JPS63284486A - Detector for conductive material in glass fiber - Google Patents

Detector for conductive material in glass fiber

Info

Publication number
JPS63284486A
JPS63284486A JP62119570A JP11957087A JPS63284486A JP S63284486 A JPS63284486 A JP S63284486A JP 62119570 A JP62119570 A JP 62119570A JP 11957087 A JP11957087 A JP 11957087A JP S63284486 A JPS63284486 A JP S63284486A
Authority
JP
Japan
Prior art keywords
frequency
glass fiber
chamber
electric field
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62119570A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kimoto
木本 泰弘
Shuhei Sakaguchi
修平 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Glass Fiber Co Ltd filed Critical Nippon Glass Fiber Co Ltd
Priority to JP62119570A priority Critical patent/JPS63284486A/en
Publication of JPS63284486A publication Critical patent/JPS63284486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To perform good-accuracy detection with simple constitution by passing a glass fiber which is a specimen continuously through a high-frequency electric field generated by a high-frequency transmitter. CONSTITUTION:A high-frequency chamber 2 of a waveguide type is used to a detector and the glass fiber 3 which is the specimen is continuously passed through this chamber 2. A signal output level is raised over the entire part of the frequency range by generation of a high-frequency discharge if a conductive material such as metal exists in the fiber 3 passing the inside of the chamber 2. Since the output PC 0 at the frequency fC apart sufficiently from the oscillation frequency f0, PC/P0 is extremely large. On the other hand, P0 is at the extremely high level and, therefore, SN log(P0/PC) decreases largely. The change in the SN is continuously monitored by a computer 5 using a spectral analyzer 4, by which the conductive material such as metal incorporated in the fiber 3 is detected with the good sensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス繊維中の導電性物質を検出する為の装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for detecting conductive substances in glass fibers.

〔従来の技術〕[Conventional technology]

ガラス繊維中には、その原料或いは製造工程において異
物の混入する場合がある。この異物の種類には種々のも
のがあるが、中でも、金、銀、白金、鉄、ニッケル等、
或いはこれらの金属間化合物若しくは硫化物などの導電
性物質は、ガラス繊維加工品をプリント配線基板等の絶
縁材料として使用する際には、その絶縁性を損なう原因
となる。
Foreign matter may be mixed into the glass fiber during its raw materials or during the manufacturing process. There are various types of foreign substances, including gold, silver, platinum, iron, nickel, etc.
Alternatively, conductive substances such as these intermetallic compounds or sulfides may impair the insulation properties of glass fiber processed products when they are used as insulating materials for printed wiring boards and the like.

このようなガラス繊維中の微小な導電性異物を検出する
為の技術として、例えば特開昭59−214748号公
報に開示されているものがある。
As a technique for detecting such minute conductive foreign matter in glass fibers, there is a technique disclosed, for example, in Japanese Patent Application Laid-Open No. 59-214748.

この公知技術においては、被検体であるガラス繊維を高
周波電界内に置き、導電性物質を含むガラス繊維部分で
高周波放電を起させて、この放電時に発生する光又は音
を検知することにより、ガラス繊維中の導電性異物を検
出するようにしている。
In this known technique, a glass fiber as a test object is placed in a high-frequency electric field, a high-frequency discharge is caused in the glass fiber portion containing a conductive substance, and the light or sound generated at the time of this discharge is detected. It is designed to detect conductive foreign substances in fibers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した特開昭59−214748号公報に開示されて
いる方法では、ガラス繊維中に含まれる金属物質の種類
形状が多様である為、光の色や強度、或いは音の高さ、
音色、強度等が種々変化し、又高周波放電の起り難い金
属や高周波放電レベルが低くて光や音を発生し難い金属
がある為、検出できない場合があった。
In the method disclosed in JP-A No. 59-214748 mentioned above, since the types and shapes of the metal substances contained in the glass fibers are diverse, the color and intensity of the light, the pitch of the sound,
The timbre, intensity, etc. change in various ways, and there are metals that are difficult to generate high-frequency discharges and metals that have low high-frequency discharge levels and are difficult to generate light or sound, so it has sometimes been impossible to detect them.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、例えば第1図に示すように、高周波
発振器lにより発生させた高周波電界中に被検体である
ガラス繊維3を連続的に通過させる。
In the present invention, for example, as shown in FIG. 1, a glass fiber 3, which is an object to be examined, is continuously passed through a high-frequency electric field generated by a high-frequency oscillator 1.

そして、例えば第3図に示すように、高周波発振器1の
発振周波数f0での出力Poとその発振周波数f0から
充分離れた周波数fcでの出力P。
For example, as shown in FIG. 3, an output Po at an oscillation frequency f0 of the high-frequency oscillator 1 and an output P at a frequency fc sufficiently distant from the oscillation frequency f0.

とを夫々検出し、これらの出力Po及びPcからSN比
101og  (Pa /Pc)を算出して、このSN
比の変化を連続的にモニターする。
and calculate the SN ratio 101og (Pa /Pc) from these outputs Po and Pc.
Continuously monitor changes in ratio.

〔作用〕[Effect]

ガラス繊維中に導電性物質が存在しない場合には、pc
=oであり、SN比はかなり大きい。一方、高周波電界
中を通過するガラス繊維中に導電性物質が存在すると、
例えば第4図に示すように、全体の信号レベルが上昇す
るが、Poは非常に高いレベルにある為、Po’/Po
#lであり、Pc′/Pcが極めて大きくなる為にSN
比は大きく減少する。そこで、このSN比の変化をモニ
ターすれば、ガラス繊維中に導電性物質が存在するかど
うかを検出することができる。
If there is no conductive substance in the glass fiber, pc
=o, and the S/N ratio is quite large. On the other hand, if a conductive substance is present in the glass fiber passing through a high-frequency electric field,
For example, as shown in Figure 4, the overall signal level rises, but since Po is at a very high level, Po'/Po
#l, and since Pc'/Pc becomes extremely large, SN
The ratio decreases significantly. Therefore, by monitoring this change in the S/N ratio, it is possible to detect whether or not a conductive substance is present in the glass fiber.

[実施例〕 第1図は本発明の第1の実施例を示す概略図である。[Example〕 FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

本実施例においては、導波管形式の高周波室2が用いら
れており、この高周波室2に被検体であるガラス繊維3
が連続的に通過させられる。被検体であるガラス繊維3
は、モノフィラメントやストランド等の単繊維状のもの
でも織布状のガラス繊維加工製品でも良い。ガラス繊維
3は、図示省略した供給リール、巻取リール、ガイドロ
ーラ等の走行案内手段によって高周波室2内を所定速度
で通過させられる。
In this embodiment, a waveguide type high frequency chamber 2 is used, and a glass fiber 3 which is the object to be examined is placed in this high frequency chamber 2.
is passed continuously. Glass fiber 3 as the test object
The material may be a monofilament such as a monofilament or a strand, or a woven glass fiber processed product. The glass fiber 3 is passed through the high frequency chamber 2 at a predetermined speed by running guide means such as a supply reel, a take-up reel, and a guide roller (not shown).

高周波室2内にはオシレーター1により数10MHz〜
数GHzの高周波電界が形成される。そして、この高周
波室2内の周波数分布がスペクトル分析器4及びコンピ
ューター5により分析される。
In the high frequency chamber 2, the oscillator 1 generates a frequency of several tens of MHz.
A high frequency electric field of several GHz is formed. Then, the frequency distribution within this high frequency chamber 2 is analyzed by a spectrum analyzer 4 and a computer 5.

高周波室2内を通過するガラス繊維3中に金属物質等の
導電性物質が存在しない場合には、第3図に示すように
、オシレーター1の発振周波数f0に高いピークを持つ
周波数分布が得られる。そこで、このオシレーター1の
発振周波数f0における出力Poを測定するとともに、
この発振周波数f0から充分離れた周波数fcでの出力
Pcを比較周波数におけるバックグラウンドノイズレベ
ルとして測定し、これらのPo及びPcからSN比= 
101og  (P(1/ Pc)をコンピューター5
において算出する。この時、充分にSN比の良いオシレ
ーター1を使用すればP、、Oであり、従って、検出出
力のSN比は充分に大きな値になる。
If there is no conductive substance such as a metal substance in the glass fiber 3 passing through the high frequency chamber 2, a frequency distribution with a high peak at the oscillation frequency f0 of the oscillator 1 is obtained, as shown in Fig. 3. . Therefore, while measuring the output Po at the oscillation frequency f0 of this oscillator 1,
The output Pc at a frequency fc sufficiently distant from this oscillation frequency f0 is measured as the background noise level at the comparison frequency, and from these Po and Pc, the SN ratio =
101og (P(1/Pc) to computer 5
Calculated in At this time, if the oscillator 1 with a sufficiently good signal-to-noise ratio is used, the signal-to-noise ratio will be P, .O, and therefore the signal-to-noise ratio of the detection output will be a sufficiently large value.

一方、高周波室2内を通過するガラス繊維3中に金属等
の導電性物質が存在すると、高周波放電の発生によって
、第4図に示すように、周波数域全体に亘って信号出力
レベルが上昇する。この時、上述したようにPc!=f
Oである為、Pc’/P。
On the other hand, if a conductive substance such as metal is present in the glass fiber 3 passing through the high frequency chamber 2, the signal output level will increase over the entire frequency range due to the generation of high frequency discharge, as shown in FIG. . At this time, as mentioned above, Pc! =f
Since it is O, Pc'/P.

は極めて大きくなり、一方、Poは非常に高いレベルに
ある為にPa”/Po1lである。従って、第4図の場
合にはSN比1101o  (Po  ’/Pc  ’
)が大きく減少する。このSN比の変化をコンピュータ
ー5によって連続的にモニターすることにより、ガラス
繊維3中に混入している金属等の導電性物質を検出する
ことができる。
becomes extremely large, and on the other hand, Po is at a very high level, so it is Pa''/Po1l. Therefore, in the case of Fig. 4, the S/N ratio is 1101o (Po'/Pc'
) decreases significantly. By continuously monitoring changes in the S/N ratio using the computer 5, conductive substances such as metals mixed in the glass fibers 3 can be detected.

比較周波数f、は数k)lz〜数GHzの範囲内で選定
されるのが好ましく、その場合、混入金属の種類によっ
てノイズパターンが異なるので、Pc ′がなるべく大
きくなるように選定されるのが良い。
It is preferable that the comparison frequency f is selected within the range of several k)lz to several GHz. In this case, since the noise pattern differs depending on the type of mixed metal, it is preferable to select it so that Pc' is as large as possible. good.

尚、この比較周波数fcを複数箇所選定することによっ
て多種類の金属物質を精度良く検出するように構成する
こともできる。
It should be noted that by selecting a plurality of comparison frequencies fc, it is also possible to detect many types of metal substances with high accuracy.

第2図に本発明の第2の実施例を示す。FIG. 2 shows a second embodiment of the invention.

この実施例では箱形オーブン形式の高周波室12が用い
られており、被検体であるガラス繊維3は、オシレータ
ーlに接続された高周波発振用電極13の間を通される
。この高周波発振用電極13の近傍には検出電極14が
設けられ、この検出電極14で検出された高周波信号が
、上述した第1実施例の場合と同様にしてスペクトル分
析器4及びコンピューター5により分析され、ガラス繊
維3中の導電性異物が検出される。
In this embodiment, a high-frequency chamber 12 in the form of a box-shaped oven is used, and the glass fiber 3 to be examined is passed between high-frequency oscillation electrodes 13 connected to an oscillator 1. A detection electrode 14 is provided near the high-frequency oscillation electrode 13, and the high-frequency signal detected by the detection electrode 14 is analyzed by the spectrum analyzer 4 and computer 5 in the same manner as in the first embodiment described above. The conductive foreign matter in the glass fiber 3 is detected.

オシレーター1としては、その発振周波数が数lOMH
2〜数G HZ %出力が数百W〜数10に−のものが
好ましく、又発振出力のQが充分に高く、SN比の良い
ものを用いるのが望ましい。一方、スペクトル分析器4
は、大きなグイナミソクレンジを有するものを用いるの
が良い。
As for oscillator 1, its oscillation frequency is several lOMH.
It is preferable to use a device with an output of 2 to several GHz to several hundreds of W to several tens of watts, and a device with a sufficiently high Q of the oscillation output and a good S/N ratio. On the other hand, spectrum analyzer 4
It is best to use one with a large Guinamiso clean range.

〔発明の効果〕〔Effect of the invention〕

本発明においては、高周波電界内での高周波放電の発生
を、その高周波電界の変化を直接検出することによって
検知しているので、導電性異物の種類等に比較的左右さ
れずに確実且つ精度の良い検出を行うことができる。又
、高周波電界のSN比をモニターするので、簡単な構成
で精度の良い検出を行うことができる。更に、比較周波
数を適当に選定することによって、広範囲の種類の導電
性異物に対応することができる。
In the present invention, since the occurrence of high-frequency discharge within a high-frequency electric field is detected by directly detecting changes in the high-frequency electric field, it is possible to achieve reliable and accurate detection relatively unaffected by the type of conductive foreign object. Good detection can be done. Furthermore, since the SN ratio of the high frequency electric field is monitored, highly accurate detection can be performed with a simple configuration. Furthermore, by appropriately selecting the comparison frequency, it is possible to deal with a wide range of types of conductive foreign objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による検出装置の概略図、第
2図は別の実施例による検出装置の概略図、第3図及び
第4図はスペクトル分析器の出力と周波数との関係を示
すグラフである。 なお図面に用いた符号において、 ■−・−・・・−・−・−−一−−−−オシレーター2
−・・・・−・−−−一−−高周波室3−・−・−・−
・・・−・・ガラス繊維4・・−・・−−m−−−・−
・−・−スペクトル分th5−・〜・−・−・−コンピ
ューター 12−−−−−・−−−−−−一−−高周波室である。
FIG. 1 is a schematic diagram of a detection device according to one embodiment of the present invention, FIG. 2 is a schematic diagram of a detection device according to another embodiment, and FIGS. 3 and 4 are relationships between the output of a spectrum analyzer and frequency. This is a graph showing. In addition, in the symbols used in the drawings, ■−・−・−・−・−−1−−−−Oscillator 2
−・・−・−−−1−−High frequency chamber 3−・−・−・−
・・・−・・Glass fiber 4・・−・・−−m−−−・−
- Spectral part th5 - - Computer 12 - - - - - - - High frequency chamber.

Claims (1)

【特許請求の範囲】 高周波電界を発生する為の高周波発振器と、被検体であ
るガラス繊維を上記高周波電界内に連続的に通過させる
手段と、 上記高周波発振器の発振周波数での上記高周波電界の出
力P_oを検出する手段と、 上記高周波発振器の発振周波数から十分離れた比較周波
数での上記高周波電界の出力P_cを検出する手段と、 上記P_o及びP_cからSN比10log(P_o/
P_c)を算出する手段と、 上記SN比の変化を連続的にモニターするモニター手段
とを夫々具備したガラス繊維中の導電性物質の検出装置
[Scope of Claims] A high-frequency oscillator for generating a high-frequency electric field, means for continuously passing a glass fiber as an object through the high-frequency electric field, and an output of the high-frequency electric field at the oscillation frequency of the high-frequency oscillator. means for detecting P_o; means for detecting the output P_c of the high-frequency electric field at a comparison frequency sufficiently distant from the oscillation frequency of the high-frequency oscillator; and an S/N ratio of 10 log (P_o/
A detection device for a conductive substance in glass fibers, comprising means for calculating P_c) and monitoring means for continuously monitoring changes in the SN ratio.
JP62119570A 1987-05-16 1987-05-16 Detector for conductive material in glass fiber Pending JPS63284486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119570A JPS63284486A (en) 1987-05-16 1987-05-16 Detector for conductive material in glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119570A JPS63284486A (en) 1987-05-16 1987-05-16 Detector for conductive material in glass fiber

Publications (1)

Publication Number Publication Date
JPS63284486A true JPS63284486A (en) 1988-11-21

Family

ID=14764611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119570A Pending JPS63284486A (en) 1987-05-16 1987-05-16 Detector for conductive material in glass fiber

Country Status (1)

Country Link
JP (1) JPS63284486A (en)

Similar Documents

Publication Publication Date Title
JP3349455B2 (en) Management method and management system for semiconductor manufacturing equipment
US4765179A (en) Radio frequency spectroscopy apparatus and method using multiple frequency waveforms
JP2009099496A (en) Plasma treatment device, and method of detecting its condition
JPH02248846A (en) Method and instrument for measuring humidity of product
KR890016374A (en) Method and device for analyzing particulate matter and application system of the device
JPH07306018A (en) Device and method for non-contact measurement of thickness of semi-conductor
KR20010078097A (en) Method of detecting etching depth
KR870001226B1 (en) Method of and apparatus for detecting electrically conductive in glass fibers or articles made of glass fibers
JPS63210757A (en) Device and method for detecting conductive material in nonconductive fiber
JPS63284486A (en) Detector for conductive material in glass fiber
EP1836486A1 (en) Ultra low frequency moisture sensor
JP3709378B2 (en) Plasma processing equipment
JPS567037A (en) Remote substance density analyzing optical measuring apparatus
US3975644A (en) Flaw detecting method and apparatus
JPH11287859A (en) Laser range finder
JP3055082B2 (en) Concentration management method and device
JPS6345547A (en) Detecting method by microwave for conductive foreign matter present in dielectric penetrating through resonator
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
JPH09304227A (en) Method and apparatus for evaluating liquid crystal element
JPH05164670A (en) Method of distinguishing gas
JPS5786015A (en) Abnormality inspecting device
SU932430A1 (en) Electroconductive winding quality control method
JP3431390B2 (en) Cable insulation diagnosis method
KR20020077753A (en) Apparatus for measurement of film thickness variation speed and monitoring of process condition
SU1721851A2 (en) Method of control over quality of multilayer printed circuit boards