JPS6328519Y2 - - Google Patents

Info

Publication number
JPS6328519Y2
JPS6328519Y2 JP1982014342U JP1434282U JPS6328519Y2 JP S6328519 Y2 JPS6328519 Y2 JP S6328519Y2 JP 1982014342 U JP1982014342 U JP 1982014342U JP 1434282 U JP1434282 U JP 1434282U JP S6328519 Y2 JPS6328519 Y2 JP S6328519Y2
Authority
JP
Japan
Prior art keywords
hole
sample
spring member
contact surface
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982014342U
Other languages
Japanese (ja)
Other versions
JPS58117055U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1434282U priority Critical patent/JPS58117055U/en
Publication of JPS58117055U publication Critical patent/JPS58117055U/en
Application granted granted Critical
Publication of JPS6328519Y2 publication Critical patent/JPS6328519Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【考案の詳細な説明】 本考案はエネルギー分散型X線検出器(EDS)
を備えた電子顕微鏡における試料装置の改良に関
するものである。
[Detailed explanation of the invention] This invention is an energy dispersive X-ray detector (EDS)
The present invention relates to an improvement of a specimen device in an electron microscope equipped with an electron microscope.

最近の電子顕微鏡は単に試料の形態観察に止ま
らず、各種の分析を同時に行えるようになつてい
る。X線分析はその典型的なもので、EDSの性
能向上に伴ない急速に使用が拡大されている。
Recent electron microscopes are now capable of not only observing the morphology of samples, but also performing various types of analysis simultaneously. X-ray analysis is a typical example, and its use is rapidly expanding as the performance of EDS improves.

第1図はEDSを備えた電子顕微鏡の主要部を
示す断面図で1は対物レンズの上磁極片、2は下
磁極片を示してある。3は試料ステージであり、
両磁極片1と2との間に光軸Zに対し直角な方
向、つまりX軸方向より挿入される。このステー
ジは図示しないが、顕微鏡の鏡筒外に置かれた駆
動機構により光軸Zと直角な平面内(X−Y平
面)で任意に微動される。又、該ステージはその
軸心Xを中心にある角度回動でき、それによつて
試料に傾斜が与えられる。ステージ3の光軸付近
には、例えばベリリウムなどの軽元素材で形成さ
れた試料ホルダ4が保持されている。このホルダ
はステージに対し、紙面に垂直な方向の軸(図示
せず)によつて取り付けられ、該軸の中心(つま
りY軸)のまわりに回動でき、試料を任意角度に
傾斜できるようにすると良い。ホルダの中心部に
は試料5がカラー6を介してスプリング部材7に
よつて固定される。このスプリング部材は第2図
に一例の拡大図を示す如く、スナツプリングであ
り、その外径はホルダの挿入穴4aより大きくさ
れているが、両端の折り曲げ部7a,7bをピン
セツトの先で互いに接近させると該外径は前記挿
入穴より小さくなるので、その中に押し込むこと
ができ、そしてピンセツトの先を外すと両端7
a,7bが開き挿入穴内に固定される。スプリン
グ部材はこの様な取り扱いがなされるため、強度
の高い重元素からなる弾性体、例えばリン青銅に
よつて形成されている。
FIG. 1 is a cross-sectional view showing the main parts of an electron microscope equipped with an EDS, and numeral 1 indicates the upper magnetic pole piece of the objective lens, and 2 indicates the lower magnetic pole piece of the objective lens. 3 is a sample stage;
It is inserted between the two magnetic pole pieces 1 and 2 in a direction perpendicular to the optical axis Z, that is, in the X-axis direction. Although this stage is not shown, it is arbitrarily slightly moved within a plane (XY plane) perpendicular to the optical axis Z by a drive mechanism placed outside the lens barrel of the microscope. Further, the stage can rotate through a certain angle about its axis X, thereby imparting an inclination to the sample. A sample holder 4 made of a light material such as beryllium is held near the optical axis of the stage 3. This holder is attached to the stage by an axis (not shown) perpendicular to the plane of the paper, and can be rotated around the center of this axis (i.e., the Y axis) so that the sample can be tilted at any angle. That's good. A sample 5 is fixed to the center of the holder via a collar 6 by a spring member 7. As shown in an enlarged view of an example in FIG. 2, this spring member is a snap spring whose outer diameter is larger than the insertion hole 4a of the holder. As the outer diameter becomes smaller than the insertion hole, it can be pushed into the insertion hole, and when the tips of the tweezers are removed, both ends 7
a and 7b are opened and fixed in the insertion holes. Since the spring member is handled in this manner, it is made of a strong elastic body made of a heavy element, such as phosphor bronze.

8はEDSであり、鏡筒外の冷却器に連結され
ている。9はその前方に置かれた入射スリツトで
ある。
8 is the EDS, which is connected to a cooler outside the lens barrel. 9 is an entrance slit placed in front of it.

この様な構成において、試料ステージ3を移動
させ、或いは回動させて試料の視野や傾斜角を任
意に選んで電子顕微鏡像の観察を行い、所望とす
る部所、及び傾斜角度における試料のX線分析を
EDSを用いて行うわけであるが、試料以外から
のX線がEDSに入射し、分析データにゴースト
が現われるという問題がある。即ち、前述した如
く、従来の試料装置では試料5をカラー6とスプ
リング部材7とで固定しているが、これら、特に
スプリング部材は高原子番号の金属で形成されて
おり、且つ電子線通路に対面しているため、電子
線や散乱X線が当たり、多量のX線が発生するこ
とになる。この場合、スプリング部材7等が、試
料5から遠く離れていれば前記X線はEDS8に
は入射しないが、第1図からわかるようにEDS
側から見てスプリング部材は試料の直ぐ後方にあ
り、従つて該部材から発生するX線はノイズとし
て多量にEDSに検出されることになる。
In such a configuration, the specimen stage 3 is moved or rotated to arbitrarily select the field of view and tilt angle of the specimen to observe the electron microscope image, and the X of the specimen at the desired location and tilt angle is observed. line analysis
Although this is done using EDS, there is a problem in that X-rays from sources other than the sample enter the EDS, causing ghosts to appear in the analytical data. That is, as mentioned above, in the conventional sample apparatus, the sample 5 is fixed by the collar 6 and the spring member 7, but these, especially the spring member, are made of a metal with a high atomic number and are not suitable for the electron beam path. Since they face each other, they are hit by electron beams and scattered X-rays, resulting in a large amount of X-rays being generated. In this case, if the spring member 7 etc. are far away from the sample 5, the X-rays will not enter the EDS 8, but as can be seen from FIG.
The spring member is located immediately behind the sample when viewed from the side, and therefore a large amount of X-rays generated from the member are detected by the EDS as noise.

又、前述したスプリング部材を挿入穴に挿入す
る際にガイドと成るものがないため、挿入が容易
でない欠点があつた。
Furthermore, since there is no guide when inserting the spring member into the insertion hole, it is difficult to insert the spring member into the insertion hole.

本考案は上述した欠点を解決し、X線分析時の
ゴーストを排除し得ると共に、スプリング部材の
挿入を容易にし得るX線検出器を備えた電子顕微
鏡における試料装置を提供することを目的として
いる。
The present invention aims to solve the above-mentioned drawbacks and provide a sample device for an electron microscope equipped with an X-ray detector that can eliminate ghosts during X-ray analysis and facilitate insertion of a spring member. .

そのため本考案は、対物レンズの上方又は横方
向にエネルギー分散型のX線検出器を備え、該対
物レンズの磁極片間に光軸に対し直角な方向より
試料ステージが挿入され、この試料ステージに電
子線通過孔11を有する試料ホルダ本体が保持さ
れており、該孔内部には該孔の方向と垂直な試料
当接面12が形成されており、該孔の径を前記当
接面に向かつて連続的に該当接面の径まで増加さ
せることにより該当接面の下側の孔11bの側面
にはテーパー面13が形成されており、該当接面
の下側の孔の部分は当接面に形成された開口によ
つて孔の上側部分11aに連通しており、該下側
の孔部分に挿入され自然径に戻ろうとして前記テ
ーパー面から上向きの力を受けるリング状のスプ
リング部材7を備え、該スプリング部材によつて
試料5を前記当接面に押付けて固定する装置にお
いて、前記スプリング部材と前記試料との間に配
置される鍔部10aと該鍔部から試料ホルダ本体
の下側端面14を越えて下方に延び前記スプリン
グ部材をカバーするようにその内側に配置される
円筒部10bとからなり、カーボン或るいはそれ
以下の原子番号の導電性部材で形成されたシール
ド体10を設けたことを特徴としている。
Therefore, the present invention is equipped with an energy-dispersive X-ray detector above or to the side of the objective lens, and a sample stage is inserted between the magnetic pole pieces of the objective lens in a direction perpendicular to the optical axis. A sample holder main body having an electron beam passage hole 11 is held, and a sample contact surface 12 perpendicular to the direction of the hole is formed inside the hole, and the diameter of the hole is oriented toward the contact surface. A tapered surface 13 was formed on the side surface of the hole 11b on the lower side of the contact surface by continuously increasing the diameter to the diameter of the contact surface. The ring-shaped spring member 7 communicates with the upper part 11a of the hole through an opening formed in the hole, and receives an upward force from the tapered surface when it is inserted into the lower hole part and tries to return to its natural diameter. In the device for pressing and fixing the sample 5 against the abutment surface using the spring member, there is provided a flange 10a disposed between the spring member and the sample, and a lower side of the sample holder main body from the flange. A cylindrical portion 10b extending downward beyond the end surface 14 and disposed inside the spring member so as to cover the spring member, and a shield body 10 made of carbon or a conductive member having an atomic number lower than that. It is characterized by the fact that it has been established.

以下本考案の一実施例を、構成のより詳細な説
明を含めて説明する。
An embodiment of the present invention will be described below, including a more detailed explanation of the configuration.

図中4はホルダ本体であり、11はホルダ本体
4に穿たれた電子線通過孔であり、該孔11の内
部には該孔の方向と垂直な試料当接面12が形成
されている。該孔の径を前記当接面に向かつて連
続的に該当接面の径まで増加させることにより該
当接面の下側の孔11bの側面にはテーパー面1
3が形成されており、該当接面の下側の孔の部分
は当接面に形成された開口によつて孔の上側部分
11aに連通している。7は下側の孔部分に挿入
され自然径に戻ろうとして前記テーパー面から上
向きの力を受ける前述したリング状のスプリング
部材である。10は前記スプリング部材と前記試
料との間に配置される鍔部10aと鍔部から試料
ホルダ本体の下側端面14を越えて下方に延び前
記スプリング部材をカバーするようにその内側に
配置される円筒部10bとから成るシールド体で
ある。シールド体10はカーボン或るいは金属ベ
リリウムのようなカーボン以下の原子番号の導電
性材料で形成されている。
In the figure, 4 is a holder body, 11 is an electron beam passing hole bored in the holder body 4, and a sample contacting surface 12 is formed inside the hole 11, which is perpendicular to the direction of the hole. By continuously increasing the diameter of the hole toward the contact surface up to the diameter of the contact surface, a tapered surface 1 is formed on the side surface of the hole 11b on the lower side of the contact surface.
3 is formed, and the portion of the hole below the corresponding contact surface communicates with the upper portion 11a of the hole through an opening formed in the contact surface. Reference numeral 7 designates the aforementioned ring-shaped spring member which is inserted into the lower hole portion and receives an upward force from the tapered surface in an attempt to return to its natural diameter. Reference numeral 10 denotes a flange 10a disposed between the spring member and the sample, and a flange 10a that extends downward from the flange beyond the lower end surface 14 of the sample holder main body and is disposed inside the spring member so as to cover it. This is a shield body consisting of a cylindrical portion 10b. The shield body 10 is made of a conductive material having an atomic number lower than carbon, such as carbon or metal beryllium.

このような構成において、試料ホルダー本体4
をひつくり返した状態にして、試料5を孔11b
に挿入して試料当接面12の上に載置する。次
に、鍔部10aを先にして、シールド体10を孔
11bに挿入する。この状態では、シールド体1
0の円筒部10bの先端がホルダ本体4の前記端
面14から突き出る。そこで、この突き出る部分
に前記スプリング部材7を掛け、両端の折り曲げ
部7a,7bをピンセツトの先で円筒部10bを
締めるように抓みながら、スプリング部材7を孔
11bに挿入する。その結果、スプリング部材7
は前記テーパー面13にガイドされて当接面12
側に移動し、シールド体10の鍔部10aを介し
て試料5を当接面12に押し付け、試料を固定す
る。そこで、第3図のように、試料ステージを試
料室内にセツトして、試料の観察を行う。
In this configuration, the sample holder body 4
The sample 5 is then inserted into the hole 11b.
Then, the shield body 10 is inserted into the hole 11b with the flange portion 10a first.
The tip of the cylindrical portion 10b of the holder body 4 is protruding from the end surface 14 of the holder body 4. The spring member 7 is then hooked onto this protruding portion, and the spring member 7 is inserted into the hole 11b while pinching the bent portions 7a and 7b at both ends with the tips of tweezers so as to tighten the cylindrical portion 10b.
is guided by the tapered surface 13 to the contact surface 12
Then, the specimen 5 is moved to the side, and the specimen 5 is pressed against the contact surface 12 via the flange 10a of the shield body 10, thereby fixing the specimen in place. Then, as shown in Fig. 3, the specimen stage is set in the specimen chamber, and the specimen is observed.

この様な構成となせば、スプリング部材7は完
全にシールド体10によつてカバーされており、
電子線や散乱X線に晒されることがないので、該
スプリング部材をリン青銅などの重金属で形成し
ても、これよりX線が発生することは殆んどな
い。
With this configuration, the spring member 7 is completely covered by the shield body 10,
Since it is not exposed to electron beams or scattered X-rays, even if the spring member is made of a heavy metal such as phosphor bronze, it will hardly generate X-rays.

所で、本考案においてはシールド体10が
EDSに対向するようになるが、このシールド体
はカーボン以下の低原子番号の材料で形成されて
いるので、発生するX線の波長は長く、EDSに
は殆んど検出されない。従つて、分析時のノイズ
は極めて少くなり、従来の如くゴーストが発生す
ることはなくなる。
By the way, in the present invention, the shield body 10 is
It comes to face the EDS, but since this shield body is made of a material with a low atomic number below carbon, the wavelength of the generated X-rays is long and is hardly detected by the EDS. Therefore, noise during analysis is extremely reduced, and ghosts do not occur as in the past.

又、上述した本考案によれば、スプリング部材
をシールド体10の円筒部10bにガイドさせて
孔11bに挿入できるため、スプリング部材7の
孔11bへの挿入が容易となる。
Further, according to the present invention described above, since the spring member can be guided by the cylindrical portion 10b of the shield body 10 and inserted into the hole 11b, it becomes easy to insert the spring member 7 into the hole 11b.

尚、上述した実施例においては、対物レンズよ
り上方にEDSが有る型の電子顕微鏡に本案を適
用した例について詳述したが、対物レンズの横か
らEDSが挿入される型の電子顕微鏡にも本案は
同様に適用できる。
In the above-mentioned embodiment, an example in which the present invention is applied to an electron microscope having an EDS above the objective lens is described in detail, but the present invention may also be applied to an electron microscope having an EDS inserted from the side of the objective lens. is equally applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の主要部を示す断面図、第
2図はその一部の拡大図、第3図は本考案の一実
施例を示す主要部断面図である。 1……対物レンズの上磁極片、2……対物レン
ズの下磁極片、3……試料ステージ、4……試料
ホルダ本体、5……試料、7……スプリング部
材、8……EDS、10……シールド体、10a
……鍔部、10b……円筒部、11……電子線通
過孔、12……試料当接面、13……テーパー
面、14……ホルダ本体下側端面。
FIG. 1 is a sectional view showing the main part of a conventional device, FIG. 2 is an enlarged view of a part thereof, and FIG. 3 is a sectional view of the main part showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Upper magnetic pole piece of objective lens, 2... Lower magnetic pole piece of objective lens, 3... Sample stage, 4... Sample holder body, 5... Sample, 7... Spring member, 8... EDS, 10 ...shield body, 10a
. . . Flange portion, 10b .

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 対物レンズの上方又は横方向にエネルギー分散
型のX線検出器を備え、該対物レンズの磁極片間
に光軸に対し直角な方向より試料ステージが挿入
され、この試料ステージに電子線通過孔11を有
する試料ホルダ本体が保持されており、該孔内部
には該孔の方向と垂直な試料当接面12が形成さ
れており、該孔の径を前記当接面に向かつて連続
的に該当接面の径まで増加させることにより該当
接面の下側の孔11bの側面にはテーパー面13
が形成されており、該当接面の下側の孔の部分は
当接面に形成された開口によつて孔の上側部分1
1aに連通しており、該下側の孔部分に挿入され
自然径に戻ろうとして前記テーパー面から上向き
の力を受けるリング状のスプリング部材7を備
え、該スプリング部材によつて試料5を前記当接
面に押付けて固定する装置において、前記スプリ
ング部材と前記試料との間に配置される鍔部10
aと該鍔部から試料ホルダ本体の下側端面14を
越えて下方に延び前記スプリング部材をカバーす
るようにその内側に配置される円筒部10bとか
らなり、カーボン或るいはそれ以下の原子番号の
導電性部材で形成されたシールド体10を設けた
ことを特徴とするX線検出器を備えた電子顕微鏡
における試料装置。
An energy dispersive X-ray detector is provided above or in the lateral direction of the objective lens, and a sample stage is inserted between the magnetic pole pieces of the objective lens in a direction perpendicular to the optical axis. A sample holder main body having a diameter is held, and a sample abutting surface 12 is formed inside the hole, which is perpendicular to the direction of the hole, and the diameter of the hole is directed toward the abutting surface. By increasing the diameter of the contact surface, a tapered surface 13 is formed on the side surface of the hole 11b on the lower side of the contact surface.
is formed, and the lower part of the hole on the corresponding contact surface is connected to the upper part 1 of the hole by the opening formed in the contact surface.
1a, and includes a ring-shaped spring member 7 that is inserted into the lower hole portion and receives an upward force from the tapered surface in an attempt to return to its natural diameter. In a device for pressing and fixing against a contact surface, a flange portion 10 disposed between the spring member and the sample.
a and a cylindrical portion 10b that extends downward from the collar portion beyond the lower end surface 14 of the sample holder body and is disposed inside the spring member so as to cover the spring member, and is made of carbon or a material with an atomic number lower than that. A sample device for an electron microscope equipped with an X-ray detector, characterized in that a shield body 10 made of a conductive member is provided.
JP1434282U 1982-02-04 1982-02-04 Sample device in an electron microscope equipped with an X-ray detector Granted JPS58117055U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1434282U JPS58117055U (en) 1982-02-04 1982-02-04 Sample device in an electron microscope equipped with an X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1434282U JPS58117055U (en) 1982-02-04 1982-02-04 Sample device in an electron microscope equipped with an X-ray detector

Publications (2)

Publication Number Publication Date
JPS58117055U JPS58117055U (en) 1983-08-10
JPS6328519Y2 true JPS6328519Y2 (en) 1988-08-01

Family

ID=30026812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1434282U Granted JPS58117055U (en) 1982-02-04 1982-02-04 Sample device in an electron microscope equipped with an X-ray detector

Country Status (1)

Country Link
JP (1) JPS58117055U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083091A (en) * 1973-11-22 1975-07-04

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752862Y2 (en) * 1976-10-05 1982-11-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083091A (en) * 1973-11-22 1975-07-04

Also Published As

Publication number Publication date
JPS58117055U (en) 1983-08-10

Similar Documents

Publication Publication Date Title
JP5208449B2 (en) Sample carrier and sample holder
US6995380B2 (en) End effector for supporting a microsample
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
EP1305816B1 (en) Collection of secondary electrons through the objective lens of a scanning electron microscope
EP0293924B1 (en) Direct imaging monochromatic electron microscope
US6600156B2 (en) Scanning electron microscope
EP1063677A1 (en) Charged particle beam device
JPS6328519Y2 (en)
US5448064A (en) Scanning electron microscope
US9012841B2 (en) Specimen holder for observing cross section of specimen and method for controlling the same
JPH05182625A (en) Objective lens
EP0085323B1 (en) Electromagnetic lens polepiece structure
JP3266814B2 (en) Micro part analyzer
GB2118361A (en) Scanning electron beam apparatus
JP2001500667A (en) Collimator for high take-off angle energy dispersive spectroscopy (EDS) detectors
US7381970B2 (en) Specimen stage for charged-particle scanning microscopy
DE2640260A1 (en) RADIATION SCREEN BODY BEAM MICROSCOPE
JP4146103B2 (en) Electron beam apparatus equipped with a field emission electron gun
JPH05182624A (en) Objective diaphragm
JP3064335B2 (en) Transmission electron microscope
WO1999053517A1 (en) Magnetic immersion lenses
JP2002150983A (en) Manipulator
JPS5968159A (en) Analyzer constituted by use of ion source
JPH0684492A (en) Electron microscope
JPS60144646A (en) Device for observing and analyzing cathode luminescence