JPS63285180A - Production of fine porous material - Google Patents

Production of fine porous material

Info

Publication number
JPS63285180A
JPS63285180A JP12158187A JP12158187A JPS63285180A JP S63285180 A JPS63285180 A JP S63285180A JP 12158187 A JP12158187 A JP 12158187A JP 12158187 A JP12158187 A JP 12158187A JP S63285180 A JPS63285180 A JP S63285180A
Authority
JP
Japan
Prior art keywords
powder
ultrafine
thermal conductivity
surfactant
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12158187A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokogawa
弘 横川
Shozo Hirao
平尾 正三
Masaru Yokoyama
勝 横山
Takashi Kishimoto
隆 岸本
Koichi Takahama
高浜 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12158187A priority Critical patent/JPS63285180A/en
Publication of JPS63285180A publication Critical patent/JPS63285180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To enable the production of fine porous material having remarkably lower thermal conductivity than that of stationary air under normal pressure, by dispersing ultrafine powder in the presence of a surfactant and producing a porous material from the dispersed powder. CONSTITUTION:Ultrafine inorganic powder (hereinafter called as ultrafine powder) is added with a surfactant in a solvent and stirred to obtain dispersed higher order particles B having large size and composed of fine particles agglomerated with each other in a state shown in the figure. The dispersed solution is dried and the obtained ultrafine powder is formed as it is or after mixing with other inorganic fine powder and calcined. Since the formed article is free from large spaces between the higher-order particles B, B, the product is independent of the thermal conductivity of air. Accordingly, an ultrafine porous material having a thermal conductivity remarkably lower than that of stationary air of normal pressure can be produced by this process. The ultrafine powder particle is e.g. ultrafine silica powder produced by wet or dry process.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、断熱性に優れた微細多孔体の製法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a microporous body with excellent heat insulation properties.

〔背景技術〕[Background technology]

従来の断熱材の熱伝導率は0.03〜0.05 kca
l/mhr”c程度で、空気の熱伝導率0.02〜0.
024kcal/mhrt:よりも高い。硬質発泡ポリ
ウレタンのように、0.015 kcal/mhr”c
という低い熱伝導率をもつ断熱材も開発されているが、
この発泡ポリウレタンの場合、空隙内に封入されたフレ
オンガスの持つ低い熱伝導率(0,006〜0.01k
cal/mhr’c)に依存しているだけのものであり
、長期間の使用でフレオンガスと空気との置換が起こる
と断熱性にも劣化が発生し、約1年後には0.021〜
0.024 kcal/mhr℃程度にまで熱伝導率が
上昇してしまった例もある。
The thermal conductivity of conventional insulation materials is 0.03-0.05 kca
l/mhr"c, the thermal conductivity of air is 0.02 to 0.
024 kcal/mhrt: higher than. Like rigid polyurethane foam, 0.015 kcal/mhr”c
Insulating materials with low thermal conductivity have also been developed,
In the case of this polyurethane foam, the Freon gas sealed in the voids has a low thermal conductivity (0.006 to 0.01k).
cal/mhr'c), and if Freon gas is replaced with air after long-term use, the insulation properties will deteriorate, and after about a year, the temperature will be 0.021~
In some cases, the thermal conductivity has increased to about 0.024 kcal/mhr°C.

また、ケイ酸カルシウムの多孔体を0. I Torr
程度の真空状態にしたものや、粉砕発泡パーライトを0
.1 Torr程度の真空状態にしたもの等があるが、
いずれも真空状態を保つことが必要であり、製造コスト
等の点で問題がある。しかも、断熱材として利用するに
しても、真空を維持する必要から、形状や用途が著しく
限定される。
In addition, the porous body of calcium silicate was I Torr
Items that have been placed in a vacuum state or crushed foamed perlite.
.. There are some that are in a vacuum state of about 1 Torr,
In either case, it is necessary to maintain a vacuum state, which poses problems in terms of manufacturing costs and the like. Furthermore, even when used as a heat insulating material, the shape and uses are severely limited due to the need to maintain a vacuum.

これに対し、常圧でも空気の熱伝導率を超えた断熱材と
して、微細多孔質シリカ(エアロゲル)の集合体による
材料があるが、常温においては、空気との差は非常に僅
かなものである(0.020kcal/mhr”C程度
)。また、このものに使用される微細多孔質シリカ(エ
アロゲル)は非常に高価なため、実用的に充分利用され
るまでには至っていない(特公昭51−40088号公
11り。
On the other hand, there is a material made of aggregates of microporous silica (aerogel) that is used as a heat insulating material whose thermal conductivity exceeds that of air even at normal pressure, but at room temperature, the difference with air is very small. (approximately 0.020 kcal/mhr"C). Also, the microporous silica (airgel) used for this product is very expensive, so it has not been fully utilized for practical purposes (Japanese Patent Publication No. 51 -40088 Publication No. 11.

C発明の目的〕 この発明は、上記事情に鑑みてなされたものであって、
常圧において、静止空気の熱伝導率より墨かに低い熱伝
導率を有する、微細多孔体を得ることを目的としている
C.Object of the invention] This invention was made in view of the above circumstances, and
The objective is to obtain a microporous material that has a thermal conductivity significantly lower than that of still air at normal pressure.

〔発明の開示〕 上記目的を達成するため、発明者らは、なぜ、従来の多
孔体では、空気よりももかに小さい熱伝導率のものが得
られないか、と言うことを検討した。その結果、以下の
ような理由が考えられた。
[Disclosure of the Invention] In order to achieve the above object, the inventors investigated why it is not possible to obtain a conventional porous body with a thermal conductivity much lower than that of air. As a result, the following reasons were considered.

すなわち、多孔体の熱伝導率は、空隙中に含まれる気体
(通常は空気)の熱伝導率に左右される。そのような気
体の熱伝導率の影響を無(すためには、空隙を数nm以
下にしてやる必要がある。
That is, the thermal conductivity of a porous body depends on the thermal conductivity of gas (usually air) contained in the voids. In order to eliminate such effects of the thermal conductivity of the gas, it is necessary to reduce the void size to several nanometers or less.

そこで発明者らは、超微粉末を用いて多孔体を作成する
ことを検討してきた。微粒子粉末の成形によって作られ
る多孔体においては、第5図にみるように、粒子Aを最
密充填にした場合で、粒子A、A間には粒径の15%程
度の空隙が生ずる。
Therefore, the inventors have considered creating a porous body using ultrafine powder. In a porous body made by molding fine particle powder, as shown in FIG. 5, when the particles A are packed in the closest packing, a void of about 15% of the particle size is created between the particles A and A.

したがって、前述した数nm以下の空隙を得る方法を種
々検討した結果、いわゆる超微粉末を用いて多孔体を作
ることを考え、先の出願(特願昭61−306726号
)を行った。
Therefore, as a result of various studies on methods for obtaining the above-mentioned voids of several nanometers or less, we considered creating a porous body using so-called ultrafine powder, and filed an earlier application (Japanese Patent Application No. 306,726/1982).

ところが超微粒子粉末は、粒子どうしがくっついて凝集
した多次粒子として挙動する性質をもっている。従って
、第6図にみるような大きな多次粒子Bを形成している
ため、この成形体ではB、B間に大きな空隙ができ、空
気の熱伝導率の影響が出てくるという問題点があった。
However, ultrafine powder has the property of behaving as multi-dimensional particles in which particles stick together and aggregate. Therefore, since large multi-dimensional particles B are formed as shown in Figure 6, this molded product has the problem of large voids between B and B, which is affected by the thermal conductivity of the air. there were.

そこでさらに検討を行った結果、この発明を完成した。As a result of further investigation, this invention was completed.

すなわち、この発明は、無機質超微粉末(以下、単に超
微粉末という)を溶剤中で界面活性剤を加え、分散させ
、乾燥、成形した後、焼成することを特徴とする微細多
孔体の製法を要旨としている。
That is, the present invention provides a method for producing a microporous body, which comprises adding a surfactant to an inorganic ultrafine powder (hereinafter simply referred to as ultrafine powder) in a solvent, dispersing it, drying it, shaping it, and then firing it. The gist is:

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明の微細多孔体の製法は、まず、第6図にみるよ
うな凝集した超微粉末粒子を第1図のように溶剤中で、
界面活性剤を加え攪拌することによって分散させた後、
乾燥する。第2図はこの状態を説明するためのモデル図
である。乾燥して得た超微粒子粉末をそのまま、または
、比較的大きな粒子と混合して、成形後、焼成を行い、
第3図もしくは第4図のような構造の微細多孔体を得る
。なお、焼成により界面活性剤を除去することができ、
界面活性剤が共存することによる悪影響を排除すること
ができる。
The manufacturing method of the microporous material of this invention is as follows: First, agglomerated ultrafine powder particles as shown in FIG. 6 are mixed in a solvent as shown in FIG.
After adding a surfactant and dispersing it by stirring,
dry. FIG. 2 is a model diagram for explaining this state. The ultrafine powder obtained by drying is used as it is or mixed with relatively large particles, molded, and then fired.
A microporous body having a structure as shown in FIG. 3 or 4 is obtained. In addition, the surfactant can be removed by baking,
Negative effects caused by the coexistence of surfactants can be eliminated.

超微粉末粒子としては、湿式製法または乾式製法による
超微粉末シリカ(粒径としては数nm〜2Qnm程度が
好ましい)が挙げられる。
Examples of the ultrafine powder particles include ultrafine silica powder produced by a wet manufacturing method or a dry manufacturing method (the particle size is preferably about several nm to 2 Q nm).

溶剤は、水、トルエン等が挙げられるが、超微粉末シリ
カが分散しやすいものであればこれらに限られたもので
はない。
Examples of the solvent include water, toluene, etc., but the solvent is not limited to these as long as it can easily disperse the ultrafine powdered silica.

界面活性剤は、使用する溶剤に可溶なカチオン性のもの
であれば何でも構わない。また界面活性剤の添加量は、
その分子量にもよるが、超微粉末シリカに対して重量比
で0.1〜2%程度が好ましい。後に、大きな微粉末を
混合する場合、その大きな微粉末としては、パーライト
、シラスバルン等や、それらを粉砕したものが挙げられ
るが、粒径が5nm〜10μm程度の粒子であればこれ
に限られたものではない。
Any cationic surfactant may be used as long as it is soluble in the solvent used. In addition, the amount of surfactant added is
Although it depends on its molecular weight, it is preferably about 0.1 to 2% by weight based on the ultrafine powdered silica. Later, when mixing large fine powders, examples of the large fine powders include pearlite, shirasu balloon, etc., and crushed products thereof, but if the particle size is about 5 nm to 10 μm, it is limited to these. It's not a thing.

微細多孔体の成形方法も、この発明では特に限定されず
、通常、このような多孔体を成形するために使用されて
いる方法、例えば、加圧成形等をそのまま用いることが
できる。
The method for molding the microporous body is not particularly limited in the present invention, and methods normally used for molding such porous bodies, such as pressure molding, can be used as they are.

第3図のものは分散溶液を乾燥させたものを、そのまま
、成形、焼成して得たものである。
The one in FIG. 3 is obtained by drying the dispersion solution, molding and firing as it is.

第4図のものは分散溶液を乾燥後、比較的粒径の大きい
粒子を混合して、成形し、焼成を行って得たものである
The material shown in FIG. 4 was obtained by drying the dispersion solution, mixing particles with a relatively large particle size, molding, and firing.

これらの構造では、第6図の構造のような凝集粒子間の
大きな空隙よりも蟲かに小さな数nm〜数10nm程度
の空隙が形成されている。したがって、静止空気の熱伝
導率の影響を受けない微細な空隙を形成することが可能
となる。
In these structures, voids of several nanometers to several tens of nanometers are formed, which are much smaller than the large voids between aggregated particles as in the structure shown in FIG. Therefore, it is possible to form fine voids that are not affected by the thermal conductivity of still air.

また、乾式製法超微粉末シリカは非常に高価なため、パ
ーライト等の、安価で比較的大きな粒子と混合し、第4
図のような構造にすると、性能はほぼ変わらず、安価に
微細多孔体が製造できる。
In addition, since dry-produced ultrafine powder silica is very expensive, it is mixed with inexpensive and relatively large particles such as perlite, and
With the structure shown in the figure, a microporous material can be manufactured at low cost with almost no change in performance.

という利点がある。There is an advantage.

なお、以上においては超微粉末として、シリカ粉末を例
示して説明したが、シリカ粉末に限らず、1次粒子とし
ては存在し得す、常態では凝集した状態で存在する超微
粉末については、全て適用し得るものである。超微粉末
としてシリカ粉末以外の粉末を使用した場合は、界面活
性剤もそれに応じてカチオン系、アニオン系の何れかを
選ばなければならない。すなわち、シリカ粉末の場合は
マイナスに帯電しているので、カチオン系界面活性剤を
使用したが、アルミナ粉末のようにプラスに帯電してい
る場合は、アニオン系界面活性剤を使用するのが好まし
い。
In addition, although silica powder has been explained above as an example of ultrafine powder, it is not limited to silica powder, but ultrafine powder that can exist as primary particles and normally exists in an agglomerated state, All are applicable. When a powder other than silica powder is used as the ultrafine powder, the surfactant must also be selected from a cationic type or an anionic type accordingly. In other words, in the case of silica powder, it is negatively charged, so a cationic surfactant was used, but if it is positively charged, such as alumina powder, it is preferable to use an anionic surfactant. .

次にこの発明の実施例について、比較例とあわせて説明
する。
Next, examples of the present invention will be described together with comparative examples.

(実施例1) トルエンに、親油性高分子量界面活性剤(ICIa!、
ハイパーマーKD3)を溶解させ、この溶液に、湿式製
法超微粉末シリカ(粒径:約10nm、ジオツギ製薬■
製、カープレックスFPS−1)を加え、攪拌混合し、
超微粉末シリカを分散させた。この時の重量比は、トル
エン:界面活性剤:超微粉末シリカ=10:0.01:
1であった。
(Example 1) Toluene was added with a lipophilic high molecular weight surfactant (ICIa!,
Hypermer KD3) was dissolved, and in this solution was added wet-process ultrafine powder silica (particle size: approximately 10 nm, Geotsugi Pharmaceutical ■
Add Carplex FPS-1) and stir to mix.
Ultrafine powdered silica was dispersed. The weight ratio at this time is toluene: surfactant: ultrafine powder silica = 10:0.01:
It was 1.

この分散溶液を乾燥して得た粉末を加圧成形後、500
℃で焼成を行い微細多孔体試料を得た。
After pressure molding the powder obtained by drying this dispersion solution,
Firing was performed at ℃ to obtain a microporous sample.

(実施例2) 溶剤としてキシレンを、界面活性剤として、親油性活性
剤(第一工業製薬■製、セラモR−20)を用いた以外
は実施例1と同様にして、微細多孔体試料を得た。
(Example 2) A microporous sample was prepared in the same manner as in Example 1, except that xylene was used as the solvent and a lipophilic activator (Ceramo R-20, manufactured by Daiichi Kogyo Seiyaku ■) was used as the surfactant. Obtained.

(実施例3) トルエンの代わりに水を、界面活性剤として親水性高分
子量界面活性剤(ICI製、ハイパーマーKD2)を使
用したこと以外は実施例1と同様にして、微細多孔体試
料を得た。
(Example 3) A microporous sample was prepared in the same manner as in Example 1, except that water was used instead of toluene and a hydrophilic high molecular weight surfactant (Hypermer KD2, manufactured by ICI) was used as the surfactant. Obtained.

(実施例4) 超微粒子粉末として、湿式製法超微粉末シリカの代わり
に乾式製法超微粉末シリカ(粒径:約7nm日本アエロ
ジル■製、AERDS I L 380)を用いたこと
以外は、実施例1と同様にして、微細多孔体試料を得た
(Example 4) Example 4 except that dry process ultrafine powder silica (particle size: approximately 7 nm, manufactured by Nippon Aerosil ■, AERDS I L 380) was used instead of wet process process ultrafine powder silica as the ultrafine particle powder. A microporous sample was obtained in the same manner as in Example 1.

(実施例5) 超微粒子粉末として乾式製法超微粉末シリカを用い、分
散液乾燥後の粉末に、パーライト(三井金属パーライト
(株)製、三井パーライトFP−1)をボールミルで2
4時間粉砕したものを加え、混合した後、加圧成形し、
ついで500℃で焼成を行って、微細多孔体試料を得た
。超微粉末シリカ:パーライトの混合重量比は1:1で
あった(比較例1) 湿式製法超微粉末シリカ(粒径:約10nm、ジオツギ
製薬(株)製、カープレックスFPS−1)を加圧成形
して微細多孔体試料を得た。
(Example 5) Dry-produced ultrafine powder silica was used as the ultrafine particle powder, and after drying the dispersion, pearlite (Mitsui Perlite FP-1, manufactured by Mitsui Kinzoku Perlite Co., Ltd.) was added to the powder using a ball mill for two times.
After adding the crushed material for 4 hours and mixing, press molding.
Then, firing was performed at 500°C to obtain a microporous sample. The mixing weight ratio of ultrafine powder silica and pearlite was 1:1 (Comparative Example 1) Wet process ultrafine powder silica (particle size: about 10 nm, manufactured by Geotsugi Pharmaceutical Co., Ltd., Carplex FPS-1) was added. A microporous sample was obtained by pressure molding.

(比較例2) 乾式製法超微粉末シリカ(粒径ニアnm、日本アエロジ
ル(株)製、AERO3I L 380)と、パーライ
ト(三井金属パーライト(株)製、三井バーライ)FP
−1)をボールミルで24時間粉砕したものとを混合し
たものを、加圧成形して微細多孔体試料を得た。
(Comparative Example 2) Dry process ultrafine powder silica (particle size near nm, manufactured by Nippon Aerosil Co., Ltd., AERO3I L 380) and pearlite (manufactured by Mitsui Kinzoku Pearlite Co., Ltd., Mitsui Barley) FP
-1) was ground in a ball mill for 24 hours, and a mixture was pressure-molded to obtain a microporous sample.

これら実施例ならびに比較例で得られた試料の熱伝導率
を測定した。熱伝導率測定は、英仏精機(株)製の定常
法による熱伝導率測定装置を使用して、ASTM−C5
18に準拠した方法で、設定温度20℃と40℃の条件
で行った。結果を第1表に示す。
The thermal conductivity of the samples obtained in these Examples and Comparative Examples was measured. Thermal conductivity was measured using a thermal conductivity measuring device using a steady method manufactured by Eibre Seiki Co., Ltd., in accordance with ASTM-C5.
The test was carried out using a method based on No. 18 at set temperatures of 20°C and 40°C. The results are shown in Table 1.

[以下、余白] 第   1   表 ・第1表の結果かられかるように、溶剤と界面活性剤に
よる処理を行うことによって超微粉末シリカの熱伝導率
は低下する。また、乾式シリカは非常に高価なため、パ
ーライト微粉砕物と混合使用すれば、比較的安価に微細
多孔体を製造できる効果がある。以上のようにして得た
多孔質体は断熱材として有用である。
[Hereinafter, blank spaces] As can be seen from the results in Tables 1 and 1, the thermal conductivity of ultrafine powdered silica decreases by treatment with a solvent and a surfactant. Further, since dry silica is very expensive, if it is used in combination with finely pulverized pearlite, a fine porous body can be produced at a relatively low cost. The porous body obtained as described above is useful as a heat insulating material.

〔発明の効果〕〔Effect of the invention〕

この発明の微細多孔体の製法は、無機質超微粉末を溶剤
中で界面活性剤を加え混合分散させ、乾燥した後、その
まま、もしくは他の無機質微粉末と混合し、成形し、つ
いで焼成を行うことを特徴とするので、常圧において、
静止空気の熱伝導率よりも温かに低い熱伝導率を有する
微細多孔体を作成することができる。
The method for producing the microporous material of this invention is to mix and disperse ultrafine inorganic powder in a solvent with a surfactant, dry it, then mix it as it is or with other fine inorganic powder, shape it, and then sinter it. At normal pressure,
It is possible to create a microporous body having a thermal conductivity that is warmer and lower than that of still air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、超微粉シリカと分散剤が溶剤中に分散してい
る状態を表すモデル図、第2図は、分散液を乾燥させた
状態を表すモデル図、第3図は、焼成を行うことによっ
て界面活性剤を除去した超微粉末シリカのモデル図、第
4図は、処理後の超微粉末シリカとパーライト微粉砕物
との混合物のモデル図、第5図は、従来の多孔体の構造
を説明する説明図、第6図は、超微粉末シリカの未処理
の状態を説明する説明図である。
Figure 1 is a model diagram showing the state in which ultrafine silica powder and dispersant are dispersed in a solvent, Figure 2 is a model diagram showing the state in which the dispersion liquid is dried, and Figure 3 is a model diagram showing the state in which the dispersion liquid is dried. Figure 4 is a model diagram of a mixture of ultrafine powder silica and finely ground pearlite after treatment, and Figure 5 is a model diagram of a conventional porous material. FIG. 6 is an explanatory diagram illustrating the untreated state of ultrafine powder silica.

Claims (3)

【特許請求の範囲】[Claims] (1)無機質超微粉末を溶剤中で界面活性剤を加え混合
分散させ、乾燥した後、そのまま、もしくは他の無機質
微粉末と混合し、成形し、ついで焼成を行うことを特徴
とする微細多孔体の製法。
(1) Fine porosity characterized by adding a surfactant to an inorganic ultrafine powder, mixing and dispersing it in a solvent, drying it, and then molding it as it is or mixing it with other inorganic fine powder, followed by firing. How the body is made.
(2)無機質超微粉末が乾式または湿式製法による超微
粉末シリカである特許請求の範囲第1項記載の微細多孔
体の製法。
(2) The method for producing a microporous body according to claim 1, wherein the inorganic ultrafine powder is ultrafine silica powder produced by a dry or wet process.
(3)無機質超微粉末の分散、乾燥後に混合する無機質
微粉末がパーライトおよび(または)シラスバルン、も
しくはそれらの粉砕したものである特許請求の範囲第1
項または第2項記載の微細多孔体の製法。
(3) The inorganic fine powder to be mixed after dispersing and drying the inorganic ultrafine powder is pearlite and/or shirasu balloon, or pulverized products thereof.Claim 1
A method for producing a microporous material according to item 1 or 2.
JP12158187A 1987-05-19 1987-05-19 Production of fine porous material Pending JPS63285180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12158187A JPS63285180A (en) 1987-05-19 1987-05-19 Production of fine porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12158187A JPS63285180A (en) 1987-05-19 1987-05-19 Production of fine porous material

Publications (1)

Publication Number Publication Date
JPS63285180A true JPS63285180A (en) 1988-11-22

Family

ID=14814785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12158187A Pending JPS63285180A (en) 1987-05-19 1987-05-19 Production of fine porous material

Country Status (1)

Country Link
JP (1) JPS63285180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001204A (en) * 2009-06-16 2011-01-06 Jfe Steel Corp High performance heat insulating material and method of manufacturing the same
JP2013230979A (en) * 2013-07-12 2013-11-14 Jfe Steel Corp High-performance heat insulation material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001204A (en) * 2009-06-16 2011-01-06 Jfe Steel Corp High performance heat insulating material and method of manufacturing the same
JP2013230979A (en) * 2013-07-12 2013-11-14 Jfe Steel Corp High-performance heat insulation material and method for producing the same

Similar Documents

Publication Publication Date Title
Rigacci et al. Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation
US5084320A (en) Evacuated thermal insulation
WO2014030651A1 (en) Vacuum heat-insulating material and method for manufacturing vacuum heat-insulating material
Fan et al. Multiphased assembly of nanoporous silica particles
Verdolotti et al. Synergistic effect of vegetable protein and silicon addition on geopolymeric foams properties
Huo et al. Ultralight alumina ceramic foams with single-grain wall using sodium dodecyl sulfate as long-chain surfactant
Seraji et al. Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/SiC aerogels using mercury porosimetry method
Ma et al. Highly permeable macroporous cordierite ceramics with controlled microstructure produced by particle-stabilized emulsions with a reactive thermal treatment
Fahrenholtz et al. Effect of precursor particle size on the densification and crystallization behavior of mullite
Leng et al. Microstructure and permeability of porous zirconia ceramic foams prepared via direct foaming with mixed surfactants
CN111018492B (en) Foamed ceramic product preparation method and foamed ceramic product
JP6228115B2 (en) High performance insulation
Dong et al. Preparation of porous halloysite nanotube ceramics with high porosity and low thermal conductivity by foam-gelcasting
Li et al. Near net shape fabrication of porous cordierite by combination of foam gel‐casting and freeze‐drying
JPS63285180A (en) Production of fine porous material
Sirota et al. Structure and properties of nanoporous ceramic Al 2 O 3 obtained by isostatic pressing
Cao et al. Effects of nano-CaCO3 and nano-iron phosphate on microstructure and properties of SiO2 porous ceramics prepared by direct foaming
Alkan et al. Cement mortar composites including 1-tetradecanol@ PMMA Pickering emulsion particles for thermal energy management of buildings
CN104445224B (en) A kind of preparation method of fine silicon dioxide aerogel powder
JP2004010423A (en) Solid heat insulating material and its manufacturing method
Xu et al. Synthesis of monolithic alumina-silica hollow microspheres and their heat-shielding performance for adiabatic materials
CN111559921B (en) Foamed ceramic and preparation method thereof
JPH07144955A (en) Silica compact for heat insulating board and vacuum heat insulating board
Jiao et al. Preparation and properties of magnesia porous ceramics by particle‐stabilized foam casting
CN105731469A (en) Super-hydrophobic SiO<2> aerogel rapid preparation method without needing of solvent exchange step