JPS6328485A - Treatment of waste water from stack gas desulfurization stage - Google Patents

Treatment of waste water from stack gas desulfurization stage

Info

Publication number
JPS6328485A
JPS6328485A JP16808386A JP16808386A JPS6328485A JP S6328485 A JPS6328485 A JP S6328485A JP 16808386 A JP16808386 A JP 16808386A JP 16808386 A JP16808386 A JP 16808386A JP S6328485 A JPS6328485 A JP S6328485A
Authority
JP
Japan
Prior art keywords
water
boiler
iron
added
supernatant water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16808386A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Hikari Kitamura
光 北村
Kunihiko Fujii
藤井 邦比古
Toshikazu Atsumi
渥美 敏和
Yasuo Kimura
靖夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16808386A priority Critical patent/JPS6328485A/en
Publication of JPS6328485A publication Critical patent/JPS6328485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To prevent sticking of combustion ashes, corrosion of furnace materials, etc., by adding an iron compd. directly to the supernatant water discharged from a gypsum sepn. stage, or adding an ammonium bicarbonate thereto to settle and separate the Ca component, then adding the iron compd. to said water, and feeding such water to a boiler. CONSTITUTION:The iron compd. 25 is directly added to the supernatant water 12' discharged from the gypsum sepn. stage 4 in a method for treating the waste water from a desulfurization stage which treats exhaust combustion gases of fossil fuel contg. sulfur by a lime gypsum method or after the ammonium bicarbonate 23 is added to said water, the pH of the water is adjusted by a pH controlling agent 24 such as slaked lime and the Ca is removed in a settling tank 7, then the iron compd. 25 is added to the water. Such water is fed to the boiler and is incinerated. As a result, the melting and sticking of the combustion ashes, the corrosion of the furnace materials, etc., are prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硫黄を含む化石燃料を使用するボイラ、ガス
タービン、ディーゼルなどの排ガス処理、特に石灰−石
膏法による排煙脱硫処理における排水処理方法に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to the treatment of exhaust gas from boilers, gas turbines, diesels, etc. that use fossil fuels containing sulfur, particularly wastewater treatment in flue gas desulfurization treatment using the lime-gypsum method. Regarding the method.

〔従来の技術〕[Conventional technology]

硫黄化合物を含む石炭燃料9重油1石油精製時の副生油
、同残渣油1石油コークス、アスファルト及びコークス
炉ガス、高炉ガスなどのガス燃料(石炭系1石油系及び
ガス燃料を略す)などを燃焼するボイラ、ガスタービン
などの火カプラ/トでは、排ガス中に含まれている硫黄
酸化物(Box )を除去するために排煙脱硫装置が設
置されている。排煙脱硫法としては、各種の方法が開発
されているが、そのうち、石灰−石膏法は、脱硫処理プ
ロセスが簡単である上、効率がよく、経済的であるため
、多くの発電所で採用されている。しかし、処理後の排
水中には、難分解性のニチオン酸(H,S、Os)及び
S−N化合物(NHlSO,H)が含まれ、高COD排
水の原因となっている。又、この排水中には、使用する
石灰中や燃料中に不純分として含有されているM2化合
物が含まれており、その処理法について種々試みがなさ
れている。
Coal fuel containing sulfur compounds 9 Heavy oil 1 By-product oil from petroleum refining, residual oil 1 Gas fuels such as petroleum coke, asphalt and coke oven gas, blast furnace gas (coal-based 1 petroleum-based and gas fuels are abbreviated), etc. BACKGROUND OF THE INVENTION Fire couplers such as combustion boilers and gas turbines are equipped with flue gas desulfurization equipment to remove sulfur oxides (Box) contained in the flue gas. Various methods have been developed for flue gas desulfurization, but among them, the lime-gypsum method is adopted by many power plants because the desulfurization process is simple, efficient, and economical. has been done. However, the treated wastewater contains persistent nithionic acids (H, S, Os) and S-N compounds (NHlSO,H), which cause high COD wastewater. Furthermore, this wastewater contains M2 compounds which are contained as impurities in the lime and fuel used, and various attempts have been made to treat them.

先ず、排水中のニチオン酸及びS−N化合物を処理する
方法としては、従来から次のような方法が行なわれてい
る。
First, as a method for treating nithionic acid and S--N compounds in wastewater, the following methods have been conventionally used.

(1)ニチオン酸及びS−N化合物を含有する排水を、
イオン交換樹脂を用いて前記化合物を濃縮しく濃縮再生
液という)、この液に硫酸と水蒸気を添加して、100
℃以下の温度で酸化、加熱分解させる方法。
(1) Wastewater containing nithionic acid and S-N compounds,
The above compound is concentrated using an ion exchange resin (referred to as a concentrated regeneration solution), and sulfuric acid and steam are added to this solution to obtain 100%
A method of oxidation and thermal decomposition at temperatures below ℃.

12)ニチオン酸及びS−N化合物を含む排水を、その
まま(イオン交換樹脂を用いない)の状態で、硫酸と水
蒸気によって酸化、加熱分解する方法。
12) A method in which wastewater containing nithionic acid and S-N compounds is oxidized and thermally decomposed with sulfuric acid and steam in its original state (without using an ion exchange resin).

f3)  (1)の方法によって得られたニチオン酸及
びS−N化合物の濃縮再生液を、ボイラ炉内の燃焼領域
中へ直接注入したシ、燃料中へ混入したυ、さらに固形
燃料の場合には、その上に散布した後、ボイラ炉内で燃
焼させる方法が行なわれている。
f3) When the concentrated regenerated liquid of nithionic acid and S-N compound obtained by the method of (1) was directly injected into the combustion area of the boiler furnace, υ mixed into the fuel, and in the case of solid fuel, The method used is to spray it on top of it and then burn it in a boiler furnace.

いずれの方法を採用しても、CODの原因となっている
ニチオン酸及びS−N化合を分解除去できるが、排水処
理装置が簡略化されること及び運転経費が安価であるこ
となどの利点から、(3)の方式、すなわち、ボイラ炉
内へ注入する方法が注目されている。
Whichever method is adopted, it is possible to decompose and remove nithionic acid and S-N compounds, which cause COD, but there are advantages such as the simplification of wastewater treatment equipment and low operating costs. , method (3), that is, the method of injecting into the boiler furnace, is attracting attention.

以下、この方法の概要を第2図を用いて説明する。An outline of this method will be explained below using FIG. 2.

石炭系9石油系及びガス燃料の燃焼排ガスは冷却工程1
において冷却、除じんされ、次いで、吸収工程2に導か
れ、吸収液に硫黄酸化物(SO鵞e 803など)を吸
収させた後、清浄ガスは、系外へ放出される(煙道、煙
突を経て外部へ放出)。その際、冷却工程1からは、燃
料中に存在していた塩素、弗素をはじめ各種の重。
The combustion exhaust gas of coal-based 9 petroleum-based and gas fuels is cooled in the cooling process 1.
The clean gas is cooled and dust removed, and then led to absorption step 2, where the absorption liquid absorbs sulfur oxides (SO 803, etc.), and then is released outside the system (flue, chimney, etc.). (emitted to the outside through the process). At that time, various heavy substances such as chlorine and fluorine that were present in the fuel are removed from the cooling process 1.

軽金属元素及び未燃炭素(ばいじんの全成分)を含む冷
却塔排水11がそのまま、若しくは、ばいじん類は固液
分離されて、外部へ排出される。
Cooling tower wastewater 11 containing light metal elements and unburned carbon (all components of soot and dust) is discharged to the outside as is, or after solid-liquid separation of soot and dust.

一方、吸収工程2を経た処理水は、酸化工程3へ送られ
、空気を吹込んで、亜硫酸塩を硫酸塩(SO,→504
)へ酸化させ、難溶性の石膏(Canon)として液中
に析出させ、次いで、これを石膏分離工程4へ送り、生
成した石膏を外部へ副生石膏として排出させる。5貴分
離後の水(上澄水12)中には、難分解性のニチオン酸
及びS−N化合物などのCOD成分が含まれており、こ
のit河川用海へ排出することができない。そこで、こ
の上R水12と冷却塔排水11を混合し、中和槽5で苛
性ソーダ又は消石灰などの pT(調整剤21を加えて
所定の pHiでした後、重版の高分子凝集剤22を添
加して、凝集沈澱16でばいじん弗素化合物及び重金属
類などを除去する。凝集沈澱漕6で分離除去された上澄
水13中に含有されるCaけ、イオン交換塔9でのスケ
ーリングを防止するため、苛性ソーダなどのpH謂整剤
26の存在下で炭酸ソーダ27との反応によって、沈澱
槽7で炭酸カルシウム(CaCO3)として分離除去さ
れる。このようしてして Ca塩を除去した沈澱槽7の
上U水14ば、イオン交換塔9でニチオン酸及びS−N
化合物などを吸着除去して放流する。
On the other hand, the treated water that has passed through absorption process 2 is sent to oxidation process 3, where air is blown into the water to convert sulfite into sulfate (SO, → 504
) and precipitates in the liquid as sparingly soluble gypsum (Canon), which is then sent to a gypsum separation step 4, and the generated gypsum is discharged to the outside as by-product gypsum. 5. The water after noble separation (supernatant water 12) contains COD components such as persistent nithionic acid and S-N compounds, and cannot be discharged into rivers or the sea. Therefore, the above R water 12 and the cooling tower waste water 11 are mixed, and the pT (adjusting agent 21) such as caustic soda or slaked lime is added in the neutralization tank 5 to reach a predetermined pH, and then a reprinted polymer flocculant 22 is added. Then, soot, dust, fluorine compounds, heavy metals, etc. are removed in the coagulation sedimentation tank 16.In order to prevent the Ca contained in the supernatant water 13 separated and removed in the coagulation sedimentation tank 6 and scaling in the ion exchange column 9, Calcium carbonate (CaCO3) is separated and removed in the precipitation tank 7 by reaction with sodium carbonate 27 in the presence of a pH adjuster 26 such as caustic soda. Upper U water 14, nithionic acid and S-N in ion exchange tower 9
Adsorbs and removes compounds, etc. and discharges them.

このようKして吸着飽和したイオン交換樹脂は、硫酸2
8及び苛性ソーダ29で再生して再利用するが、再生処
理時に使用した硫酸や苛性ソーダと共に、濃厚をニチオ
ン酸及びS−N化合物を含む再生排液15は、−旦再生
排液貯槽10に貯留され、少量づつ燃料に混合、散布し
てボイラで燃焼処分されている。
The ion exchange resin that has been saturated with adsorption by K in this way is sulfuric acid 2
8 and caustic soda 29 for reuse. However, the recycled waste liquid 15 containing concentrated nithionic acid and S-N compounds along with the sulfuric acid and caustic soda used during the regeneration process is stored in the recycled waste liquid storage tank 10. , mixed with fuel in small quantities, dispersed, and burned in a boiler.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の従来法、すなわち、イオン交換樹脂濃縮再生排液
をボイラ炉内で蒸発、分解する方法は、排水処理装置が
簡略化されることや経済的利点を有するにも拘らず、次
のような問題点が内在しているため、実用化が遅れてい
る状況にある。
Although the conventional method described above, in which ion exchange resin concentrated regenerated wastewater is evaporated and decomposed in a boiler furnace, has the following economic advantages: Due to inherent problems, practical application has been delayed.

(1)  イオン交換樹脂再生液中には、硫酸や苛性ソ
ーダを高濃度で含有するため、これを直接ボイラ炉内へ
注入すると、ボイラ伝熱管を腐食損耗させるおそれがあ
る。
(1) Since the ion-exchange resin regenerating liquid contains sulfuric acid and caustic soda at high concentrations, if this is directly injected into the boiler furnace, there is a risk of corrosive wear and tear on the boiler heat exchanger tubes.

(2)特に、Na化合物は、燃料中の他の腐食成分(石
油系の場合は、V、S、ガス燃料系の場合は、S9石炭
系の場合は、S、K)と反応して低融点で腐食性の強い
化合物をつくり、伝熱面汚染を促進させたり腐食作用を
加速させる。
(2) In particular, Na compounds react with other corrosive components in the fuel (V, S for petroleum-based, S9 for gas fuel-based, S, K for coal-based) to reduce It forms a highly corrosive compound at its melting point, promoting contamination of heat transfer surfaces and accelerating corrosive action.

(3)  又、ボイラへ排液を注入すると、その中に含
まれているCa 、 MS’などの白色化合物が、炉壁
管表面に付着して、輻射による熱吸収率が低下し、燃焼
環境(火炎温度)の高温状態が長く続く結果サマールN
OX (空気中の窒素が高温酸化することにより生ずる
NOX )の発゛生を促し、ボイラ各部の熱吸収バラン
スが崩れ、伝熱面汚染、炉内に設置されている脱硝触媒
の寿命を短かくするなどの障害が発生する。
(3) Furthermore, when waste liquid is injected into the boiler, white compounds such as Ca and MS' contained in it adhere to the surface of the furnace wall tubes, reducing the rate of heat absorption by radiation and reducing the combustion environment. As a result of the high temperature (flame temperature) continuing for a long time, Samar N
It promotes the generation of OX (NOx produced by high-temperature oxidation of nitrogen in the air), disrupts the heat absorption balance of each part of the boiler, contaminates the heat transfer surface, and shortens the life of the denitrification catalyst installed in the furnace. Failures such as

本発明は上記欠点を解消した石膏分離工程からの排水処
理方法を提供しようとするものである。
The present invention aims to provide a method for treating waste water from a gypsum separation process that eliminates the above-mentioned drawbacks.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は硫黄を含む化石燃料の燃焼排ガスを石灰−石膏
法で処理する脱硫工程からの排水の処理方法において、
石膏分離工程から排出される上澄水に、直接鉄化合物を
添加するか、または、該上澄水に重炭酸アンモニウムを
加えてカルシウム成分を沈澱分離した後、鉄化合物を添
加してボイラに注入することを特徴とする排水の処理方
法である。
The present invention provides a method for treating wastewater from a desulfurization process in which sulfur-containing fossil fuel combustion exhaust gas is treated using a lime-gypsum method.
Add iron compounds directly to the supernatant water discharged from the gypsum separation process, or add ammonium bicarbonate to the supernatant water to precipitate and separate calcium components, then add iron compounds and inject into the boiler. This is a wastewater treatment method characterized by:

本発明の特徴を整理すると次の通りである。The features of the present invention are summarized as follows.

(1)従来の方法では、ボイラ炉内へ硫酸やNaが持込
まれるので、この種成分の少ない石膏分離工程の上澄水
をボイラ炉内へ注入することとした。この上澄水中には
、Ca 、 MPがそれぞれ1000 ppm程度含ま
れているため、石油系燃料を用いているボイラでは、■
化合物に起因する高温部伝熱管の腐食を抑制したり、燃
焼ガス中のSoxとも反応して、低温部での硫酸露点腐
食を軽減する効果がある。
(1) In the conventional method, sulfuric acid and Na are brought into the boiler furnace, so it was decided to inject supernatant water from the gypsum separation process, which contains few such components, into the boiler furnace. This supernatant water contains about 1000 ppm each of Ca and MP, so in boilers using petroleum fuel,
It has the effect of suppressing corrosion of heat exchanger tubes in high-temperature areas caused by compounds, and also reacts with Sox in combustion gas to reduce sulfuric acid dew point corrosion in low-temperature areas.

(2)  同上澄水中に含まれているニチオン酸及びS
−N化合物はボイラ炉内で完全に分解処理できる。
(2) Nithionic acid and S contained in the supernatant water
-N compounds can be completely decomposed in a boiler furnace.

(3)上記の方法は、石炭焚きボイラにはそのまま利用
できるが、石油系燃料のボイラでは、上澄水中のカルシ
ウム成分が炉内で燃焼ガス中の30xと反応して硬いC
a S 04を生成して、伝熱管上に強固に付着し、伝
熱面汚染の原因となるので、上澄水中のカルシウム成分
は少ないほど好ましbo そこで、上澄水中へ重炭酸アンモニウムを添加して、C
aをCaCO3として沈澱除去し、MPの多い上U水と
してボイラ炉内へ注入する。
(3) The above method can be used as is for coal-fired boilers, but in oil-based boilers, the calcium component in the supernatant water reacts with 30x in the combustion gas in the furnace, causing hard carbon.
a S 04 is generated and firmly adheres to the heat transfer tube, causing contamination of the heat transfer surface, so it is preferable that the calcium component in the supernatant water is as low as possible.bo Therefore, ammonium bicarbonate is added to the supernatant water. Then, C
A is precipitated and removed as CaCO3, and is injected into the boiler furnace as clean water with a high MP content.

(Na1CO3を使用しないので、ボイラ炉内へNaが
持ち込まれない。) (4)シかし、この処理を施しても、長時間あるいは多
量のMりを含む上澄水をボイラ炉内へ注入していると、
白色のMP化合物(MPO。
(Since Na1CO3 is not used, Na is not brought into the boiler furnace.) (4) Even with this treatment, the supernatant water containing a large amount of M may not be injected into the boiler furnace for a long time. When I was there,
White MP compound (MPO.

MPSO4)が炉壁管表面に付着する結果、その部分の
熱吸収率が低下し、このため火炎温度が上昇し、サーマ
ルNOxの発生が促進される。
As a result of MPSO4) adhering to the surface of the furnace wall tube, the heat absorption rate in that area decreases, thereby increasing the flame temperature and promoting the generation of thermal NOx.

又、火炎温度の上昇は、その後流側に設置されている過
熱器、再熱器、節炭器などの熱吸収バランスを崩し、ボ
イラ出口排ガス温度の上昇を来すなど多くの新しい障害
が発生する。
In addition, the rise in flame temperature disrupts the heat absorption balance of the superheater, reheater, energy saver, etc. installed on the downstream side, causing many new problems such as an increase in the exhaust gas temperature at the boiler outlet. do.

この対策として、上澄水中に Fe化合物を添加したり
、又、燃料中へFe化合物を添加して炉壁管の白色化を
防止し、これに伴う障害を防止する。この方法は、石炭
燃料及びガス燃料焚きボイラにも利用できる。
As a countermeasure against this, Fe compounds are added to the supernatant water or to the fuel to prevent whitening of the furnace wall tubes and to prevent the problems associated with this. This method can also be used for coal-fired and gas-fired boilers.

〔作用〕[Effect]

従来技術の問題点、すなわち、多量の薬品およびナトリ
ウムイオンの含有水をボイラ燃焼による燃焼灰の熔融固
着および戸材の腐蝕等の解決のため、本発明では、第1
図に示すフローを採用した。以下に、第1図に基づき本
発明を説明する。
In order to solve the problems of the prior art, namely, the melting and fixation of combustion ash caused by boiler combustion of water containing a large amount of chemicals and sodium ions, and the corrosion of door materials, the present invention provides a first method.
The flow shown in the figure was adopted. The present invention will be explained below based on FIG.

本発明は、冷却工程1から排出される燃料に起因するば
いじん、CL、 F、  および重金属頌等を含む冷却
塔排水11と、吸収工程2、酸化工程5を経て石膏分離
工程4から排出し、排煙システムに起因する難分解性の
ニチオン酸およびS−N化合物等のCOD成分を含む上
澄水12とを分離個別に処理することにある。
The present invention provides cooling tower waste water 11 containing soot, CL, F, heavy metals, etc. caused by fuel discharged from the cooling process 1, and discharged from the gypsum separation process 4 after passing through the absorption process 2 and the oxidation process 5, The objective is to separate and separately treat the supernatant water 12 containing COD components such as hard-to-decompose nithionic acid and S--N compounds originating from the smoke exhaust system.

冷却工程1での冷却塔排水11は、中和呵5で、苛性ソ
ーダおよび消石灰などの pH調節剤21で pg調整
後、高分子凝集剤などの凝集剤22を添加して、凝集沈
澱p16に流入させ、ここで、ばいじん、F化合物およ
び重金属類等を沈、#を分離1−1これらの諸成分を含
まない上澄水はその−ま一放流する。一方、ニチオン酸
およびS−N化合物を含む上澄水12は、その櫨ま混合
貯留槽8へ導き、鉄化合物25を所定量添加してボイラ
燃焼するか、(図中、12′で示される)、もしくは、
重炭[俊アンモニウム23添加後、アンモニア水溶液、
消石灰などの pH調節剤24で pH調整し、沈mW
17で Caの除去をおこない、上澄水15を混合貯留
槽8に流入、鉄化合物25を所定i添加して、ボイラへ
送水焼却する。
The cooling tower wastewater 11 in the cooling process 1 is neutralized 5, after adjusting the pg with a pH adjuster 21 such as caustic soda and slaked lime, a flocculant 22 such as a polymer flocculant is added, and it flows into coagulation sedimentation 16. Here, dust, F compounds, heavy metals, etc. are precipitated, and # is separated. 1-1 The supernatant water that does not contain these components is discharged into the tank. On the other hand, the supernatant water 12 containing nithionic acid and S-N compounds is either led to the oak mixing storage tank 8, added with a predetermined amount of iron compound 25, and burned in a boiler (indicated by 12' in the figure). ,or,
Heavy carbon [after adding 23% ammonium, ammonia aqueous solution,
Adjust the pH with a pH adjuster such as slaked lime, and precipitate mW.
In step 17, Ca is removed, the supernatant water 15 flows into the mixing storage tank 8, a predetermined amount of iron compound 25 is added thereto, and the water is sent to the boiler for incineration.

本発明の方法)てよる作用効果は、次の通りである。The effects of the method of the present invention are as follows.

(1)  石膏分離工程の上澄水をボイラ炉内へ注入す
ることにより、薬品およびナトリウムイオンの含有が実
質的に無視出来るため、従来技術のような障害が発生し
ない。
(1) By injecting the supernatant water from the gypsum separation process into the boiler furnace, the content of chemicals and sodium ions can be substantially ignored, so no problems occur as in the prior art.

12)石膏分離工程の上澄水のみをボイラ炉内へ注入処
理するので、従来の冷却塔排水と混合してボイラ燃焼す
るのに比較し、処理水量が少なく、かつ、高濃度のニチ
オン酸およびS−N化合物が燃焼処分でき効率的である
12) Since only the supernatant water from the gypsum separation process is injected into the boiler furnace, the amount of water to be treated is smaller than the conventional method of mixing it with cooling tower waste water and burning it in the boiler. -N compounds can be burned and disposed of efficiently.

(3)  カルシウム除去の必要性1i、石油系燃料お
よびガス燃料を用いる場合と、石炭を燃料とする場合で
異なる。
(3) The necessity of calcium removal 1i differs depending on whether petroleum-based fuel or gas fuel is used or when coal is used as fuel.

石油系およびガス燃料を用いる場合は、ボイラへの流入
カルシウムは、燃焼対象水からの持込みが支配的である
だめ、カルシウム除去が重要となる。捕集ばいじん特性
から、燃焼対象水中のカルシウムは500η/を以下に
保持するのが好ましく、より好ましくは500■/を以
下である。一方、石炭を燃料とする場合は、ボイラ中へ
の流入カルシウムは、燃料より持込まれるものが支配的
である関係上、燃焼対象水中のカルシウム除去の必要性
はなく、上澄水12′を直接ボイラ燃焼できるので、よ
シ経済的な運用が可能である。
When oil-based or gas fuels are used, the calcium that flows into the boiler is predominantly brought in from the water to be burned, so calcium removal is important. In view of the characteristics of the collected soot and dust, the calcium content in the water to be burned is preferably maintained at 500 η/ or less, more preferably 500 η/ or less. On the other hand, when coal is used as fuel, the calcium flowing into the boiler is predominantly brought in from the fuel, so there is no need to remove calcium from the water to be burned, and the supernatant water 12' is directly injected into the boiler. Since it can be combusted, it can be operated economically.

(4)  カルシウム除去時の pH調整剤は、ナ) 
IJウムイオンを含まないアンモニア水溶液もしくは消
石灰などが好ましい。また、調整pgは、重炭パ俊アン
モニウムおよび pH調節剤の効率よ抄 pH8〜9が
好ましく、よプ好ましくは p)T EL 5〜?であ
る。
(4) Use a pH adjuster when removing calcium.
An ammonia aqueous solution or slaked lime that does not contain IJium ions is preferable. In addition, the adjusted pg is preferably pH 8 to 9 based on the efficiency of heavy carbon, ammonium, and pH regulator, and preferably p) TEL 5 to ? It is.

(5)冷却塔排水の処理は、従来技術が適用され、作用
効果も従来実績の通り発揮される。石油系然料シよびガ
ス燃料を用いる場合は、pH調節剤としては、苛性ソー
ダ消石灰のいずれも便用可能であるが、凝集沈澱での汚
泥発生の低減からは、苛性ソーダを使用するのが好まし
い。調整 pHは、7.5〜a5が好ましく、より好ま
しくは pH8〜a5である。一応石炭を燃料として用
いる場合は、pH調節剤としては、下処理の関係から消
石灰を用いるのが好ましく、調整 pHは、石油系燃料
とほぼ同様に、pH8〜a5が適用される。
(5) Conventional technology is applied to the treatment of cooling tower wastewater, and the effects are achieved as previously achieved. When petroleum-based natural materials and gas fuels are used, caustic soda slaked lime can be used as the pH adjuster, but it is preferable to use caustic soda to reduce sludge generation during coagulation and sedimentation. The adjusted pH is preferably 7.5 to a5, more preferably pH8 to a5. When coal is used as a fuel, it is preferable to use slaked lime as a pH adjuster from the perspective of pretreatment, and the adjusted pH is approximately pH 8 to a5, as is the case with petroleum fuels.

t6)  MPあるいはM2とCaを含む上澄水を多量
に長時間ボイラ炉内へ注入していると、炉壁・管表面(
′こ白色のマグネシウム、カルシウム化金物(例えば、
MりO,MfSO4、Cab、 CaSO4)が付着し
て、次第に白色化して来る。このため、炉壁管の副射吸
収率が低下し、この結果、燃焼ガス1度は設計値よりも
高い状態で、ボイラ後部へ流れることとなる。その結果
、過熱器、再^器、節炭器など((おける熱吸収上が上
昇し、ボイラ全体のバランスが崩れ、安定した状態で運
転することができなくなる。
t6) If a large amount of supernatant water containing MP or M2 and Ca is injected into the boiler furnace for a long time, the furnace wall/tube surface (
'Pale magnesium, calcified metals (e.g.
MoriO, MfSO4, Cab, CaSO4) are attached and the color gradually becomes white. Therefore, the side radiation absorption rate of the furnace wall tube decreases, and as a result, the combustion gas flows to the rear of the boiler in a state higher than the designed value. As a result, the heat absorption in the superheater, regenerator, economizer, etc. increases, causing the entire boiler to become unbalanced, making it impossible to operate in a stable condition.

さらに、燃焼ガス温度の高嵐化け、サーマルNoycの
発生を促し、熱効率の低下を招くなどの析しい問題点を
発生させる。この点、上澄水中に鉄化合物を添加しても
・けば、炉内で有色の酸化鉄(例えば、F 、08sF
e30.)となってマグネシウムやカルシウム化合物と
共存して、その白色化現像を防ぐため、新しい間頂が発
生することはない。
Further, it causes serious problems such as a rise in combustion gas temperature, the generation of thermal Noyc, and a decrease in thermal efficiency. In this regard, even if iron compounds are added to the supernatant water, colored iron oxides (for example, F, 08sF,
e30. ) and coexists with magnesium and calcium compounds to prevent their whitening development, so new intermediaries do not occur.

鉄化物の添加は、上澄水中のみならず、燃料中へ添加し
ても、炉壁管の白色化防止は可能である。
The whitening of the furnace wall tubes can be prevented by adding ferrite not only to the supernatant water but also to the fuel.

又、Fe化合物を添加しておくと、ボイラの後部煙道部
に設置されている脱硝用触媒表面へも付着することとな
る。脱硝触媒は、酸化触媒作用を有しており、燃料中の
Na、 Kなどのアルカリ金属化合物(Na2SO2、
K4SO4)の付着によって、その機能を消失すること
が知られているが、Fe化合物の注入によって、酸化力
を有するF etO。
Furthermore, if an Fe compound is added, it will also adhere to the surface of the denitrification catalyst installed in the rear flue of the boiler. The denitrification catalyst has an oxidation catalytic effect, and removes alkali metal compounds such as Na and K (Na2SO2,
It is known that the function of FetO is lost by adhesion of Fe (K4SO4), but it has oxidizing power by implanting Fe compounds.

が触媒表面に付着し、触媒機能を助長し、その寿命を延
長させる効果がある。
adheres to the surface of the catalyst, promoting catalyst function and extending its life.

前記脱硝触媒は、その上流側にNH,ガスを注入して行
なわれているが、触媒の酸化作用によって、燃焼ガス中
のSO!の一部がSO3へ酸化する副反応が発生する。
The denitration catalyst is operated by injecting NH and gas into its upstream side, but due to the oxidizing action of the catalyst, SO! A side reaction occurs in which part of the oxidized to SO3.

So、は、ガス中の水分を結合してH,S o、となり
、さらに、これがNH3ガスと反応して重硫酸アンモニ
ウム(NH4H8O,)を生成することが知られている
。この化合物は、融点が低((147℃)、又、腐食性
を有しているため、後流側に設けられている空気予熱器
エレメントに付着して通風抵抗を高めたり、腐食させる
ことがある。この点、鉄酸化物は、重硫酸アンモニウム
とも反応してこれを腐食性がなく、融点の高い硫酸アン
モニウムC(NpJzs”a)K変化させるので、NH
4HS 04 K起因する障害も防止する効果がある。
It is known that So combines moisture in the gas to become H, So, which in turn reacts with NH3 gas to produce ammonium bisulfate (NH4H8O,). This compound has a low melting point (147°C) and is corrosive, so it may adhere to the air preheater element installed on the downstream side and increase ventilation resistance or cause corrosion. In this respect, iron oxide also reacts with ammonium bisulfate, converting it into ammonium sulfate C (NpJzs"a)K, which is non-corrosive and has a high melting point.
It is also effective in preventing failures caused by 4HS 04K.

本発明に使用できる鉄化合物25として、次のようなも
のがあるが、これ以外でも、ボイラ炉内において、最終
的にFed○3+ Fe3O4のような有色の酸化物と
なるものであれば、使用可能である。
Examples of iron compounds 25 that can be used in the present invention include the following, but other compounds may also be used as long as they eventually become colored oxides such as Fed○3+ Fe3O4 in the boiler furnace. It is possible.

(1)鉄酸化物: Fed、 Fe、On、 Fe0O
H,FplOl(2)無機鉄化合物:硫酸鉄、塩化鉄、
硝酸鉄(3)  有機鉄化合物ニオクチ、9俊鉄、ナフ
テン酸鉄、ステアリン酸鉄錯酸鉄、蟻酸鉄、メタクリル
酸鉄 又、本発明に用いた鉄化合物25の表面処理剤としては
、親水性又は親油性界面活性剤、が使用されるが、その
例は、次の通りである。
(1) Iron oxide: Fed, Fe, On, Fe0O
H, FplOl (2) Inorganic iron compounds: iron sulfate, iron chloride,
Iron nitrate (3) Organic iron compounds niokuchi, iron 9, iron naphthenate, iron complex iron stearate, iron formate, iron methacrylate, and as a surface treatment agent for iron compound 25 used in the present invention, hydrophilic or lipophilic surfactants, examples of which are as follows.

親油性界面活性剤;ノニルフェニル(E−O)xcat
〜、4セカンダリアルコール(E−0)工Xは6以下の
もの。(E・0)はエチレンオキサイドの略。
Lipophilic surfactant; nonylphenyl (E-O)xcat
~, 4 Secondary alcohol (E-0) engineering X is 6 or less. (E.0) is an abbreviation for ethylene oxide.

親水性界面活性剤;上記化合物の工が79上10のもD
o〔実施例〕 実施例1(C重油を燃焼中のボイラに適用した例) 発!出力4110MW、燃料中のS分2.6%、■70
〜75 ppmのC重油を燃焼して運転中の大型ボイラ
に、本発明のプロセス(第1図の工程)を適用した。そ
の結果、従来法(第2図)では、再生廃液貯槽10から
ボイラ炉内の注入されていた硫d、苛性ソーダは、それ
ぞれ970ゆ、1、200 kg/ da’7’に達し
たが本発明の方法では、イオン交換壱脂全使用しないた
め、この種の腐食性薬品を含む廃液は発生しない。(腐
食成分のH,So4とNaOHは、第2図の再生廃液槽
10の中で中和反応してNa□SO4を生成するが、こ
の化合物は、石炭系9石油系及びガス燃料系を問わず、
伝熱面汚染と腐食を誘発する原因物質である。) 次いで、本発明の方法を長期間(約5カ月間)に亘って
適用した実施例上次に示す。
Hydrophilic surfactant;
o [Example] Example 1 (Example of application to a boiler burning C heavy oil) Release! Output 4110MW, S content in fuel 2.6%, ■70
The process of the present invention (the process shown in FIG. 1) was applied to a large boiler operating by burning ~75 ppm C heavy oil. As a result, in the conventional method (Fig. 2), the amounts of sulfur d and caustic soda injected into the boiler furnace from the recycled waste liquid storage tank 10 reached 970 yu and 1,200 kg/da'7', respectively, but in the present invention Since the method does not use any ion exchange resin, no waste liquid containing this type of corrosive chemical is generated. (The corrosive components H, So4, and NaOH undergo a neutralization reaction in the recycled waste liquid tank 10 shown in Figure 2 to produce Na□SO4, but this compound is figure,
It is a causative agent that induces heat transfer surface contamination and corrosion. ) Next, an example in which the method of the present invention was applied over a long period of time (about 5 months) will be shown below.

本発明の上汁水12中:て(す、Ca (CaOとして
)600〜1200HI/l、Mり(Mr○として)3
50〜560M9/lが含まれていだが、NH4HC0
,23を注入するととてより、上澄水13ば、Ca (
CaOとして)200〜350η/1゜M? (M?O
として)1,000〜2. s o o yq / t
となり、ボイラ炉内へ注入する場合には、M20成分の
多い排水となった。上δ水13をボイラ炉内へ注入を続
けた後、ボイラの運転を止め、伝熱管表面の付着物量を
その成分を調査した結果、付着物量は従来法を採用した
場合の約65X、付着物中のMPO含有量は2〜5倍に
増加していた。付着物量の軽減は、Mho成分の増加に
よって、燃料灰を主体とする付着物が脆くなり、スート
ブロワの操作によって伝熱管から剥れしやすくなったも
のと考えられる。又、伝熱管には、腐食の発生は認めら
れたかった。
In the supernatant water 12 of the present invention: Ca (as CaO) 600 to 1200 HI/l, M (as Mr○) 3
It contains 50-560M9/l, but NH4HC0
, 23, the supernatant water 13, Ca (
(as CaO) 200~350η/1°M? (M?O
) 1,000 to 2. s o o yq / t
Therefore, when injected into the boiler furnace, the wastewater contained a large amount of M20 components. After continuing to inject the upper δ water 13 into the boiler furnace, the boiler operation was stopped, and the amount of deposits on the surface of the heat exchanger tubes was investigated. As a result, the amount of deposits was approximately 65 times that of the conventional method. The MPO content in it had increased 2-5 times. The reduction in the amount of deposits is thought to be due to the increase in the Mho component, which made the deposits mainly composed of fuel ash brittle and easily peeled off from the heat exchanger tubes when the soot blower was operated. Furthermore, no corrosion was observed in the heat exchanger tubes.

しかし、この方法をボイラに適用した場合(上澄水13
を炉内に注入すること)、約3週間後から排ガス中のN
0xff(が上昇し、2力月後で注入初期の約20%上
昇、3力月後26%の上昇となった。
However, when this method is applied to a boiler (supernatant water 13
(injected into the furnace), and from about 3 weeks later the N in the exhaust gas
0xff (increased, increasing by approximately 20% after the second month of injection and by 26% after the third month.

そこで、本発明の一つである鉄化合物25を上澄水13
中に添加して(鉄化合物25の添加は、混合貯留槽8で
実施)炉内への注入を開始したところ、5日後から排ガ
ス中のNOX itが低下しはじめ、20日後には完全
に元の状態となった。使用した鉄化合物25は、親水性
の界面活性剤を表面に処理しだF+403粉末で、その
添加t V′i、)#O+ Ca、0合計量の2%であ
る。
Therefore, the iron compound 25, which is one of the present invention, was added to the supernatant water 13.
When injection into the furnace was started (the addition of iron compound 25 was carried out in the mixed storage tank 8), NOX it in the flue gas began to decrease after 5 days, and completely disappeared after 20 days. The situation has become. The iron compound 25 used was F+403 powder whose surface was treated with a hydrophilic surfactant, and its addition amount was 2% of the total amount of tV'i,)#O+Ca,0.

本実施例で用いたボイラには、Tie、 VIOsを主
成分とする脱硝触媒が設けられていだが、鉄化合物25
を添加した上澄水16を使用したところ、その効果は、
連続運転8力月後でも全く低下しなかった。鉄化合物2
5を添加しない場合/こは、約6カ月後から触媒作用が
低下していた状態に比べ、よい結果が得られた。尚、鉄
化合物25の添加は、カルボン酸鉄、親油性の界面活性
剤で表面被覆したFe!O,粉末を燃料中にMrO+ 
CaO合計鷺の2〜3%添加しても、前記と同様な効果
が得られた。又、FezO1を含む上澄水13を炉内へ
注入したところ、無注入時には酸性硫安の発生と付着に
より、空気予熱器の閉塞トエレメントの腐食が頻ばんに
発生していたが、本発明の適用後、この問題は発生しな
かった。
The boiler used in this example was equipped with a denitrification catalyst mainly composed of Tie and VIOs, but an iron compound 25
When using supernatant water 16 with added
There was no decline at all even after 8 months of continuous operation. iron compound 2
In the case where No. 5 was not added, better results were obtained than in the case where the catalytic action decreased after about 6 months. In addition, the addition of iron compound 25 is Fe! whose surface is coated with carboxylic acid iron and a lipophilic surfactant! O, MrO+ powder in fuel
Even when 2 to 3% of the total amount of CaO was added, the same effect as above was obtained. Furthermore, when supernatant water 13 containing FezO1 was injected into the furnace, corrosion of the blockage element of the air preheater frequently occurred due to generation and adhesion of acidic ammonium sulfate when no injection was applied. After that, this problem did not occur.

実施例2(石油コークスを燃焼中のボイラに適用した例
) 蒸発−1120t、l/hの産業用ボイラで石油コーク
ス(硫黄五1〜五7%、■140〜280ppm )を
燃料とした場合に、上U水13のみの炉内注入では、実
施例1と同様な現象(NOxの上昇)があられれたが、
鉄化合物25の注入ンこよって、これを防止することが
できた。尚、この場合の鉄化合物の注入は、上澄水13
のみならず、助燃用のC重油及び石油コークス粉などに
も添加したが、その効果は、変化せず、本発明に目的を
達成することができた。
Example 2 (Example in which petroleum coke is applied to a boiler during combustion) When petroleum coke (sulfur content: 1 to 57%, 140 to 280 ppm) is used as fuel in an industrial boiler with an evaporation capacity of 1120 tons and l/h. , when only U water 13 was injected into the reactor, the same phenomenon as in Example 1 (rise in NOx) occurred; however,
This could be prevented by injection of iron compound 25. In this case, the iron compound is injected into the supernatant water 13.
In addition, it was added to C heavy oil for combustion aid, petroleum coke powder, etc., but the effect did not change and the object of the present invention could be achieved.

実施例!+(石炭を燃焼中のボイラに適用した例)発電
出力500MW、第1表に示すような組成を有する石炭
を燃焼中のボイラに本発明を適用しまた例を述べる。第
1表の石炭組成から明らかなように、その灰分中に多量
のCaOを含むため、上U水中ンζ含まれているCaO
成分を除去する必要がない。そこで、この上澄水中に 
FA化合物を添加してボイラ炉内へ注入した。石炭灰の
槍が非常に多く、その大部分がAtt03.5i02.
 Cab。
Example! + (Example in which the present invention is applied to a boiler that burns coal) An example will be described in which the present invention is applied to a boiler that burns coal and has a power generation output of 500 MW and a composition as shown in Table 1. As is clear from the coal composition in Table 1, the ash contains a large amount of CaO, so the amount of CaO contained in the upper water is
There is no need to remove components. Therefore, in this supernatant water
The FA compound was added and injected into the boiler furnace. There are a lot of coal ash spears, most of which are Att03.5i02.
Cab.

M2Oなどの白色成分であるため、鉄化合物の添加量を
、上市水中ンこ含まれているMrO−)−CaO合計合
計量等から、5倍程度とした。又、鉄化合物の注入は、
上澄水のみならず、石炭中にも添加したが、後者の場合
は、石炭が親油性であること全考慮し、Fe、O,粉末
に親油性の界面活性剤を被覆したものを使用した。その
結果を第2表ンこ示す。
Since it is a white component such as M2O, the amount of iron compound added was about 5 times the total amount of MrO-)-CaO contained in the commercially available water. In addition, injection of iron compounds
It was added not only to the supernatant water but also to the coal; in the latter case, taking into account that the coal is lipophilic, Fe, O, and powder coated with a lipophilic surfactant were used. The results are shown in Table 2.

その効果を第2表に示す。この実施例では上市水をその
ままの状態(Ca及びMyを含む)でボイラへ注入した
場合及び石炭粉末中に親油性の界面活性剤を添加しない
場合の測定値をそれぞれ100としFe化合物を添加し
た場合の測定値をその比で表示した。尚、上澄水中へ添
加した鉄化合物は鉛酸鉄中へFe、O,粉末を5%添加
したもの(錯酸鉄は水溶性であるうえ酸性を呈するため
添加したFez○3粉末の一部分はその中へ溶解した。
The effects are shown in Table 2. In this example, the measured values were set to 100 when commercially available water was injected into the boiler as it was (containing Ca and My) and when no lipophilic surfactant was added to the coal powder, and an Fe compound was added. The measured values in each case are expressed as a ratio. The iron compound added to the supernatant water was prepared by adding 5% Fe, O, and powder to iron lead acid. dissolved into it.

この作用によって錯酸鉄の pHは中性に近くなってい
る)を使用した。
Due to this effect, the pH of the iron complex acid is close to neutral).

第2表から明らかなようンこ上澄水中に Fe化合物を
添加したものは、石炭の燃焼性が改善される結果、未燃
分の発生が少なくなると共に、NOx及びSo、量が低
下した。又炉内に設置されている脱硝触媒の性能も低下
することなく、むしろ向上するなどの効果が認められた
。これらの効果は FA化合物の添加量が増加するほど
上昇することが判明したがその上昇効率は緩やかである
As is clear from Table 2, when Fe compounds were added to the supernatant water of poop, the combustibility of coal was improved, resulting in less generation of unburned matter and lower amounts of NOx and So. Furthermore, the performance of the denitrification catalyst installed in the furnace did not deteriorate, but was actually improved. It has been found that these effects increase as the amount of FA compound added increases, but the efficiency of the increase is gradual.

一方、石炭粉末中に添加し九ものにも上澄水中に添加し
たものと同じよう々効果が認められ本発明の効果が石炭
焚きボイラにも適用できることが確認された。
On the other hand, the same effects as those added to supernatant water were observed when added to coal powder, and it was confirmed that the effects of the present invention can also be applied to coal-fired boilers.

第1表 実施例4(コークス炉ガスを燃焼中のボイラに適用しだ
例) 蒸発計120t/h、Coニア3に、C山30%、H2
52,5%を主成分とし、S化合物(HtstSo、 
)を2300 ppmを含むコークス炉ガスを1然料と
して運転中のボイラに本発明を適用した。
Table 1 Example 4 (Example of applying coke oven gas to a boiler during combustion) Evaporation meter 120t/h, Conea 3, C mountain 30%, H2
The main component is S compound (HtstSo,
The present invention was applied to a boiler operating using coke oven gas containing 2300 ppm of

高炉ガス中には、殆んど灰分がないだめ、伝熱・、fへ
の汚染や腐食の発生(はないが、上澄水12又fは13
の注入によって、iP’ff表面が日色化し、こ九に伴
う排ガス中の’cTOX ’rlの増加や熱吸収バラン
スの崩れによる安定操業の困難など;ま、実施例1〜3
同様発生した。
There is almost no ash in the blast furnace gas, so there is no heat transfer, contamination or corrosion of f.
Injection of iP'ff caused the surface of the iP'ff to turn yellow, resulting in an increase in 'cTOX'rl in the exhaust gas and difficulty in stable operation due to the loss of heat absorption balance; Examples 1 to 3.
The same thing happened.

(7かし、上澄水12又は13中に、鉄化合物25を添
加することによって、こ4−らの障害?防止することつ
;できた。
(7) However, by adding iron compound 25 to supernatant water 12 or 13, these 4- and other problems could be prevented.

【図面の簡単な説明】 第1図は、本発明による排煙脱硫処理Vζおける排水処
準プロセスのフローを示し、第2図は、従来の石灰−石
A法Qζ工乙プロセスのフローを示す。 も2図 重 (放濠) 第1図 (ホ゛イラ燃煉)
[Brief Description of the Drawings] Figure 1 shows the flow of the wastewater treatment process in the flue gas desulfurization treatment Vζ according to the present invention, and Figure 2 shows the flow of the conventional lime-stone A method Qζ process. . Fig. 2 heavy (open moat) Fig. 1 (fire pit)

Claims (1)

【特許請求の範囲】[Claims] 硫黄を含む化石燃料の燃焼排ガスを石灰−石膏法で処理
する脱硫工程からの排水の処理方法において、石膏分離
工程から排出される上澄水に、直接鉄化合物を添加する
か、または、該上澄水に重炭酸アンモニウムを加えてカ
ルシウム成分を沈殿分離した後、鉄化合物を添加してボ
イラに注入することを特徴とする排水の処理方法。
In a method for treating wastewater from a desulfurization process in which sulfur-containing fossil fuel combustion exhaust gas is treated by a lime-gypsum method, an iron compound is directly added to the supernatant water discharged from the gypsum separation process, or the supernatant water is A method for treating wastewater, which comprises adding ammonium bicarbonate to precipitate and separate calcium components, and then adding an iron compound and injecting the mixture into a boiler.
JP16808386A 1986-07-18 1986-07-18 Treatment of waste water from stack gas desulfurization stage Pending JPS6328485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16808386A JPS6328485A (en) 1986-07-18 1986-07-18 Treatment of waste water from stack gas desulfurization stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16808386A JPS6328485A (en) 1986-07-18 1986-07-18 Treatment of waste water from stack gas desulfurization stage

Publications (1)

Publication Number Publication Date
JPS6328485A true JPS6328485A (en) 1988-02-06

Family

ID=15861529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16808386A Pending JPS6328485A (en) 1986-07-18 1986-07-18 Treatment of waste water from stack gas desulfurization stage

Country Status (1)

Country Link
JP (1) JPS6328485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493279A (en) * 2021-06-30 2021-10-12 国能朗新明环保科技有限公司 Low-cost recycling cooperative treatment method and system for negative-hardness wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493279A (en) * 2021-06-30 2021-10-12 国能朗新明环保科技有限公司 Low-cost recycling cooperative treatment method and system for negative-hardness wastewater

Similar Documents

Publication Publication Date Title
CN101522287B (en) Targeted duct injection for so3 control
KR101229680B1 (en) System for treating discharge gas and method of removing mercury from discharge gas
US8980207B1 (en) Method and system for removal of mercury from a flue gas
JP2001347131A (en) Method and device for removing hazardous material in waste combustion gas
CN110772969A (en) Method for inhibiting generation of dioxins in solid waste incineration flue gas by using calcium oxide
JP4942559B2 (en) Exhaust gas purifier and method for capturing harmful trace elements
CN1259523C (en) Double temperature double bed gasification, oxidization and fluidized bed incinerator for disposing high concentration organic effluent liquor
JP4744370B2 (en) Method for improving dust collection efficiency of dust collector
JPS6328485A (en) Treatment of waste water from stack gas desulfurization stage
KR100538120B1 (en) activated chemicals of buring for coal
CN107824022B (en) Treatment method and treatment system for waste water and waste gas in power industry
KR20180068353A (en) Combuston Accelerator
JP5177965B2 (en) A method for capturing harmful trace elements in exhaust gas.
JP4794369B2 (en) Method for improving dust collection efficiency of dust collector
CN113423990A (en) Method for treating flue gases from a combustion unit
JP2001239128A (en) System and method for reducing sulfur trioxide
CN113599761B (en) Petrochemical alkaline residue treatment system and treatment method
JP2002273159A (en) Method for neutralizing combustion exhaust gas of fossil fuel containing sulfur
RU2655437C1 (en) Method of chemical protection of boiler equipment
Vendrup et al. Treatment of wastewater from flue gas cleaning
SU1262202A1 (en) Method for detoxication of effluents formed in operation of steam boilers
JP5420142B2 (en) Method for improving dust collection efficiency of dust collector
JPH06180104A (en) Corrosion preventive process for heat-transfer tube in boiler apparatus
Taylor et al. The Impact of Flue‐gas Desulphurization on the Water Environment
CN112648627A (en) Method for efficiently inhibiting generation of dioxin in waste incineration process by using phosphorus-based inhibitor