be as thin as possible.

ここで、導電性高分子とは、ポリアニリン及びその誘導
体、あるいはポリピロール及びその誘導体を主体とし、
これに必要に応じてポリピロール、ポリチオフェン、ポ
リアセチレン等を含有させたポリアニリン系あるいはポ
リピロール系樹脂にドーピング剤を含有させて導電性を
有するようにしたものである。
Here, the conductive polymer is mainly composed of polyaniline and its derivatives, or polypyrrole and its derivatives,
If necessary, the polyaniline or polypyrrole resin containing polypyrrole, polythiophene, polyacetylene, etc. is made to contain a doping agent to make it conductive.

この導電性高分子は一般に電気化学的に重合する方法、
いわゆる電解重合法によって製造されるが、化学重合法
により得られた上記ポリアニリン系あるいはポリピロー
ル系樹脂に化学的処理を施してドーピングを行うことに
よっても製造される。これら製造方法については特願昭
62−31602号に詳述した。
This conductive polymer is generally produced by electrochemical polymerization.
It is produced by a so-called electrolytic polymerization method, but it can also be produced by chemically treating and doping the polyaniline or polypyrrole resin obtained by a chemical polymerization method. These manufacturing methods are detailed in Japanese Patent Application No. 62-31602.

なお、上述のポリアニリンの誘導体としては、例えばポ
リ (0−アニシジン)、ポリ (m−アニシジン)、
ポリ(0−1−ルイジン)、ポリ (m −トルイジン
)、ポリ (N−メチルアニリン)、ポリ (N−エチ
ルアニリン)ポリジフェニルアミン、ポリトリフェニル
アミン。
In addition, examples of the above-mentioned polyaniline derivatives include poly(0-anisidine), poly(m-anisidine),
Poly(0-1-luidine), poly(m-toluidine), poly(N-methylaniline), poly(N-ethylaniline)polydiphenylamine, polytriphenylamine.

ポリフェニレンジアミンなどを挙げろことができる。Examples include polyphenylene diamine.

また、導電性支持体とは黒鉛繊維、ニッケルa維、アル
ミニウム繊維などの金属繊維;ニッケルメッシ5.アル
ミニウムメツシュなどの金属メツシュなどをいい、それ
自体導電性を有して上記導電性高分子内に安定に保持さ
れるものであればよい。
Conductive supports include metal fibers such as graphite fibers, nickel a fibers, and aluminum fibers; 5. nickel mesh; It may be a metal mesh such as an aluminum mesh, as long as it has conductivity itself and is stably held within the conductive polymer.

本発明の導電性高分子複合材は、このような導電性支持
体が上記導電性高分子内に一体的に保持されたフィルム
状のものであればよいが、これを製造する場合には流延
成形法を採用するのがよい。すなわち、上記導電性高分
子を適当な溶剤に溶解又は混合分散しh溶液(半溶解し
たスラリー状のものも含む)を基板上に配した導電性複
合材に塗布・含浸させた後、常温あるいは必要に応じて
加熱して溶剤を除去することにより導電性高分子複合材
を得ることができるが、さらに、上記ポリアニリン系又
はポリピロール系樹脂と導電性支持体とを用いて同様に
して高分子複合材にした後、後処理を加えてドーピング
することによって導電性高分子複合材とすることもでき
る。なお、後処理として行うドーピングは、例えばポリ
アニリン系樹脂を12. Br2. CI2等のハロゲ
ンの蒸°気にさらす化学的処理方法やポリアニリン系樹
脂に無機酸の塩、4級アンモニウム塩等のドーピング剤
を電気化学的にドーピングさせろ方法などにより行われ
る。
The conductive polymer composite material of the present invention may be in the form of a film in which such a conductive support is integrally held within the conductive polymer. It is better to adopt the stretching method. That is, the above-mentioned conductive polymer is dissolved or mixed and dispersed in a suitable solvent, and the h solution (including a semi-dissolved slurry) is applied and impregnated onto a conductive composite material placed on a substrate, and then heated at room temperature or A conductive polymer composite can be obtained by heating and removing the solvent if necessary, but a polymer composite can also be obtained in the same manner using the above polyaniline or polypyrrole resin and a conductive support. After it is made into a material, it can also be made into a conductive polymer composite material by adding post-treatment and doping. Note that doping performed as a post-treatment may be performed, for example, by adding 12% of the polyaniline resin. Br2. This is carried out by a chemical treatment method in which the polyaniline resin is exposed to halogen vapor such as CI2, or by a method in which the polyaniline resin is electrochemically doped with a doping agent such as an inorganic acid salt or a quaternary ammonium salt.

本発明において流延成形法に用いることができる溶剤と
しては、 ■ ベンゼン、トルエン等の炭化水素系化合■ ジクロ
ロメタン、1,1,1−トリク四ロエタン等塩素化炭化
水素系化合物 ■ アセトニトリル、ベンゾニトリル等のニトリル系化
合物 ■ アセトン、メチルエチルケトン等のケトン系化合物 ■ アニソール、テトラヒドロフラン、ブチルセロソル
ブ等のエーテル系化合物 ■ ニトロエタン、ニトロベンゼン等のニトロ化合物 ■ 酢酸エチル、炭酸プロピレン等のエステル系化合物 ■ メタノール、エタノール等のアルコール系化合物 ■ 酢酸、プロピオン酸等の有機酸化合物[相] ピリ
ジン、アニリン等の芳香族アミン化合物 ■ N、N−ジメチルホルムアミド、ジメチルスルホキ
シド1.スルホラン、N−メチルピロリドン、ヘキサメ
チルホスホルアミド等の非プロトン系極性有機化合物 などが挙げられる。このような溶剤を用いて、導電性高
分子もしくはポリアニリン系又はポリピロール系樹脂を
溶解又は混合分散して流延成形に用いる溶液(半溶解し
たスラリー状のものも含む;以下同じ)とする場合には
必要に応じて加熱攪拌又はボールミル等を用いるとよい
。上記溶剤群の中で■、[相]及び■に挙げた溶剤を用
いるとほぼ常温で溶液とすることができ、他の溶剤の場
合には加熱する必要がある。また、■〜■の中でも■の
非プロトン系極性有機化合物を溶剤とした場合に溶解性
が特に優れており、特に好ましい。
Solvents that can be used in the casting method in the present invention include: (1) Hydrocarbon compounds such as benzene and toluene; (2) Chlorinated hydrocarbon compounds such as dichloromethane and 1,1,1-trictetraloethane; (2) Acetonitrile and benzonitrile. ■ Ketone compounds such as acetone and methyl ethyl ketone ■ Ether compounds such as anisole, tetrahydrofuran, and butyl cellosolve ■ Nitro compounds such as nitroethane and nitrobenzene ■ Ester compounds such as ethyl acetate and propylene carbonate ■ Methanol, ethanol, etc. Alcohol compounds ■ Organic acid compounds such as acetic acid and propionic acid [Phase] Aromatic amine compounds such as pyridine and aniline ■ N,N-dimethylformamide, dimethyl sulfoxide 1. Examples include aprotic polar organic compounds such as sulfolane, N-methylpyrrolidone, and hexamethylphosphoramide. When using such a solvent to dissolve or mix and disperse a conductive polymer or polyaniline or polypyrrole resin to create a solution (including a semi-dissolved slurry; the same applies hereinafter) for use in casting molding. may be heated and stirred or a ball mill or the like may be used as necessary. Among the above solvent groups, if the solvents listed in (1), [Phase], and (2) are used, a solution can be formed at approximately room temperature, while other solvents require heating. Further, among the compounds (1) to (2), when the aprotic polar organic compound of (1) is used as a solvent, the solubility is particularly excellent and it is particularly preferable.

また、このようにして得た溶液を基板上に配した導電性
支持体に塗布・含浸させる方法は特に限定されないが、
溶液コーティング。
In addition, the method of coating and impregnating the conductive support placed on the substrate with the solution obtained in this way is not particularly limited, but
Solution coating.

ディップコーチインク、リバースロールコーティング、
ドクターブレードコーティング等の各種コーティング法
の中から、溶液の状態に応じて最適なものを採用すれば
よい。
dip coach ink, reverse roll coating,
Among various coating methods such as doctor blade coating, the most suitable one may be adopted depending on the state of the solution.

このようにして得られる導電性高分子複合材の厚さは基
板上に配した導電性支持体の厚さによってほぼ決定され
る。この導電性高分子複合材の厚さは上述したように利
用率の関係から小さい方がよいが、10〜500−1好
ましくは20〜300−とするのがよい。
The thickness of the conductive polymer composite obtained in this manner is approximately determined by the thickness of the conductive support disposed on the substrate. As mentioned above, the thickness of the conductive polymer composite is preferably as small as possible in view of the utilization rate, but it is preferably 10 to 500-1, preferably 20 to 300-1.

よって、導電性支持体の径も、得ようとする導電性高分
子複合材の厚さに合せて決定する必要がある。なお、流
延成形法に使用する基板としては、ガラス、ポリエチレ
ンテレフタレートフィルム(PETフィルム)等が挙ケ
られる。
Therefore, the diameter of the conductive support must also be determined in accordance with the thickness of the conductive polymer composite to be obtained. Note that examples of the substrate used in the casting method include glass, polyethylene terephthalate film (PET film), and the like.

本発明の導電性高分子複合材を用いて電池を構成した場
合の単位容量【よ従来の導電性高分子のパウダーや特願
昭62−31602号で提案した導電性高分子フィルム
を用いた場合の単位容量30〜70Ah/kgと比較し
て90〜100Ah/kgと大幅に向上し、また、安定
性もよい。
Unit capacity when a battery is constructed using the conductive polymer composite material of the present invention [When using conventional conductive polymer powder or the conductive polymer film proposed in Japanese Patent Application No. 62-31602] Compared to the unit capacity of 30 to 70 Ah/kg, this is significantly improved to 90 to 100 Ah/kg, and the stability is also good.

さらに、本発明の導電性高分子複合材は、全体としての
電気容量を向上させるためにそのまま多層に積層させた
場合にも、従来の試験例にも示すように、積層させた数
に見合った容量を得ることができろ。この場合、導電性
支持体が集電体となり、且つ導電性高分子と集電体との
密着性が良好であるからである。
Furthermore, even when the conductive polymer composite material of the present invention is laminated in multiple layers to improve the overall capacitance, as shown in conventional test examples, Get capacity. In this case, the conductive support serves as a current collector, and the adhesion between the conductive polymer and the current collector is good.

因に、特願昭62−31602号で提案した導電性高分
子フィルムを多層に重ね合せた場合には、全体の単位容
量は各フィルムの単位容量の2/3〜1/2にしかなら
なかった。
Incidentally, when the conductive polymer films proposed in Japanese Patent Application No. 62-31602 are stacked in multiple layers, the total unit capacity is only 2/3 to 1/2 of the unit capacity of each film. Ta.

一方、本発明で用いる導電性高分子材とは上記導電性高
分子をフィルム状としたものであるが、上述したように
利用率の関係から薄いものの方が好ましく、10〜50
077m、好ましくは30〜3007nとするのがよい
。この導電性高分子材は、上述した導電性高分子複合材
と同様に流延成形法で製造するのがよいが、ポリピロー
ル系の導電性高分子材は電解重合法によって製造したも
のでよい。
On the other hand, the conductive polymer material used in the present invention is a film made of the above-mentioned conductive polymer, but as mentioned above, it is preferable to have a thin film from the viewpoint of utilization rate.
077 m, preferably 30 to 3007 n. This conductive polymer material is preferably manufactured by the casting method similarly to the conductive polymer composite material described above, but the polypyrrole-based conductive polymer material may be manufactured by the electrolytic polymerization method.

このような導電性高分子材は上述したように単に積層し
て電極材としただけでは各フィルムの単位容量の2/3
〜1/2の単位容量しか得られないが、上記導電性支持
体と交互に積層することにより、導電性高分子複合材を
積層させた場合と同様に単位容量が低下することなく大
きい容量を得ることができる。
As mentioned above, if such a conductive polymer material is simply laminated to form an electrode material, it will only be 2/3 of the unit capacity of each film.
Although only ~1/2 of the unit capacity can be obtained, by alternately laminating the above-mentioned conductive supports, a large capacity can be obtained without decreasing the unit capacity as in the case of laminating conductive polymer composites. Obtainable.

本発明の導電性高分子電極材としては、導電性高分子複
合材を積層させたもの、導電性高分子材と導電性支持体
とを交互に積層させたものの他、これらを適宜組合せた
ものでよいが、導電性高分子複合材と導電性支持体とが
重ね合うような組合せはスペースが無駄となるだけなの
であまり好ましいものではない。
The conductive polymer electrode material of the present invention may be one in which conductive polymer composites are laminated, a conductive polymer material and a conductive support are alternately laminated, or a suitable combination thereof. However, a combination in which the conductive polymer composite material and the conductive support are overlapped is not very preferable because it just wastes space.

本発明の導電性高分子電極材は、各種電池等に用いた場
合、電解液が各層の間まで入り込むので、利用率の非常
に高いものとなっている。よって、この導電性高分子′
ia極材をリチウム二次電池の正極として用いると従来
と比較して大幅に電気容lの向上したものとすることが
できろ。しかも、単位容量が著しく高いので、軽量且つ
小型なリチウム二次電池とすることができるので、種々
の分野における実用化が期待できる。さらに、本発明の
導電性高分子電極材はフィルム状であるので、例えばス
パイラル構造とすることにより筒型などの形態にするこ
とも可能となり、その産業上の利用価値は多大である。
When the conductive polymer electrode material of the present invention is used in various batteries, etc., the electrolyte solution penetrates between the layers, resulting in a very high utilization rate. Therefore, this conductive polymer′
When the IA electrode material is used as a positive electrode of a lithium secondary battery, the electric capacity can be greatly improved compared to the conventional one. Moreover, since the unit capacity is extremely high, it is possible to make a lightweight and small lithium secondary battery, so it can be expected to be put to practical use in various fields. Furthermore, since the conductive polymer electrode material of the present invention is in the form of a film, it can be formed into a cylindrical shape by, for example, having a spiral structure, and its industrial utility value is great.

本発明にかかるリチウム二次電池は、正極として導電性
高分子電極材を用いる以外は従来から知られている構成
とすればよい。すなわち、負極の活物質としてはリチウ
ム、ナトリウム、アルミニウムなどを用いればよいが、
デンドライトを防止するために、リチウムとアルミニウ
ムとの合金(Li−A1合金)あるいはウッド合金にリ
チウムを吸着したものを負極材とするのがよい。また電
解液としては、一般に過塩素酸リチウム(L i CI
 O,) 、ホウフッ化リチウム(LiBF、)、  
リンフッ化カワウA  (KP’F6)、  e素フッ
化すチウ、 A (L IA sF6 ) ?リンフッ
化ナトリウム(NaPF、)等のルイス酸塩からなる電
解質を1mol/lの濃度で溶媒に溶解したものが使用
されろ。このときの溶媒としては、プ四ピレンカーボネ
ート、γ−ブチロラクトンエチレンカーボネート等、あ
るいはテトラヒドロフラン、ジメトキシエタン等、ある
いはこれら両者を混合したものなどが使用される。
The lithium secondary battery according to the present invention may have a conventionally known configuration except for using a conductive polymer electrode material as the positive electrode. In other words, lithium, sodium, aluminum, etc. may be used as the active material of the negative electrode, but
In order to prevent dendrites, it is preferable to use an alloy of lithium and aluminum (Li-A1 alloy) or a wood alloy with lithium adsorbed as the negative electrode material. In addition, as an electrolyte, lithium perchlorate (Li CI
O,), lithium borofluoride (LiBF,),
Phosphorus fluoride A (KP'F6), e-element fluoride Qi, A (LIA sF6)? An electrolyte consisting of a Lewis acid salt such as sodium phosphorous fluoride (NaPF) dissolved in a solvent at a concentration of 1 mol/l may be used. As the solvent used at this time, tetrapyrene carbonate, γ-butyrolactone ethylene carbonate, etc., tetrahydrofuran, dimethoxyethane, etc., or a mixture of these two, etc. are used.

このように構成した本発明のリチウム二次電池では、従
来の鉛バッテリーの電気容量175W)17kgと比較
して著しく大きい330品h/ kg (100Ah/
 kg)という電気容量を得ろことができる。この値は
、電析ポリアニリンニオケア、理想値350Wh/kg
 (100Ah/kg)(電気化学、見、 1985.
592〜596)にせまるものである。
The lithium secondary battery of the present invention configured as described above has a significantly larger electric capacity of 330h/kg (100Ah/kg) than the conventional lead-acid battery (175W) 17kg.
kg). This value is for electrodeposited polyaniline niocare, ideal value 350Wh/kg
(100Ah/kg) (Electrochemistry, See, 1985.
592-596).

このように本発明によるリチウム二次電池は、軽量で、
従来の鉛バッテリーよりはるかに大きい単位重量当りの
出力を得ることができるので、各種の電力向けの利用が
期待できろが、特にロードレベリング、電気自動車。
As described above, the lithium secondary battery according to the present invention is lightweight and
Since it can obtain much greater output per unit weight than conventional lead-acid batteries, it can be expected to be used for various electric power applications, especially for road leveling and electric vehicles.

太陽電池とのハイブリッド、  ICメモリやVTRな
どのバックアップ用電源等の用途に最適であると考えら
れる。すなわち、軽量且つ簡便な家庭用二次mAIM、
となり得るのでロードレベリングに有効であり、また、
軽量で単位重量当りの出力が大きいので電気自動車に好
適であり、太陽電池とのハイブリッド化すれば大型の電
力貯蔵用はもとより腕時計用電源としても好適であり、
さらに、マイクロエレクトロニクス分野の成長に伴い利
用が広がる微小電流用電源として利用することができる
It is thought to be ideal for hybrid applications with solar cells and as a backup power source for IC memories, VTRs, and other devices. In other words, a lightweight and simple home-use secondary mAIM,
Therefore, it is effective for load leveling, and
It is suitable for electric vehicles because it is lightweight and has a large output per unit weight, and when hybridized with solar cells, it is suitable not only for large-scale power storage but also as a power source for wristwatches.
Furthermore, it can be used as a power source for minute currents, which is increasingly being used as the field of microelectronics grows.

く実1/!1例及び試験例〉 (導電性高分子の製造) 反応容器に過塩素酸リチウム(16,0g。Kumi 1/! 1 case and test example> (Manufacture of conductive polymer) Add lithium perchlorate (16.0 g) to the reaction vessel.

0.15 mol ) 、過塩素酸(22,0g、 0
.15moj)、7=リン(14,0g 、 0.15
 mol )及び95%アセトニトリル水溶液(500
ml)を入れ、混合する。この溶液に陽極として白金メ
ツキーチタン極(2cm X 2 cmXo、1cm厚
み)及び陰極として炭素極(10cmX5cnnX0.
3cm厚み)を挿入して、Ar雰囲気下、温度を一10
℃に保ち、攪拌しながら3 mA (0,75mA /
cd)の定電流で12時間反応させtコ。反応終了後、
ポリマーを陽極から取り去り、水洗し、常温で一昼夜真
空乾燥して導電性ポリアニリン樹脂を得た。
0.15 mol), perchloric acid (22.0 g, 0
.. 15moj), 7=phosphorus (14.0g, 0.15
mol ) and 95% acetonitrile aqueous solution (500
ml) and mix. Into this solution, a platinum metski titanium electrode (2cm x 2cmXo, 1cm thickness) was used as an anode and a carbon electrode (10cm x 5cnn
3cm thick) and lowered the temperature to -10°C under an Ar atmosphere.
℃ and stirred at 3 mA (0.75 mA/
React for 12 hours at a constant current of cd). After the reaction is complete,
The polymer was removed from the anode, washed with water, and vacuum dried at room temperature overnight to obtain a conductive polyaniline resin.

(導電性高分子複合材の製造) 上記導電性ポリアニリン樹脂7.5gにN、 N−ジメ
チルホルムアミド17.5gを加え、ボールミルを用い
てロール上で均一分散して溶液を得た。この溶液をドク
ターブレード法で150声φの黒鉛繊維材に塗布・含浸
させた。次いで、約50℃で真空乾燥することにより溶
剤を除去し、さらに純水で洗浄して乾燥することにより
黒鉛繊維−ポリアニリン複合材を得た。
(Manufacture of conductive polymer composite material) 17.5 g of N,N-dimethylformamide was added to 7.5 g of the above conductive polyaniline resin, and uniformly dispersed on a roll using a ball mill to obtain a solution. This solution was applied and impregnated onto a graphite fiber material having a diameter of 150 tones using a doctor blade method. Next, the solvent was removed by vacuum drying at about 50° C., and the graphite fiber-polyaniline composite material was obtained by washing with pure water and drying.

上記溶液を、ニッケル繊維、ニッケルメツシュ及びアル
ミニウム繊維にそれぞれドクターブレード法で塗布・含
浸させ、以下同様にしてニッケル繊維−ポリアニリン複
合材、ニッケルメツシューポリアニリン複合材、アルミ
ニウムメツシューポリアニリン複合材を得た。
The above solution was applied and impregnated onto nickel fibers, nickel mesh and aluminum fibers using a doctor blade method, respectively, and nickel fiber-polyaniline composites, nickel mesh polyaniline composites, and aluminum mesh polyaniline composites were obtained in the same manner. Ta.

(導電性高分子材の製造) 上記導電性ポリアニリン樹脂7.5gにN、N−ジメチ
ルホルムアミド17.5gを加え、同様にして溶液を得
た。この溶液をドクターブレード法によりガラス基板上
に70声の厚に塗布した。次いで約50℃で真空乾燥し
て溶剤を除去し、さらに純水で洗浄した後ガラス基板か
ら取り外して導電性ポリアニリンフィルムを1等な。
(Manufacture of conductive polymer material) 17.5 g of N,N-dimethylformamide was added to 7.5 g of the above conductive polyaniline resin, and a solution was obtained in the same manner. This solution was applied to a thickness of 70 mm on a glass substrate by a doctor blade method. Next, the solvent was removed by vacuum drying at about 50° C., and after washing with pure water, the film was removed from the glass substrate to form a conductive polyaniline film.

試験例1 上述のようにして得た各種導電性ポリアニリン複合材及
びこれらを第1表に示すように積層させたもの、並びに
導電性ポリアニリンフィルムと導電性ポリアニリン複合
材又は導電性支持体とを第1表に示すように交互に積層
させたものを電池の正極材として用いたときの性能を求
めた。
Test Example 1 Various conductive polyaniline composites obtained as described above, laminated materials of these as shown in Table 1, and conductive polyaniline films and conductive polyaniline composites or conductive supports were As shown in Table 1, the performance was determined when the alternately laminated materials were used as positive electrode materials for batteries.

(電池の構成) 試験に用いたテストセルは第1図に示すように、正極端
子1と、この正極端子1にa合されるテフロン筒材2と
、このテフロン筒材2の内側に螺合されるとともに負極
端子3を有するテフロン材4とからなり、テフロン筒材
2の内側に10.6mφの正極材5、電解液を含有する
セパレータ6及び負極材7をこの順番に椰大した後にテ
フロン材4をテフロン筒材2に螺合させることにより正
極端子1とテフロン材4とで正極材5、セパレーク6及
び負極材7とを保持する手R成となっている。
(Battery Configuration) As shown in Figure 1, the test cell used in the test consists of a positive electrode terminal 1, a Teflon tube 2 that is fitted to the positive terminal 1, and a Teflon tube 2 that is screwed into the inside of the Teflon tube 2. A positive electrode material 5 with a diameter of 10.6 m, a separator 6 containing an electrolytic solution, and a negative electrode material 7 are placed inside the Teflon tube material 2 in this order, and then the Teflon material 4 has a negative electrode terminal 3. By screwing the material 4 into the Teflon tube material 2, a hand R structure is formed in which the positive electrode terminal 1 and the Teflon material 4 hold the positive electrode material 5, the separator 6, and the negative electrode material 7.

なお、正極材5としては上記各種電極材を10.6+n
+aφのポンチで打ち抜いた後、50℃で減圧乾燥した
ものを用いた。また負極材7としてはシート状のLi−
Al合金(A115%)の正極中のアニオン量に対して
充分量となる量を用いた。さらに電解液としてはプロピ
レンカーボネートと1,2−ジメトキシエタンとの1:
 1(容量比)の混合溶媒に、過塩素酸リチウムを1m
・ol/I溶解したものを0.4mj用いた。この電解
液の作製にあたっては各試薬を常法により乾燥処理して
用いた。
In addition, as the positive electrode material 5, the above-mentioned various electrode materials are used in 10.6+n
It was punched with a +aφ punch and then dried under reduced pressure at 50°C. Further, as the negative electrode material 7, a sheet of Li-
The amount used was sufficient for the amount of anions in the positive electrode of Al alloy (115% Al). Furthermore, as an electrolyte, 1: of propylene carbonate and 1,2-dimethoxyethane is used.
1 m of lithium perchlorate in a mixed solvent of 1 (volume ratio)
・0.4 mj of ol/I solution was used. In preparing this electrolytic solution, each reagent was dried using a conventional method.

(試験条件) 上述の電池を用い、20℃アルゴンガス雰囲気下で10
01JAの充放電を繰り返した。
(Test conditions) Using the above-mentioned battery, 10
01JA was repeatedly charged and discharged.

このときの3サイクル目の放電値より単位容量を求めた
The unit capacity was determined from the discharge value at the third cycle at this time.

この結果は各正極材中のポリアニリン量とともに第1表
に示した。
The results are shown in Table 1 along with the amount of polyaniline in each positive electrode material.

(比 較 例) なお、比較のため、上記導電性ポリアニリンフィルムを
単独で用いたもの並びに3枚積層させたものについても
同様に試験した。この結果も第1表に示す。
(Comparative Example) For comparison, the conductive polyaniline film used alone and the film laminated with three films were similarly tested. The results are also shown in Table 1.

第1表 第1表に示すように、導電性ポリアニリンフィルムのみ
を3枚積層させた場合には単位容量が1枚のときと比べ
て約2/3となってしまうが、導電性ポリアニリン複合
材を積層させた場合(臓2.&4.Na6)並びに導電
性ポリアニリンフィルムと導電性ポリアニリン複合材又
は導電性支持体とを交互に積層した場合(N09〜No
、 12 )には、導電性ポリアニリン複合材あるいは
導電性ポリアニリンフィルムをそれぞれ1枚で使用した
場合と同等の単位容量を得ろことができることが認めら
れた。さらに、導電性ポリアニリン複合材では導電性ポ
リアニリンフィルムに比べて大きな単位容iが得られる
ことも認められた。
Table 1 As shown in Table 1, when only three conductive polyaniline films are laminated, the unit capacity is approximately 2/3 that of one conductive polyaniline film, but the conductive polyaniline composite (No. 2 & 4. Na6) and when conductive polyaniline films and conductive polyaniline composites or conductive supports are alternately laminated (No. 2. & 4. Na6).
, 12), it was recognized that it was possible to obtain a unit capacity equivalent to that obtained when a single conductive polyaniline composite material or a single conductive polyaniline film was used. Furthermore, it was also observed that a larger unit volume i can be obtained with the conductive polyaniline composite material than with the conductive polyaniline film.

試  験  例  2 導電性ポリアニリンの代りに導電性ポリピロールを用い
て試験例1と同様な試駆を行った。
Test Example 2 A test run similar to Test Example 1 was conducted using conductive polypyrrole instead of conductive polyaniline.

(電極材用の試料) (1)電解重合法により作製した80.ca厚の導電性
ポリピロールフィルム、 ・ f2)  (1)の導電性ポリピロールを用い、黒鉛繊
維にドクターブレード法にて塗布・含浸させて作製した
導電性ポリピロール黒鉛ta維複合材、 (31(21と同様にして作製した導電性ポリピロール
ニッケルメツシュ複合材 これらの試料を用いて試験例1と同様な試験を行ったと
ころ第2表に示す結果を得第2表 第2表に示すように、ポリアニリンの代りにポリピロー
ルを用いた場合にも同様の効果が認められた。すなわち
、導電性ポリピロール複合材を積層させた場合(No、
 2 。
(Sample for electrode material) (1) 80. A conductive polypyrrole film with a thickness of ca, f2) A conductive polypyrrole graphite TA fiber composite material prepared by applying and impregnating graphite fibers using the doctor blade method using the conductive polypyrrole of (1), (31 (21 and Conductive polypyrrole nickel mesh composite prepared in the same manner When the same test as in Test Example 1 was conducted using these samples, the results shown in Table 2 were obtained.As shown in Table 2, polyaniline A similar effect was observed when polypyrrole was used instead of .That is, when conductive polypyrrole composites were laminated (No.
2.

No、 4 ) 、ポリピロール複合材と導電性ポリピ
ロールフィルム又は導電性支持体とを積層させた場合に
は、導電性ポリピロール複合材あるいは導電性ポリピ四
−ルフィルムを1枚だけの場合と同様な単位容量が得ら
れ、また導電性ポリピロール複合材では導電性ポリピロ
ールフィルムと比較して大きな単位容量が得られること
が認められた。
No. 4) When a polypyrrole composite material and a conductive polypyrrole film or conductive support are laminated, the unit capacity is the same as when only one conductive polypyrrole composite material or conductive polypyrrole film is used. was obtained, and it was also observed that a larger unit capacity could be obtained with the conductive polypyrrole composite material compared to the conductive polypyrrole film.

〈発明の効果〉 以上、実施例及び試験例とともに具体的に説明したよう
に、本発明の導電性高分子電極材は従来のものに比べて
利用率が著しく向上したものであり、さらに、この導電
性高分子電極材を正極としたリチウム二次電池は軽量且
つ小型で大容量のものとなり、種々の分野での利用が期
待できろ。
<Effects of the Invention> As specifically explained above with Examples and Test Examples, the conductive polymer electrode material of the present invention has a significantly improved utilization rate compared to conventional ones, and furthermore, Lithium secondary batteries using conductive polymer electrode materials as positive electrodes are lightweight, compact, and large-capacity, and can be expected to be used in a variety of fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の試験に用いたテストセルの構成図であ
る。 図面中、 1は正極端子、 3は負極端子、 5は正極材、 6はセパレータ(電解液含有)、 7は負極材である・
FIG. 1 is a configuration diagram of a test cell used for testing the present invention. In the drawing, 1 is a positive electrode terminal, 3 is a negative electrode terminal, 5 is a positive electrode material, 6 is a separator (containing electrolyte), and 7 is a negative electrode material.

Claims (1)

【特許請求の範囲】 1)黒鉛繊維、金属メッシュ3金属繊維等の導電性支持
体及び導電性ポリアニリン、導電性ポリピロール等の導
電性高分子を一体的にフィルム状にした導電性高分子複
合材と、導電性ポリアニリンフィルム、導電性ポリピロ
ールフィルム等の導電性高分子材とをそれぞれ単独であ
るいは両者を混在させて積層させたものであって且つ上
記導電性高分子材同志を重ね合せる場合にはこれら導電
性高分子材の間に上記導電性支持体を介在させてあるこ
とを特徴とする導電性高分子電極材。 2)導電性高分子複合材を複数積層させたものである特
許請求の範囲第1項記載の導電性高分子電極材。 3)導電性高分子材と導電性支持体とを交互に積層させ
たものである特許請求の範囲第1項記載の導電性高分子
電極材。 4)導電性高分子複合材と導電性高分子材とを交互に積
層させたものである特許請求の範囲第1項記載の導電性
高分子電極材。 5)黒鉛繊維、金属メッシュ、金属繊維等の導電性支持
体及び導電性ポリアニリン、導電性ポリピロール等の導
電性高分子を一体的にフィルム状にした導電性高分子複
合材と、導電性ポリアニリンフィルム、導電性ポリピロ
ールフィルム等の導電性高分子材とをそれぞれ単独であ
るいは両者を混在させて積層させたものであって且つ上
記導電性高分子材同志を重ね合せる場合にはこれら導電
性高分子材の間に上記導電性支持体を介在させてある導
電性高分子電極材を正極としたことを特徴とするリチウ
ム二次電池。 6)導電性高分子複合材を複数積層させた導電性高分子
電極材を正極とした特許請求の範囲第5項記載のリチウ
ム二次電池。 7)導電性高分子材と導電性支持体とを交互に積層させ
た導電性高分子電極材を正極とした特許請求の範囲第5
項記載のリチウム二次電池。 8)導電性高分子複合材と導電性高分子材とを交互に積
層させた導電性高分子電極材を正極とした特許請求の範
囲第5項記載のリチウム二次電池。
[Claims] 1) A conductive polymer composite material in which a conductive support such as graphite fibers or metal mesh 3 metal fibers and a conductive polymer such as conductive polyaniline or conductive polypyrrole are integrally formed into a film. and a conductive polymer material such as a conductive polyaniline film or a conductive polypyrrole film, either singly or in combination, and when the conductive polymer materials are laminated together, A conductive polymer electrode material characterized in that the conductive support is interposed between these conductive polymer materials. 2) The conductive polymer electrode material according to claim 1, which is made by laminating a plurality of conductive polymer composite materials. 3) The conductive polymer electrode material according to claim 1, which is made by alternately laminating a conductive polymer material and a conductive support. 4) The conductive polymer electrode material according to claim 1, which is obtained by alternately laminating a conductive polymer composite material and a conductive polymer material. 5) A conductive polymer composite material in which a conductive support such as graphite fiber, metal mesh, or metal fiber and a conductive polymer such as conductive polyaniline or conductive polypyrrole are integrally formed into a film, and a conductive polyaniline film. , a conductive polymer material such as a conductive polypyrrole film, either alone or in combination, and when the above-mentioned conductive polymer materials are laminated together, these conductive polymer materials A lithium secondary battery characterized in that the positive electrode is a conductive polymer electrode material with the conductive support interposed therebetween. 6) The lithium secondary battery according to claim 5, wherein the positive electrode is a conductive polymer electrode material made by laminating a plurality of conductive polymer composite materials. 7) Claim 5 in which a conductive polymer electrode material in which a conductive polymer material and a conductive support are alternately laminated is used as a positive electrode.
Lithium secondary battery as described in section. 8) The lithium secondary battery according to claim 5, wherein the positive electrode is a conductive polymer electrode material in which a conductive polymer composite material and a conductive polymer material are alternately laminated.
JP62119105A 1987-05-18 1987-05-18 Conductive polymer electrode material and lithium secondary battery Pending JPS63285863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119105A JPS63285863A (en) 1987-05-18 1987-05-18 Conductive polymer electrode material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119105A JPS63285863A (en) 1987-05-18 1987-05-18 Conductive polymer electrode material and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS63285863A true JPS63285863A (en) 1988-11-22

Family

ID=14753032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119105A Pending JPS63285863A (en) 1987-05-18 1987-05-18 Conductive polymer electrode material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS63285863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206342A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206342A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Battery

Similar Documents

Publication Publication Date Title
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
US8377546B2 (en) Plastics electrode material and secondary cell using the material
KR20000052995A (en) An electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer
JP2000508114A (en) Proton conductor in liquid form
EP1189295B1 (en) Secondary battery and capacitor utilizing indole compounds
CN111261872B (en) Organic electrode material and preparation method and application thereof
Lewandowski et al. Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries
JP3565777B2 (en) Polymer battery
JP2005209576A (en) Copolymer compound and electrochemical cell using it
Morita et al. Charge/discharge characteristics of polyaniline-based polymer composite positives for rechargeable lithium batteries
JP5818689B2 (en) Lithium ion secondary battery
JP7084587B2 (en) Polymers, electrode active materials and secondary batteries
CN108598557B (en) All-solid-state battery integrated module and all-solid-state battery comprising same
JP3144410B2 (en) Battery and capacitor using quinoxaline resin
JP2000123825A (en) High polymer electrode
JP3538185B2 (en) Secondary batteries and capacitors using indole compounds
JP3183280B2 (en) Electrodes and batteries
Doeff et al. The use of redox polymerization electrodes in lithium batteries with liquid electrolytes
JPS63285863A (en) Conductive polymer electrode material and lithium secondary battery
JP3089707B2 (en) Solid electrode composition
JP2006310384A (en) Process for producing porous electrode, porous electrode, and electrochemical device
JP4054925B2 (en) Lithium battery
JP2993272B2 (en) Reversible electrode
JPH043066B2 (en)
JPS63264878A (en) Aluminum-conductive polymer secondary battery using cold molten salt electrolyte