JPS6328521Y2 - - Google Patents

Info

Publication number
JPS6328521Y2
JPS6328521Y2 JP1982014336U JP1433682U JPS6328521Y2 JP S6328521 Y2 JPS6328521 Y2 JP S6328521Y2 JP 1982014336 U JP1982014336 U JP 1982014336U JP 1433682 U JP1433682 U JP 1433682U JP S6328521 Y2 JPS6328521 Y2 JP S6328521Y2
Authority
JP
Japan
Prior art keywords
container
valve body
cooler
electron microscope
safety valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982014336U
Other languages
Japanese (ja)
Other versions
JPS58117057U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1433682U priority Critical patent/JPS58117057U/en
Publication of JPS58117057U publication Critical patent/JPS58117057U/en
Application granted granted Critical
Publication of JPS6328521Y2 publication Critical patent/JPS6328521Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【考案の詳細な説明】 本考案は電子顕微鏡等に使用されるエネルギー
分散型半導体検出器(以下EDSと略記する)等
を冷却するための冷却器に関する。
[Detailed Description of the Invention] The present invention relates to a cooler for cooling an energy dispersive semiconductor detector (hereinafter abbreviated as EDS) used in an electron microscope or the like.

電子顕微鏡やX線マイクロアナライザーにおい
てはEDSを用いたものがある。このようなEDS
は極低温まで冷却されて使用されねばならぬため
通常EDSを用いた電子顕微鏡に於いてはその試
料室に冷却器が装着される。この冷却器は液体窒
素等の冷却液を入れるための容器と該容器内の液
体窒素に被冷却体(即ちこの場合にはEDS)か
らの熱を伝導するための伝導棒等を備えており、
上記装着は熱伝導棒の端部を試料室に挿入するこ
とによつて行なわれる。ところで、液体窒素等の
冷却液は熱を奪うに従つて気化し、それによつて
発生したガスは容器外に出て行くが、この気化に
伴つて冷却液槽内には気泡の発生、上昇、消滅が
頻繁に起こる。これらはいずれも冷却液の移動を
伴うが、従来においては前記容器は大気圧に開放
されていたため、発生する気泡はかなり大きく、
従つて冷却液の移動量も大きいことから、大きな
振動を伴い、この振動が熱伝導棒を介して試料室
に伝わり、電子顕微鏡等において高分解能観察を
行う上で障害となつていた。
Some electron microscopes and X-ray microanalyzers use EDS. EDS like this
Since the sample must be cooled to an extremely low temperature before use, a cooler is usually installed in the sample chamber of an electron microscope using EDS. This cooler is equipped with a container for containing a cooling liquid such as liquid nitrogen, and a conduction rod for conducting heat from the object to be cooled (i.e., EDS in this case) to the liquid nitrogen in the container.
The mounting is carried out by inserting the end of the heat conducting rod into the sample chamber. By the way, a coolant such as liquid nitrogen vaporizes as it removes heat, and the gas generated thereby exits the container, but as a result of this vaporization, bubbles are generated in the coolant tank, rising, and Disappearances occur frequently. All of these involve the movement of coolant, but in the past, the container was open to atmospheric pressure, so the bubbles generated were quite large.
Therefore, since the amount of movement of the coolant is large, large vibrations are generated, and these vibrations are transmitted to the sample chamber via the heat conduction rod, which is an obstacle to performing high-resolution observation using an electron microscope or the like.

本案はこのような従来の欠点を解決し、前述し
た振動を抑制することにより電子顕微鏡等におけ
る高分解能観察を可能にする冷却器を提供するも
ので、液体窒素等の冷却液を入れるための容器と
該容器内の冷却液に被冷却体からの熱を伝導する
ための伝導手段とを備え、電子顕微鏡等の試料室
あるいは真空排気管に装着される冷却器におい
て、該容器内が所定圧力に近づいた際に内部ガス
を逃がすための安全弁と、該安全弁とは別個に設
けられ、気化した冷却液を前記容器外に排出する
ための排出口の開放量を変化させるための弁体
と、該容器内の圧力に応じた機械的移動を生じさ
せるための手段と、該機械的移動を弁体の開放量
に変換させるための手段よりなることを特徴とし
ており、以下図面に基づき本考案の一実施例を詳
述する。
The purpose of this project is to solve these conventional drawbacks and provide a cooler that enables high-resolution observation with electron microscopes, etc. by suppressing the vibrations mentioned above. and a conduction means for transmitting heat from the object to be cooled to a cooling liquid in the container, and is installed in a sample chamber or vacuum exhaust pipe of an electron microscope, etc., in which the inside of the container is brought to a predetermined pressure. a safety valve for releasing internal gas when approaching the container; a valve body provided separately from the safety valve for changing the amount of opening of a discharge port for discharging vaporized cooling liquid to the outside of the container; It is characterized by a means for generating mechanical movement in accordance with the pressure within the container, and a means for converting the mechanical movement into the amount of opening of the valve body. Examples will be explained in detail.

図面において、1は液体窒素2が入れられてい
る容器であり、該容器底部にはEDSからの熱を
奪うため熱伝導棒3が取り付けられている。容器
1の上部には液体窒素を入れるための口4が設け
られており、この口4は蓋5によつて密閉されて
いる。6は気化した液体窒素を排出するための排
出口であり、この排出口6の開放量は矢印Kの方
向に移動するアーム7を介して支持された弁体8
によつて変化できるようになつている。9は容器
内の圧力によつて圧縮される量が変わることを利
用して容器内圧力を検出するためのベローズであ
り、該ベローズ9の底面には軸10の一端が一体
的に取り付けられている。軸10の他端はピン等
によつて前記アーム7に係合されている。11は
アーム7の支柱であり、アーム7は支柱11の取
り付け軸12を中心にして揺振する。13は安全
弁の弁体であり、この弁体13は容器1が破損す
る程の高圧に近づいた際にバネ15の力に抗して
上昇し内部ガスを逃がすためのものである。
In the drawing, 1 is a container containing liquid nitrogen 2, and a heat conduction rod 3 is attached to the bottom of the container to remove heat from the EDS. A port 4 for filling liquid nitrogen is provided at the top of the container 1, and this port 4 is sealed with a lid 5. 6 is a discharge port for discharging vaporized liquid nitrogen, and the opening amount of this discharge port 6 is determined by a valve body 8 supported via an arm 7 that moves in the direction of arrow K.
It is now possible to change depending on the Reference numeral 9 denotes a bellows for detecting the pressure inside the container by utilizing the fact that the amount of compression changes depending on the pressure inside the container, and one end of the shaft 10 is integrally attached to the bottom surface of the bellows 9. There is. The other end of the shaft 10 is engaged with the arm 7 by a pin or the like. Reference numeral 11 denotes a support for the arm 7, and the arm 7 swings around a mounting shaft 12 of the support 11. Reference numeral 13 denotes a valve body of a safety valve, and this valve body 13 rises against the force of a spring 15 to release internal gas when the pressure approaches high enough to damage the container 1.

このような構成において、ベローズ9によつて
検出された容器1内の圧力が高くなると軸10が
矢印Mの向きに移動し、この移動がアーム7を介
して弁体8の下向きの移動に変換され、排出口6
の排出量を増大させるようにし、又逆に容器1内
の圧力が低くなると軸10が矢印Mとは逆向きに
移動して、排出口6の排出量を減少させるように
弁体8を移動させる。従つてアーム7のテコ比
や、弁体8の初期位置等を適切に設定することに
より、容器1内の圧力を冷却液が気化して排出口
6から排出されて行く過程において例えば2〜3
気圧程度の大気圧より高い略一定圧力に保つこと
ができる。その結果、冷却液内に発生する気泡の
体積は常時小さくすることができ、気泡の発生・
移動・消滅等に起因する振動もより小さなものに
抑えることができる為、電子顕微鏡等においてよ
り安定した高分解能観察が可能となる。
In such a configuration, when the pressure inside the container 1 detected by the bellows 9 increases, the shaft 10 moves in the direction of the arrow M, and this movement is converted into a downward movement of the valve body 8 via the arm 7. and outlet 6
When the pressure inside the container 1 decreases, the shaft 10 moves in the opposite direction to the arrow M, and the valve body 8 is moved so as to decrease the discharge amount from the discharge port 6. let Therefore, by appropriately setting the lever ratio of the arm 7, the initial position of the valve body 8, etc., the pressure inside the container 1 can be reduced by, for example, 2 to 3 seconds during the process in which the cooling liquid is vaporized and discharged from the discharge port 6.
It is possible to maintain a substantially constant pressure higher than atmospheric pressure, which is about atmospheric pressure. As a result, the volume of bubbles generated in the coolant can be kept small at all times.
Since vibrations caused by movement, disappearance, etc. can be suppressed to a smaller level, more stable high-resolution observation using an electron microscope or the like is possible.

尚、本案は真空排管に装着される冷却器につい
ても同様に実施できる。
Incidentally, the present invention can be similarly implemented for a cooler attached to a vacuum exhaust pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本案の一実施例を示すためのものであ
る。 1……容器、2……液体窒素、3……熱伝導
棒、4……口、5……蓋、6……排出口、7……
アーム、8……弁体、9……ベローズ、10……
軸、11……支柱、12……取り付け軸、13…
…弁体。
The drawings are for showing one embodiment of the present invention. 1... Container, 2... Liquid nitrogen, 3... Heat conduction rod, 4... Mouth, 5... Lid, 6... Outlet, 7...
Arm, 8... Valve body, 9... Bellows, 10...
Axis, 11... Support, 12... Mounting axis, 13...
...valve body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 液体窒素等の冷却液を入れるための容器と、該
容器内の冷却液に被冷却体からの熱を伝導するた
めの伝導手段とを備え、電子顕微鏡等の試料室あ
るいは真空排気管に装着される冷却器において、
該容器内が所定圧力に近づいた際に内部ガスを逃
がすための安全弁と、該安全弁とは別個に設けら
れ、気化した冷却器を前記容器外に排出するため
の排出口の開放量を変化させるための弁体と、該
容器内の圧力に応じた機械的移動を生じさせるた
めの手段と、該機械的移動を弁体の開放量に変換
するための手段よりなる電子顕微鏡等における冷
却器。
It is equipped with a container for containing a cooling liquid such as liquid nitrogen, and a conduction means for conducting heat from the object to be cooled to the cooling liquid in the container, and is installed in a sample chamber of an electron microscope or the like or in a vacuum exhaust pipe. In the cooler,
a safety valve for releasing internal gas when the inside of the container approaches a predetermined pressure; and a safety valve provided separately from the safety valve to change the opening amount of an outlet for discharging the vaporized cooler to the outside of the container. 1. A cooler for an electron microscope, etc., comprising a valve body for the purpose of opening the valve body, a means for generating mechanical movement according to the pressure within the container, and a means for converting the mechanical movement into an opening amount of the valve body.
JP1433682U 1982-02-04 1982-02-04 Coolers for electron microscopes, etc. Granted JPS58117057U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1433682U JPS58117057U (en) 1982-02-04 1982-02-04 Coolers for electron microscopes, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1433682U JPS58117057U (en) 1982-02-04 1982-02-04 Coolers for electron microscopes, etc.

Publications (2)

Publication Number Publication Date
JPS58117057U JPS58117057U (en) 1983-08-10
JPS6328521Y2 true JPS6328521Y2 (en) 1988-08-01

Family

ID=30026806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1433682U Granted JPS58117057U (en) 1982-02-04 1982-02-04 Coolers for electron microscopes, etc.

Country Status (1)

Country Link
JP (1) JPS58117057U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478076A (en) * 1977-12-05 1979-06-21 Hitachi Ltd Frozen sample observation device of scanning electron microscope and similar unit
JPS56116994A (en) * 1980-02-18 1981-09-14 Hitachi Ltd Cryostat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478076A (en) * 1977-12-05 1979-06-21 Hitachi Ltd Frozen sample observation device of scanning electron microscope and similar unit
JPS56116994A (en) * 1980-02-18 1981-09-14 Hitachi Ltd Cryostat

Also Published As

Publication number Publication date
JPS58117057U (en) 1983-08-10

Similar Documents

Publication Publication Date Title
US2513749A (en) Insulated container and method of insulating the same
US4218892A (en) Low cost cryostat
US3952797A (en) Semi conductor cooling system
JPS6328521Y2 (en)
US2369063A (en) Evacuated coolant containing valve
JP2011189894A (en) Vacuum environmental testing apparatus
US5050403A (en) Cooling container for a sorption apparatus
US4790370A (en) Heat exchanger apparatus for electrical components
KR900000696A (en) Method and apparatus for sampling cryogenic liquids
US2365285A (en) Method of making evacuated valves
US4404170A (en) Instantaneous start and stop gas generator
JPS5856272B2 (en) superconducting device
US3371460A (en) Method of filling aerosol containers and the like
US2608373A (en) Filling apparatus for containers
US2562164A (en) Method of transferring fluids
JPS6314858A (en) Vacuum deposition device
RU2009622C1 (en) Thermostat
JPS6319837Y2 (en)
JP2622592B2 (en) Top heat type heat pipe
SU1434220A1 (en) Apparatus for automatic keeping of boiling refrigerant level in working chamber
JPS63297983A (en) Cryogenic cold reserving device
CN219150167U (en) Low-temperature overflow device for vacuum
US2183101A (en) Boiler feeder
Rosenberg Gaseous-type cavitation in liquids
KR840000952B1 (en) Refrigeration apparatus of boiling and regular pressure type