JPS6328517B2 - - Google Patents
Info
- Publication number
- JPS6328517B2 JPS6328517B2 JP14568281A JP14568281A JPS6328517B2 JP S6328517 B2 JPS6328517 B2 JP S6328517B2 JP 14568281 A JP14568281 A JP 14568281A JP 14568281 A JP14568281 A JP 14568281A JP S6328517 B2 JPS6328517 B2 JP S6328517B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- cathode
- laser
- gas
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/097—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
- H01S3/0971—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
- H01S3/09713—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
この発明はガスレーザ発振器に関し、特にその
陰極の構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas laser oscillator, and particularly to the structure of its cathode.
第1図は従来のこの種のものとして代表的な光
軸、放電、ガス流の各方向が互いに直交する、い
わゆる三軸直交型のCO2レーザ発振器の放電部の
構成を示す縦断面図、第2図は第1図―線よ
りみた横断面図で、1は陽極、2は陰極、3は陰
極基板、4は安定化抵抗、5は直流高圧電源、6
は誘電体電極、7は給電線、8は誘電体電極6内
を流れて冷却する脱イオン水、9は交流高圧電
源、10は放電励起部、11はレーザガス、12
は全反射鏡、13は部分反射鏡、20はレーザビ
ームである。 FIG. 1 is a vertical cross-sectional view showing the configuration of a discharge section of a so-called triaxial orthogonal type CO 2 laser oscillator, which is a typical conventional type of this type of CO 2 laser oscillator, in which the optical axis, discharge, and gas flow directions are orthogonal to each other. Figure 2 is a cross-sectional view taken along the line in Figure 1, where 1 is an anode, 2 is a cathode, 3 is a cathode substrate, 4 is a stabilizing resistor, 5 is a DC high voltage power supply, and 6
1 is a dielectric electrode, 7 is a power supply line, 8 is deionized water flowing through the dielectric electrode 6 to cool it, 9 is an AC high-voltage power supply, 10 is a discharge excitation unit, 11 is a laser gas, 12
13 is a total reflection mirror, 13 is a partial reflection mirror, and 20 is a laser beam.
次に動作について説明する。 Next, the operation will be explained.
陽極1と多数の陰極2との間に、CO2,N2,
Heから成るレーザガス11を矢印方向に流しな
がら、陰極2の上流側に配した誘電体電極6に、
交流高圧電源9の交流高電圧を印加すると、誘電
体電極6と陰極2、および誘電体電極6と陽極1
との間に無声放電が生成される。ここで直流高圧
電源5の直流高電圧を安定化抵抗4を介して印加
すると、無声放電の予備電離作用により陽極1と
陰極2の間に均質で安定なグロー放電が生成され
る。この放電により形成された放電励起部10に
は、レーザガス11の中の特定の振動準位間に反
転分布が形成される。放電励起部10を挾み対向
して配置された全反射鏡12と部分反射鏡13か
ら成る光共振器により、レーザ発振が生じ、部分
反射鏡13からレーザビーム20が出射する。 CO 2 , N 2 ,
While flowing the laser gas 11 made of He in the direction of the arrow, the dielectric electrode 6 disposed upstream of the cathode 2 is heated.
When the AC high voltage from the AC high voltage power supply 9 is applied, the dielectric electrode 6 and the cathode 2, and the dielectric electrode 6 and the anode 1
A silent discharge is generated between the Here, when a DC high voltage from the DC high voltage power supply 5 is applied via the stabilizing resistor 4, a homogeneous and stable glow discharge is generated between the anode 1 and the cathode 2 due to the preliminary ionization effect of the silent discharge. In the discharge excitation section 10 formed by this discharge, a population inversion is formed between specific vibration levels in the laser gas 11. Laser oscillation is generated by an optical resonator made up of a total reflection mirror 12 and a partial reflection mirror 13 which are arranged to face each other with the discharge excitation part 10 in between, and a laser beam 20 is emitted from the partial reflection mirror 13.
ここで分割された陰極2の放電面積と、放電の
電圧―電流特性(V―特性)について説明す
る。第3図は気体放電における典型的なV―I特
性図である。電流がある値に達するまでは、電流
値にかかわりなく定電圧特性が保たれる。この時
の放電は正規グロー放電と呼ばれる。この領域で
は、電子は、電子とガス原子、分子との衝突によ
る二次電子放出(α作用)、および正イオンと陰
極面との衝突による電子放出(γ作用)によつて
供給される。γ作用は、陰極表面に存在する電圧
降下Vcによつて維持される。このVcの値は、実
際に陰極面で放電している面積に比べ、陰極面が
大きい限り一定となる。正規グロー放電とはこれ
を満たす放電で、電流密度は常に一定となり、電
流の増加は陰極放電面積の増加で補なわれ、放電
維持電圧は一定に保たれる。 Here, the discharge area of the divided cathode 2 and the voltage-current characteristic (V-characteristic) of the discharge will be explained. FIG. 3 is a typical VI characteristic diagram in gas discharge. Until the current reaches a certain value, constant voltage characteristics are maintained regardless of the current value. The discharge at this time is called a regular glow discharge. In this region, electrons are supplied by secondary electron emission due to collisions between electrons and gas atoms and molecules (α effect), and electron emission due to collisions between positive ions and the cathode surface (γ effect). The gamma effect is maintained by the voltage drop Vc present across the cathode surface. The value of Vc remains constant as long as the cathode surface is larger than the area where discharge is actually occurring on the cathode surface. A normal glow discharge is a discharge that satisfies this, the current density is always constant, the increase in current is compensated for by the increase in cathode discharge area, and the discharge sustaining voltage is kept constant.
放電可能な陰極面がすべて放電によつて包まれ
るまで電流が増加すると、Vcの上昇により電流
が補なわれるようになり、すなわち、放電維持電
圧が上昇する。この時の放電は異常グロー放電と
呼ばれる。 When the current increases until all dischargeable cathode surfaces are covered by the discharge, the current is compensated for by the increase in Vc, ie, the discharge sustaining voltage increases. The discharge at this time is called an abnormal glow discharge.
さらに電流が増加していくと、陰極表面の温度
が上昇し、熱電子放出が主体的となつて、急激に
電流密度が上昇し、逆にVcは減少する。この時
の放電はアーク放電と呼ばれる。レーザ媒質を効
率よく励起するには正規グロー放電が必要とな
る。 As the current increases further, the temperature of the cathode surface rises, and thermionic emission becomes dominant, causing a rapid increase in current density and, conversely, a decrease in Vc. The discharge at this time is called arc discharge. Regular glow discharge is required to efficiently excite the laser medium.
ところで、上記に示した電極構造において、従
来一般に用いられてきた放電は、補助放電として
の無声放電がなく、単に直流放電のみでグロー放
電を得ていた。この時、陰極として、直径3〜
6φ程度の金属棒で、その先端を尖らしたものを、
多数並べて用いていた。従来型の電極形状を第4
図に示す。直流放電のみの場合は、このような陰
極を用いても、その可能な放電面がすべて覆われ
る以前に、放電空間において電荷の集中が起こ
り、アーク放電が生じていた。しかしながら、先
の例で示したように、補助放電としての無声放電
が重畳された場合、その予備電離効果により電荷
の集中化が緩和され、2倍〜3倍投入電流を増加
させることができる。放電ギヤツプ長75mm、CO2
レーザガスの圧力100トール、における無声放電
が重畳された場合正常グロー放電領域のV―I特
性Aと重畳されていない場合の正常グロー放電領
域のV―I特性Bを第5図に示す。無声放電重畳
により電流が増加してくると、従来のような陰極
形状では、放電面積が足りないためにアーク放電
に移行するという問題が起き、レーザの高出力
化、高効率化、小型化に必要な、高電力放電の妨
げとなつている。 By the way, in the electrode structure shown above, the discharge that has been generally used conventionally has no silent discharge as an auxiliary discharge, and glow discharge has been obtained simply by direct current discharge. At this time, as a cathode,
A metal rod of about 6φ with a sharpened tip.
Many were used side by side. The conventional electrode shape is the fourth
As shown in the figure. In the case of direct current discharge only, even if such a cathode is used, charge concentration occurs in the discharge space and arc discharge occurs before all possible discharge surfaces are covered. However, as shown in the previous example, when a silent discharge as an auxiliary discharge is superimposed, the concentration of charge is alleviated due to its preliminary ionization effect, and the input current can be increased by 2 to 3 times. Discharge gap length 75mm, CO 2
FIG. 5 shows the VI characteristic A of the normal glow discharge region when the silent discharge is superimposed at a laser gas pressure of 100 torr, and the VI characteristic B of the normal glow discharge region when the silent discharge is not superimposed. When the current increases due to the silent discharge superposition, the conventional cathode shape has the problem of transitioning to arc discharge due to insufficient discharge area. This prevents the necessary high power discharge.
この発明は上記のような従来の欠点を除去する
ためになされたもので、陰極の放電面積を増加す
ることにより、アーク放電への移行を防ぎ、それ
に伴なう投入電力の増化により、小型で高出力、
高効率なレーザ装置を提供することを目的として
いる。 This invention was made to eliminate the above-mentioned drawbacks of the conventional technology. By increasing the discharge area of the cathode, it prevents the transition to arc discharge. with high output,
The purpose is to provide a highly efficient laser device.
以下、この発明の一実施例について説明する。
第6図はこの発明に係る陰極の斜視図で、第7図
はその陰極を装着したレーザ発振器の縦断面図、
第8図はその―線よりみた横断面図、14は
改良した陰極で例えば幅W1は10〜50mmである。
各陰極には従来どうり放電安定化のための抵抗4
が接続されている。 An embodiment of the present invention will be described below.
FIG. 6 is a perspective view of a cathode according to the present invention, and FIG. 7 is a longitudinal cross-sectional view of a laser oscillator equipped with the cathode.
FIG. 8 is a cross-sectional view of the cathode taken along the line, and 14 is an improved cathode whose width W1 is, for example, 10 to 50 mm.
Each cathode has 4 resistors for stabilizing the discharge as before.
is connected.
改良した陰極14は、放電部が三角柱の形状を
しており、この例ではガス流方向に延在するよう
に配設されている。したがつて、ガス流方向へ陰
極面積が拡大され、従来のように、放電面積不足
によるアーク放電への移行はなくなる。この場
合、第7図に示すとうり、光軸方向での陰極間隔
は従来と変わりないが、第8図に見るとうり、ガ
ス流方向での放電領域が増加し、光軸方向への単
位長さ当りの投入電力が増加する。これにより、
同一の放電電力を投入するには針状の陰極の場合
に比べて少数で足り、装置の小型化を図ることが
できる。なお、陰極14の先端をエツジ状とした
のは、放電開始点を規定し、放電を安定化させる
ためである。 The improved cathode 14 has a discharge portion in the shape of a triangular prism, and in this example is arranged so as to extend in the gas flow direction. Therefore, the cathode area is expanded in the gas flow direction, and the transition to arc discharge due to insufficient discharge area, as in the conventional case, is eliminated. In this case, as shown in Fig. 7, the cathode spacing in the optical axis direction is the same as before, but as shown in Fig. 8, the discharge area in the gas flow direction increases, and the unit in the optical axis direction increases. Input power per length increases. This results in
Compared to the case of needle-shaped cathodes, fewer cathodes are required to input the same discharge power, and the device can be made smaller. The reason why the tip of the cathode 14 is shaped like an edge is to define the discharge starting point and stabilize the discharge.
第9図はこの発明に係る陰極の他の実施例の斜
視図、第10図はその電極を装着したレーザ発振
器の縦断面図、第11図は第10図XI―XI線より
みた横断面図を示す。この例は陰極14を光軸方
向に面積を拡大したもので、陰極の幅W2は8mm
以上30mm以下、放電面はガス流に対する放電のゆ
らぎを少なくする意味から、ガス流に対して30〜
60度の傾きθを有し、その先端はエツジ状に形成
されている。この例では、光軸方向に電極の幅を
広げているため、第5図のような従来型の陰極ピ
ン2を用いた場合に比べ、同程度の電力投入しか
行えない。しかしながら、第10図に示すよう
に、陰極ピンの数を1/2〜1/5程度に減ずることが
でき、装置を製作するうえでも、保守点検を行う
うえでも容易になるという利点がある。 FIG. 9 is a perspective view of another embodiment of the cathode according to the present invention, FIG. 10 is a vertical cross-sectional view of a laser oscillator equipped with the electrode, and FIG. 11 is a cross-sectional view taken from the line XI--XI in FIG. shows. In this example, the area of the cathode 14 is expanded in the optical axis direction, and the width W 2 of the cathode is 8 mm.
30mm or less, and the discharge surface should be 30mm to 30mm relative to the gas flow in order to reduce fluctuations in the discharge relative to the gas flow.
It has an inclination θ of 60 degrees, and its tip is formed into an edge shape. In this example, since the width of the electrode is widened in the optical axis direction, it is possible to input only the same amount of power as in the case where the conventional cathode pin 2 as shown in FIG. 5 is used. However, as shown in FIG. 10, the number of cathode pins can be reduced to about 1/2 to 1/5, which has the advantage of making the device easier to manufacture and to perform maintenance and inspection.
第12図、第13図はそれぞれ光軸方向に陰極
の幅を広げた他の例を示す斜視図で、いずれも幅
W2は8mm以上30mm以下で、放電開始時の安定化
を企るためのエツジが形成されており、第9図に
示した例と同様の機能を果すものである。 Figures 12 and 13 are perspective views showing other examples in which the width of the cathode is widened in the optical axis direction.
W 2 is 8 mm or more and 30 mm or less, and an edge is formed to stabilize the discharge at the start of discharge, and it functions similarly to the example shown in FIG. 9.
以上の実施例は、いずれも三軸直交型のレーザ
発振器についての適用例について述べたが、ガス
流11と放電の方向が同一で、それと直交する方
向に光軸が存在する二軸直交型のレーザに適用し
ても同様の効果が得られることはいうまでもな
い。 The above embodiments have all been applied to three-axis orthogonal type laser oscillators; It goes without saying that similar effects can be obtained when applied to lasers.
以上のように、この発明によれば、交流放電が
補助放電として存在することで、ガス流方向、ま
たは光軸方向に陰極の幅を広げることにより、陰
極放電面積不足に起因するアーク放電への移行を
防止でき、放電投入電力の増加、および装置の小
型化、または陰極本数の減少を実現でき、レーザ
状置の高性能化を図ることができる。 As described above, according to the present invention, AC discharge exists as an auxiliary discharge, and by widening the width of the cathode in the gas flow direction or optical axis direction, arc discharge caused by insufficient cathode discharge area can be prevented. The transfer can be prevented, the discharge power can be increased, the device can be made smaller, or the number of cathodes can be reduced, and the performance of the laser can be improved.
第1図は従来のガスレーザ発振器の縦断面図、
第2図は第1図―線よりみた横断面図、第3
図は気体放電における典型的な電圧―電流特性を
示す図、第4図は従来の陰極の針視図、第5図は
補助放電としての無声放電が行なわれた場合と行
なわれない場合の正常グロー放電の電圧―電流特
性を示す図、第6図はこの発明に係る陰極の一実
施例の斜視図、第7図は第6図に示した陰極を適
用したガスレーザ発振器の縦断面図、第8図は第
7図―線よりみた横断面図、第9図はこの発
明に係る陰極の他の実施例の斜視図、第10図は
第9図に示した陰極を適用したガスレーザ発振器
の縦断面図、第11図は第10図XI―XI線よりみ
た横断面図、第12図及び第13図はそれぞれこ
の発明に係る陰極の他の実施例の斜視図である。
図において、1は陽極、2,14は陰極、5は
直流高圧電源、6は誘電体電極、7は給電線、9
は交流高圧電源、10は放電励起部、11はレー
ザガス、12は全反射鏡、13は部分反射鏡、2
0はレーザビームである。なお、図中同一符号は
それぞれ同一または相当部分を示す。
Figure 1 is a vertical cross-sectional view of a conventional gas laser oscillator.
Figure 2 is a cross-sectional view taken from Figure 1 - line, Figure 3
The figure shows typical voltage-current characteristics in gas discharge, Figure 4 is a needle view of a conventional cathode, and Figure 5 shows normal conditions with and without silent discharge as an auxiliary discharge. 6 is a perspective view of an embodiment of the cathode according to the present invention; FIG. 7 is a vertical sectional view of a gas laser oscillator to which the cathode shown in FIG. 6 is applied; 8 is a cross-sectional view taken along the line of FIG. 7, FIG. 9 is a perspective view of another embodiment of the cathode according to the present invention, and FIG. 10 is a longitudinal cross-section of a gas laser oscillator to which the cathode shown in FIG. 9 is applied. 11 is a cross-sectional view taken along the line XI--XI in FIG. 10, and FIGS. 12 and 13 are perspective views of other embodiments of the cathode according to the present invention. In the figure, 1 is an anode, 2 and 14 are cathodes, 5 is a DC high-voltage power supply, 6 is a dielectric electrode, 7 is a power supply line, and 9
10 is an AC high-voltage power supply, 10 is a discharge excitation unit, 11 is a laser gas, 12 is a total reflection mirror, 13 is a partial reflection mirror, 2
0 is a laser beam. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
配設され直流高電圧が印加されてグロー放電を生
成する陽極と陰極、上記レーザガス気流中に配設
され交流高電圧が印加されて上記両電極との間で
無声放電を生成する誘電体電極を備えたものにお
いて、上記陰極を、上記レーザガス気流の方向に
延在するエツジを有する形状としたものをレーザ
光軸にそつて複数本配設せる構成としたことを特
徴とするガスレーザ発振器。 2 陰極のエツジの幅W1が10〜50mmの範囲内で
ある特許請求の範囲第1項記載のガスレーザ発振
器。 3 陰極の光軸方向の幅W2が8〜30mmの範囲内
とした特許請求の範囲第1項記載のガスレーザ発
振器。[Scope of Claims] 1. An anode and a cathode that are arranged to face each other across the laser gas airflow and to which a DC high voltage is applied to generate a glow discharge, and an anode and a cathode which are arranged in the laser gas airflow and to which an AC high voltage is applied. and a dielectric electrode that generates a silent discharge between the cathode and both of the electrodes, wherein the cathode has an edge extending in the direction of the laser gas flow, and the cathode is arranged along the laser optical axis. A gas laser oscillator characterized by having a configuration in which a plurality of laser oscillators can be installed. 2. The gas laser oscillator according to claim 1, wherein the width W1 of the edge of the cathode is within a range of 10 to 50 mm. 3. The gas laser oscillator according to claim 1, wherein the width W2 of the cathode in the optical axis direction is within the range of 8 to 30 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14568281A JPS5848487A (en) | 1981-09-16 | 1981-09-16 | Gas laser oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14568281A JPS5848487A (en) | 1981-09-16 | 1981-09-16 | Gas laser oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5848487A JPS5848487A (en) | 1983-03-22 |
JPS6328517B2 true JPS6328517B2 (en) | 1988-06-08 |
Family
ID=15390647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14568281A Granted JPS5848487A (en) | 1981-09-16 | 1981-09-16 | Gas laser oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5848487A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631731Y2 (en) * | 1988-06-30 | 1994-08-22 | 工業技術院長 | Gas laser oscillator |
-
1981
- 1981-09-16 JP JP14568281A patent/JPS5848487A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5848487A (en) | 1983-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4841538A (en) | CO2 gas laser device | |
EP0510688B1 (en) | Discharge excitation pulsed laser oscillation device | |
JPH06120592A (en) | Laser device | |
JPS6328517B2 (en) | ||
JPS639393B2 (en) | ||
JPH0631731Y2 (en) | Gas laser oscillator | |
US4606035A (en) | Lateral excitation type gas laser | |
JP3154584B2 (en) | Discharge excitation gas laser device | |
US4343040A (en) | Transverse excitation type laser oscillator | |
US4740980A (en) | Gas laser device | |
JPS6190485A (en) | Pulse laser oscillator | |
JP4496430B2 (en) | Gas laser oscillator | |
JPH09214021A (en) | Gas laser device | |
JPS615588A (en) | Gas laser device | |
JPS6034277B2 (en) | Laterally pumped gas laser device | |
JPS6037188A (en) | Gas laser oscillator | |
JPS622579A (en) | Discharge type gas laser device | |
JPH05160471A (en) | Laser oscillator | |
JPS6114777A (en) | Gas laser generator | |
JPH03254167A (en) | Axial flow gas laser oscillator | |
JPS62199081A (en) | Gas laser oscillator | |
JPS63217681A (en) | Pulse gas laser device | |
JPS63216394A (en) | Co2 gas laser equipment | |
JPH023997A (en) | Co2 gas laser device | |
JPH07183594A (en) | Discharge electrode for gas laser |